期刊文献+
共找到43,869篇文章
< 1 2 250 >
每页显示 20 50 100
Pre-stack inversion for caved carbonate reservoir prediction:A case study from Tarim Basin,China 被引量:9
1
作者 Zhang Yuanyin Sam Zandong Sun +5 位作者 Yang Haijun Wang Haiyang HanJianfa Gao Hongliang Luo Chunshu Jing Bing 《Petroleum Science》 SCIE CAS CSCD 2011年第4期415-421,共7页
The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the o... The major storage space types in the carbonate reservoir in the Ordovician in the TZ45 area are secondary dissolution caves.For the prediction of caved carbonate reservoir,post-stack methods are commonly used in the oilfield at present since pre-stack inversion is always limited by poor seismic data quality and insufficient logging data.In this paper,based on amplitude preserved seismic data processing and rock-physics analysis,pre-stack inversion is employed to predict the caved carbonate reservoir in TZ45 area by seriously controlling the quality of inversion procedures.These procedures mainly include angle-gather conversion,partial stack,wavelet estimation,low-frequency model building and inversion residual analysis.The amplitude-preserved data processing method can achieve high quality data based on the principle that they are very consistent with the synthetics.Besides,the foundation of pre-stack inversion and reservoir prediction criterion can be established by the connection between reservoir property and seismic reflection through rock-physics analysis.Finally,the inversion result is consistent with drilling wells in most cases.It is concluded that integrated with amplitude-preserved processing and rock-physics,pre-stack inversion can be effectively applied in the caved carbonate reservoir prediction. 展开更多
关键词 Carbonate reservoir prediction pre-stack inversion amplitude-preserved processing rock physics
在线阅读 下载PDF
Bayesian-based Full Waveform Inversion
2
作者 Huai-shan Liu Yu-zhao Lin +2 位作者 Lei Xing He-hao Tang Jing-hao Li 《Applied Geophysics》 2025年第1期1-11,231,共12页
Full waveform inversion methods evaluate the properties of subsurface media by minimizing the misfit between synthetic and observed data.However,these methods omit measurement errors and physical assumptions in modeli... Full waveform inversion methods evaluate the properties of subsurface media by minimizing the misfit between synthetic and observed data.However,these methods omit measurement errors and physical assumptions in modeling,resulting in several problems in practical applications.In particular,full waveform inversion methods are very sensitive to erroneous observations(outliers)that violate the Gauss–Markov theorem.Herein,we propose a method for addressing spurious observations or outliers.Specifically,we remove outliers by inverting the synthetic data using the local convexity of the Gaussian distribution.To achieve this,we apply a waveform-like noise model based on a specific covariance matrix definition.Finally,we build an inversion problem based on the updated data,which is consistent with the wavefield reconstruction inversion method.Overall,we report an alternative optimization inversion problem for data containing outliers.The proposed method is robust because it uses uncertainties.This method enables accurate inversion,even when based on noisy models or a wrong wavelet. 展开更多
关键词 inversion Bayesian inference theory covariance matrix
在线阅读 下载PDF
In situ stress inversion using nonlinear stress boundaries achieved by the bubbling method
3
作者 Xige Liu Chenchun Huang +3 位作者 Wancheng Zhu Joung Oh Chengguo Zhang Guangyao Si 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1510-1527,共18页
Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this cha... Due to the heterogeneity of rock masses and the variability of in situ stress,the traditional linear inversion method is insufficiently accurate to achieve high accuracy of the in situ stress field.To address this challenge,nonlinear stress boundaries for a numerical model are determined through regression analysis of a series of nonlinear coefficient matrices,which are derived from the bubbling method.Considering the randomness and flexibility of the bubbling method,a parametric study is conducted to determine recommended ranges for these parameters,including the standard deviation(σb)of bubble radii,the non-uniform coefficient matrix number(λ)for nonlinear stress boundaries,and the number(m)and positions of in situ stress measurement points.A model case study provides a reference for the selection of these parameters.Additionally,when the nonlinear in situ stress inversion method is employed,stress distortion inevitably occurs near model boundaries,aligning with the Saint Venant's principle.Two strategies are proposed accordingly:employing a systematic reduction of nonlinear coefficients to achieve high inversion accuracy while minimizing significant stress distortion,and excluding regions with severe stress distortion near the model edges while utilizing the central part of the model for subsequent simulations.These two strategies have been successfully implemented in the nonlinear in situ stress inversion of the Xincheng Gold Mine and have achieved higher inversion accuracy than the linear method.Specifically,the linear and nonlinear inversion methods yield root mean square errors(RMSE)of 4.15 and 3.2,and inversion relative errors(δAve)of 22.08%and 17.55%,respectively.Therefore,the nonlinear inversion method outperforms the traditional multiple linear regression method,even in the presence of a systematic reduction in the nonlinear stress boundaries. 展开更多
关键词 In situ stress field inversion method The bubbling method Nonlinear stress boundary Multiple linear regression method
在线阅读 下载PDF
Pre-stack AVO inversion with adaptive edge preserving smooth filter regularization based on Aki-Richard approximation
4
作者 Kai Li Xuri Huang +2 位作者 Weiping Cao Cheng Yin Jing Tang 《Earthquake Research Advances》 CSCD 2021年第S01期59-62,共4页
With the development of exploration of oil and gas resources,the requirements for seismic inversion results are getting more accurate.In particular,it is hoped that the distribution patterns of oil and gas reservoirs ... With the development of exploration of oil and gas resources,the requirements for seismic inversion results are getting more accurate.In particular,it is hoped that the distribution patterns of oil and gas reservoirs can be finely characterized,and the seismic inversion results can clearly characterize the location of stratigraphic boundaries and meet the needs of accurate geological description.Specifically,for pre-stack AVO inversion,it is required to be able to distinguish smaller geological targets in the depth or time domain,and clearly depict the vertical boundaries of the geological objects.In response to the above requirements,we introduce the preprocessing regularization of the adaptive edge-preserving smooth filter into the pre-stack AVO elastic parameter inversion to clearly invert the position of layer boundary and improve the accuracy of the inversion results. 展开更多
关键词 AVO adaptive EPS filter pre-stack inversion Aki-Richard approximation
在线阅读 下载PDF
Assessing the effects of model parameter assumptions on surface-wave inversion results 被引量:2
5
作者 Xuezhen Zhang Xiaodong Song 《Earthquake Science》 2024年第6期529-545,共17页
Surface-wave inversion is a powerful tool for revealing the Earth's internal structure.However,aside from shear-wave velocity(v_(S)),other parameters can influence the inversion outcomes,yet these have not been sy... Surface-wave inversion is a powerful tool for revealing the Earth's internal structure.However,aside from shear-wave velocity(v_(S)),other parameters can influence the inversion outcomes,yet these have not been systematically discussed.This study investigates the influence of various parameter assumptions on the results of surface-wave inversion,including the compressional and shear velocity ratio(v_(P)/v_(S)),shear-wave attenuation(Q_(S)),density(ρ),Moho interface,and sedimentary layer.We constructed synthetic models to generate dispersion data and compared the obtained results with different parameter assumptions with those of the true model.The results indicate that the v_(P)/v_(S) ratio,Q_(S),and density(ρ) have minimal effects on absolute velocity values and perturbation patterns in the inversion.Conversely,assumptions about the Moho interface and sedimentary layer significantly influenced absolute velocity values and perturbation patterns.Introducing an erroneous Mohointerface depth in the initial model of the inversion significantly affected the v_(S) model near that depth,while using a smooth initial model results in relatively minor deviations.The assumption on the sedimentary layer not only affects shallow structure results but also impacts the result at greater depths.Non-linear inversion methods outperform linear inversion methods,particularly for the assumptions of the Moho interface and sedimentary layer.Joint inversion with other data types,such as receiver functions or Rayleigh wave ellipticity,and using data from a broader period range or higher-mode surface waves,can mitigate these deviations.Furthermore,incorporating more accurate prior information can improve inversion results. 展开更多
关键词 shear-wave velocity model surface-wave inversion Moho interface sedimentary layer non-linear inversion
在线阅读 下载PDF
Impedance inversion of pre-stack seismic data in the depth domain 被引量:2
6
作者 Jiang Wei Chen Xue Hua +3 位作者 Zhang Jie Luo Xin Dan Zhi Wei and Xiao Wei 《Applied Geophysics》 SCIE CSCD 2019年第4期427-437,559,560,共13页
The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth... The extensive application of pre-stack depth migration has produced huge volumes of seismic data,which allows for the possibility of developing seismic inversions of reservoir properties from seismic data in the depth domain.It is difficult to estimate seismic wavelets directly from seismic data due to the nonstationarity of the data in the depth domain.We conduct a velocity transformation of seismic data to make the seismic data stationary and then apply the ridge regression method to estimate a constant seismic wavelet.The estimated constant seismic wavelet is constructed as a set of space-variant seismic wavelets dominated by velocities at different spatial locations.Incorporating the weighted superposition principle,a synthetic seismogram is generated by directly employing the space-variant seismic wavelets in the depth domain.An inversion workflow based on the model-driven method is developed in the depth domain by incorporating the nonlinear conjugate gradient algorithm,which avoids additional data conversions between the time and depth domains.The impedance inversions of the synthetic and field seismic data in the depth domain show good results,which demonstrates that seismic inversion in the depth domain is feasible.The approach provides an alternative for forward numerical analyses and elastic property inversions of depth-domain seismic data.It is advantageous for further studies concerning the stability,accuracy,and efficiency of seismic inversions in the depth domain. 展开更多
关键词 Depth domain seismic wavelet synthetic seismogram pre-stack impedance inversion
在线阅读 下载PDF
Geostatistical seismic inversion and 3D modelling of metric flow units,porosity and permeability in Brazilian presalt reservoir 被引量:1
7
作者 Rodrigo Penna Wagner Moreira Lupinacci 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1699-1718,共20页
Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation ... Flow units(FU)rock typing is a common technique for characterizing reservoir flow behavior,producing reliable porosity and permeability estimation even in complex geological settings.However,the lateral extrapolation of FU away from the well into the whole reservoir grid is commonly a difficult task and using the seismic data as constraints is rarely a subject of study.This paper proposes a workflow to generate numerous possible 3D volumes of flow units,porosity and permeability below the seismic resolution limit,respecting the available seismic data at larger scales.The methodology is used in the Mero Field,a Brazilian presalt carbonate reservoir located in the Santos Basin,who presents a complex and heterogenic geological setting with different sedimentological processes and diagenetic history.We generated metric flow units using the conventional core analysis and transposed to the well log data.Then,given a Markov chain Monte Carlo algorithm,the seismic data and the well log statistics,we simulated acoustic impedance,decametric flow units(DFU),metric flow units(MFU),porosity and permeability volumes in the metric scale.The aim is to estimate a minimum amount of MFU able to calculate realistic scenarios porosity and permeability scenarios,without losing the seismic lateral control.In other words,every porosity and permeability volume simulated produces a synthetic seismic that match the real seismic of the area,even in the metric scale.The achieved 3D results represent a high-resolution fluid flow reservoir modelling considering the lateral control of the seismic during the process and can be directly incorporated in the dynamic characterization workflow. 展开更多
关键词 Flowunits Geostatistical inversion Presalt reservoir 3D reservoir modelling Petrophysical modelling
在线阅读 下载PDF
Elastic modulus extraction based on generalized pre-stack PP–PS wave joint linear inversion 被引量:2
8
作者 Ma Qi-Qi Sun Zan-Dong 《Applied Geophysics》 SCIE CSCD 2018年第3期466-480,共15页
Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid cha... Joint PP–PS inversion offers better accuracy and resolution than conventional P-wave inversion. P-and S-wave elastic moduli determined through data inversions are key parameters for reservoir evaluation and fluid characterization. In this paper, starting with the exact Zoeppritz equation that relates P-and S-wave moduli, a coefficient that describes the reflections of P-and converted waves is established. This method effectively avoids error introduced by approximations or indirect calculations, thus improving the accuracy of the inversion results. Considering that the inversion problem is ill-posed and that the forward operator is nonlinear, prior constraints on the model parameters and modified low-frequency constraints are also introduced to the objective function to make the problem more tractable. This modified objective function is solved over many iterations to continuously optimize the background values of the velocity ratio, which increases the stability of the inversion process. Tests of various models show that the method effectively improves the accuracy and stability of extracting P and S-wave moduli from underdetermined data. This method can be applied to provide inferences for reservoir exploration and fluid extraction. 展开更多
关键词 pre-stack JOINT PP–PS inversion P-and S-wave moduli exact Zoeppritz equation GENERALIZED linear inversion reservoir and fl uid prediction
在线阅读 下载PDF
Modified hepatic left lateral lobe inversion in laparoscopic proximal gastrectomy: An analysis of 13 cases 被引量:1
9
作者 Jian-An Lin Chu-Ying Wu Kai Ye 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第9期2853-2859,共7页
BACKGROUND In laparoscopic proximal gastrectomy(LPG),the prolapse of the hepatic left lateral lobe near the lesser curvature and esophageal hiatus can obstruct the field of vision and operation.Therefore,it is necessa... BACKGROUND In laparoscopic proximal gastrectomy(LPG),the prolapse of the hepatic left lateral lobe near the lesser curvature and esophageal hiatus can obstruct the field of vision and operation.Therefore,it is necessary to retract or obstruct the hepatic left lateral lobe to ensure a clear field of vision.AIM To investigate the safety and clinical efficacy of the modified hepatic left lateral lobe inversion technique for LPG.METHODS A retrospective analysis was conducted on the clinical data of 13 consecutive patients with early-stage upper gastric adenocarcinoma or adenocarcinoma of the esophagogastric junction treated with LPG from January to December 2023 at the Department of Gastrointestinal Surgery,Second Affiliated Hospital of Fujian Medical University.The modified hepatic left lateral lobe inversion technique was used to expose the surgical field in all patients,and short-term outcomes were observed.RESULTS In all 13 patients,the modified hepatic left lateral lobe inversion technique was successful during surgery without the need for re-retraction or alteration of the liver traction method.There were no instances of esophageal hiatus occlusion,eliminating the need for forceps to assist in exposure.There was no occurrence of intraoperative hepatic hemorrhage,hepatic vein injury,or hepatic congestion.No postoperative digestive complications of Clavien-Dindo grade≥II occurred wi-thin 30 days after surgery,except for a single case of pulmonary infection.Some patients experienced increases in alanine aminotransferase and aspartate aminotransferase levels on the first day after surgery,which significantly decreased by the third day and returned to normal by the seventh day after surgery.CONCLUSION The modified hepatic left lateral lobe inversion technique has demonstrated satisfactory results,offering ad-vantages in terms of facilitating surgical procedures,reducing surgical trauma,and protecting the liver. 展开更多
关键词 Hepatic left lateral lobe inversion technique LAPAROSCOPY Proximal gastrectomy Liver injury
在线阅读 下载PDF
Pre-stack seismic density inversion in marine shale reservoirs in the southern Jiaoshiba area, Sichuan Basin, China 被引量:7
10
作者 Yuan-Yin Zhang Zhi-Jun Jin +3 位作者 Ye-Quan Chen Xi-Wu Liu Lei Han Wu-Jun Jin 《Petroleum Science》 SCIE CAS CSCD 2018年第3期484-497,共14页
For a typical marine shale reservoir in the Jiaoshiba area, Sichuan Basin of China, P-impedance is sensitive for identifying lithology but not suitable for indicating good shale reservoirs. In comparison, density is a... For a typical marine shale reservoir in the Jiaoshiba area, Sichuan Basin of China, P-impedance is sensitive for identifying lithology but not suitable for indicating good shale reservoirs. In comparison, density is an important quantity, which is sensitive for identifying the organic-rich mud shale from non-organic-rich mud shale. Due to the poor data quality and incidence angle range, density cannot be easily inverted by directly solving the ill-posed pre-stack seismic inversion in this area. Meanwhile, the traditional density regularizations implemented by directly using the more robust P-impedance inversion tend to be inaccurate for recovering density for this shale reservoir. In this paper, we combine the P-impedance and the minus uranium to construct the pseudo-P-impedance(PIp) at well locations. The PIp is observed to be sensitive for identifying organic-rich mud shale and has a good correlation with density in this area. We employ the PIp–density relation into the pre-stack inversion framework to estimate density. Three types of regularization are tested on both numerical and field data: These are no regularization, traditional regularization and the proposed approach. It is observed that the proposed method is better for recovering the density of organic-rich mud shale in the Jiaoshiba area. 展开更多
关键词 Density inversion Pseudo-P-impedance Pure P-wave data REGULARIZATION
在线阅读 下载PDF
Layer-Valley Hall Effect under Inversion and Time-Reversal Symmetries
11
作者 赵交交 刘贵斌 +3 位作者 陈鹏 姚裕贵 张广宇 杜罗军 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第6期88-97,共10页
Hall effects have been the central paradigms in modern physics,materials science and practical applications,and have led to many exciting breakthroughs,including the discovery of topological Chern invariants and the r... Hall effects have been the central paradigms in modern physics,materials science and practical applications,and have led to many exciting breakthroughs,including the discovery of topological Chern invariants and the revolution of metrological resistance standard.To date,the Hall effects have mainly focused on a single degree of freedom(Do F),and most of them require the breaking of spatial-inversion and/or time-reversal symmetries.Here we demonstrate a new type of Hall effect,i.e.,layer-valley Hall effect,based on a combined layer-valley Do F characterized by the product of layer and valley indices.The layer-valley Hall effect has a quantum origin arising from the layer-valley contrasting Berry curvature,and can occur in nonmagnetic centrosymmetric crystals with both spatial-inversion and time-reversal symmetries,transcending the symmetry constraints of single Do F Hall effect based on the constituent layer or valley index.Moreover,the layer-valley Hall effect is highly tunable and shows a W-shaped pattern in response to the out-of-plane electric fields.Additionally,we discuss the potential detection approaches and material-specific design principles of layer-valley Hall effect.Our results demonstrate novel Hall physics and open up exotic paradigms for new research direction of layer-valleytronics that exploits the quantum nature of the coupled layer-valley DoF. 展开更多
关键词 quantum inversion CURVATURE
在线阅读 下载PDF
An illustrated guide to:Parsimonious multi-scale full-waveform inversion
12
作者 Andreas Fichtner Solvi Thrastarson +1 位作者 Dirk-Philip van Herwaarden Sebastian Noe 《Earthquake Science》 2024年第6期574-583,共10页
Having been a seemingly unreachable ideal for decades,3-D full-waveform inversion applied to massive seismic datasets has become reality in recent years.Often achieving unprecedented resolution,it has provided new ins... Having been a seemingly unreachable ideal for decades,3-D full-waveform inversion applied to massive seismic datasets has become reality in recent years.Often achieving unprecedented resolution,it has provided new insight into the structure of the Earth,from the upper few metres of soil to the entire globe.Motivated by these successes,the technology is now being translated to medical ultrasound and non-destructive testing.Despite remarkable progress,the computational cost of fullwaveform inversion continues to be a major concern.It limits the amount of data that can be exploited,and it largely inhibits quantitative and comprehensive uncertainty analyses.These notes complement a presentation on recent developments in full-waveform inversion that are intended to reduce computational cost and assimilate more data,thereby improving tomographic resolution.The suite of strategies includes flexible and user-friendly spectral-element simulations,the design of wavefieldadapted meshes that harness prior information on wavefield geometry,dynamic mini-batch optimisation that naturally takes advantage of data redundancies,and collaborative multi-scale updating to jointly constrain crustal and mantle structure. 展开更多
关键词 EARTH MODEL SEISMOLOGY full-waveform inversion
在线阅读 下载PDF
Linearized waveform inversion for vertical transversely isotropic elastic media:Methodology and multi-parameter crosstalk analysis
13
作者 Ke Chen Lu Liu +5 位作者 Li-Nan Xu Fei Hu Yuan Yang Jia-Hui Zuo Le-Le Zhang Yang Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期252-271,共20页
Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuit... Seismic migration and inversion are closely related techniques to portray subsurface images and identify hydrocarbon reservoirs.Seismic migration aims at obtaining structural images of subsurface geologic discontinuities.More specifically,seismic migration estimates the reflectivity function(stacked average reflectivity or pre-stack angle-dependent reflectivity)from seismic reflection data.On the other hand,seismic inversion quantitatively estimates the intrinsic rock properties of subsurface formulations.Such seismic inversion methods are applicable to detect hydrocarbon reservoirs that may exhibit lateral variations in the inverted parameters.Although there exist many differences,pre-stack seismic migration is similar with the first iteration of the general linearized seismic inversion.Usually,seismic migration and inversion techniques assume an acoustic or isotropic elastic medium.Unconventional reservoirs such as shale and tight sand formation have notable anisotropic property.We present a linearized waveform inversion(LWI)scheme for weakly anisotropic elastic media with vertical transversely isotropic(VTI)symmetry.It is based on two-way anisotropic elastic wave equation and simultaneously inverts for the localized perturbations(ΔVp_(0)/Vp_(0)/Vs_(0)/Vs_(0)/,Δ∈,Δδ)from the long-wavelength reference model.Our proposed VTI-elastic LWI is an iterative method that requires a forward and an adjoint operator acting on vectors in each iteration.We derive the forward Born approximation operator by perturbation theory and adjoint operator via adjoint-state method.The inversion has improved the quality of the images and reduces the multi-parameter crosstalk comparing with the adjoint-based images.We have observed that the multi-parameter crosstalk problem is more prominent in the inversion images for Thomsen anisotropy parameters.Especially,the Thomsen parameter is the most difficult to resolve.We also analyze the multi-parameter crosstalk using scattering radiation patterns.The linearized waveform inversion for VTI-elastic media presented in this article provides quantitative information of the rock properties that has the potential to help identify hydrocarbon reservoirs. 展开更多
关键词 ELASTIC ANISOTROPY Least-squares imaging Waveform inversion Computational geophysics
在线阅读 下载PDF
Truncated Gauss-Newton full-waveform inversion of pure quasi-P waves in vertical transverse isotropic media
14
作者 Zhi-Ming Ren Lei Wang Qian-Zong Bao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3102-3124,共23页
Full-waveform inversion(FWI) uses the full information of seismic data to obtain a quantitative estimation of subsurface physical parameters. Anisotropic FWI has the potential to recover high-resolution velocity and a... Full-waveform inversion(FWI) uses the full information of seismic data to obtain a quantitative estimation of subsurface physical parameters. Anisotropic FWI has the potential to recover high-resolution velocity and anisotropy parameter models, which are critical for imaging the long-offset and wideazimuth data. We develop an acoustic anisotropic FWI method based on a simplified pure quasi P-wave(qP-wave) equation, which can be solved efficiently and is beneficial for the subsequent inversion.Using the inverse Hessian operator to precondition the functional gradients helps to reduce the parameter tradeoff in the multi-parameter inversion. To balance the accuracy and efficiency, we extend the truncated Gauss-Newton(TGN) method into FWI of pure qP-waves in vertical transverse isotropic(VTI) media. The inversion is performed in a nested way: a linear inner loop and a nonlinear outer loop.We derive the formulation of Hessian-vector products for pure qP-waves in VTI media based on the Lagrange multiplier method and compute the model update by solving a Gauss-Newton linear system via a matrix-free conjugate gradient method. A suitable preconditioner and the Eisenstat and Walker stopping criterion for the inner iterations are used to accelerate the convergence and avoid prohibitive computational cost. We test the proposed FWI method on several synthetic data sets. Inversion results reveal that the pure acoustic VTI FWI exhibits greater accuracy than the conventional pseudoacoustic VTI FWI. Additionally, the TGN method proves effective in mitigating the parameter crosstalk and increasing the accuracy of anisotropy parameters. 展开更多
关键词 Full waveform inversion Anisotropy Pure quasi-P wave Gauss-Newton HESSIAN
在线阅读 下载PDF
Self-potential inversion based on Attention U-Net deep learning network
15
作者 GUO You-jun CUI Yi-an +3 位作者 CHEN Hang XIE Jing ZHANG Chi LIU Jian-xin 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第9期3156-3167,共12页
Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention an... Landfill leaks pose a serious threat to environmental health,risking the contamination of both groundwater and soil resources.Accurate investigation of these sites is essential for implementing effective prevention and control measures.The self-potential(SP)stands out for its sensitivity to contamination plumes,offering a solution for monitoring and detecting the movement and seepage of subsurface pollutants.However,traditional SP inversion techniques heavily rely on precise subsurface resistivity information.In this study,we propose the Attention U-Net deep learning network for rapid SP inversion.By incorporating an attention mechanism,this algorithm effectively learns the relationship between array-style SP data and the location and extent of subsurface contaminated sources.We designed a synthetic landfill model with a heterogeneous resistivity structure to assess the performance of Attention U-Net deep learning network.Additionally,we conducted further validation using a laboratory model to assess its practical applicability.The results demonstrate that the algorithm is not solely dependent on resistivity information,enabling effective locating of the source distribution,even in models with intricate subsurface structures.Our work provides a promising tool for SP data processing,enhancing the applicability of this method in the field of near-subsurface environmental monitoring. 展开更多
关键词 SELF-POTENTIAL attention mechanism U-Net deep learning network inversion landfill
在线阅读 下载PDF
Characterization of a 4.1 Mb inversion harboring the stripe rust resistance gene YR86 on wheat chromosome 2AL
16
作者 Qiang Cao Zhanwang Zhu +13 位作者 Dengan Xu Jianhui Wu Xiaowan Xu Yan Dong Yingjie Bian Fugong Ding Dehui Zhao Yang Tu Ling Wu Dejun Han Caixia Lan Xianchun Xia Zhonghu He Yuanfeng Hao 《The Crop Journal》 SCIE CSCD 2024年第4期1168-1175,共8页
Wheat cultivar Zhongmai 895 was earlier found to carry YR86 in an 11.6 Mb recombination-suppressed region on chromosome 2AL when crossed with Yangmai 16.To fine-map the YR86 locus,we developed two large F2 populations... Wheat cultivar Zhongmai 895 was earlier found to carry YR86 in an 11.6 Mb recombination-suppressed region on chromosome 2AL when crossed with Yangmai 16.To fine-map the YR86 locus,we developed two large F2 populations from crosses Emai 580/Zhongmai 895 and Avocet S/Zhongmai 895.Remarkably,both populations exhibited suppressed recombination in the same 2AL region.Collinearity analysis across Chinese Spring,Aikang 58,and 10+wheat genomes revealed a 4.1 Mb chromosomal inversion spanning 708.5-712.6 Mb in the Chinese Spring reference genome.Molecular markers were developed in the breakpoint and were used to assess a wheat cultivar panel,revealing that Chinese Spring,Zhongmai 895,and Jimai 22 shared a common sequence named InvCS,whereas Aikang 58,Yangmai 16,Emai 580,and Avocet S shared the sequence named InvAK58.The inverted configuration explained the suppressed recombination observed in all three bi-parental populations.Normal recombination was observed in a Jimai 22/Zhongmai 895 F2 population,facilitating mapping of YR86 to a genetic interval of 0.15 cM corresponding to 710.27-712.56 Mb falling within the inverted region.Thirty-three high-confidence genes were annotated in the interval using the Chinese Spring reference genome,with six identified as potential candidates for YR86 based on genome and transcriptome analyses.These results will accelerate map-based cloning of YR86 and its deployment in wheat breeding. 展开更多
关键词 Adult-plant resistance Chromosomal inversion Puccinia striiformis Triticum aestivum
在线阅读 下载PDF
Probabilistic seismic inversion based on physics-guided deep mixture density network
17
作者 Qian-Hao Sun Zhao-Yun Zong Xin Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1611-1631,共21页
Deterministic inversion based on deep learning has been widely utilized in model parameters estimation.Constrained by logging data,seismic data,wavelet and modeling operator,deterministic inversion based on deep learn... Deterministic inversion based on deep learning has been widely utilized in model parameters estimation.Constrained by logging data,seismic data,wavelet and modeling operator,deterministic inversion based on deep learning can establish nonlinear relationships between seismic data and model parameters.However,seismic data lacks low-frequency and contains noise,which increases the non-uniqueness of the solutions.The conventional inversion method based on deep learning can only establish the deterministic relationship between seismic data and parameters,and cannot quantify the uncertainty of inversion.In order to quickly quantify the uncertainty,a physics-guided deep mixture density network(PG-DMDN)is established by combining the mixture density network(MDN)with the deep neural network(DNN).Compared with Bayesian neural network(BNN)and network dropout,PG-DMDN has lower computing cost and shorter training time.A low-frequency model is introduced in the training process of the network to help the network learn the nonlinear relationship between narrowband seismic data and low-frequency impedance.In addition,the block constraints are added to the PG-DMDN framework to improve the horizontal continuity of the inversion results.To illustrate the benefits of proposed method,the PG-DMDN is compared with existing semi-supervised inversion method.Four synthetic data examples of Marmousi II model are utilized to quantify the influence of forward modeling part,low-frequency model,noise and the pseudo-wells number on inversion results,and prove the feasibility and stability of the proposed method.In addition,the robustness and generality of the proposed method are verified by the field seismic data. 展开更多
关键词 Deep learning Probabilistic inversion Physics-guided Deep mixture density network
在线阅读 下载PDF
Generalizable data driven full waveform inversion for complex structures and severe topographies
18
作者 Mahdi Saadat Hosein Hashemi Majid Nabi-Bidhendi 《Petroleum Science》 CSCD 2024年第6期4025-4033,共9页
Traditionally, simplification has been used in scientific modeling practices. However, recent advancements in deep learning techniques have provided a means to represent complex models. As a result, deep neural networ... Traditionally, simplification has been used in scientific modeling practices. However, recent advancements in deep learning techniques have provided a means to represent complex models. As a result, deep neural networks should be able to approximate the complex models, with a high degree of generalization. To achieve generalization, it is necessary to have a diverse range of examples in the training of the neural network, for example in data-driven FWI, training data should cover the expected subsurface models. To meet this requirement, we porposed a method to create geologically meaningful velocity models with complex structures and severe topography. However, it is important to note that generalization comes with its own set of challenges.Because of significant variation in topography of the generated velocity models, we need to include this information as an additional input data in training of the network. Therefore, we have transformed the seismic data to a fixed datum to incorporate geometric information. Additionally, we have enhanced the network's performance by introducing a term in the network loss function. Multiple metrics have been employed to evaluate the performance of the network. The results indicate that by providing the necessary information to the network and employing computational techniques to refine the model's accuracy, deep neural networks are capable of accurately estimating velocity models in complex environments characterized by extreme topography. 展开更多
关键词 Deep learning GENERALIZATION Full waveform inversion Data-driven inversion Complex structure
在线阅读 下载PDF
Stochastic seismic inversion and Bayesian facies classification applied to porosity modeling and igneous rock identification
19
作者 Fábio Júnior Damasceno Fernandes Leonardo Teixeira +1 位作者 Antonio Fernando Menezes Freire Wagner Moreira Lupinacci 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期918-935,共18页
We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived ... We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classification are powerful tools because they permit addressing the uncertainties in the model. We used the ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic impedance values of facies, we included geological information using a priori probability, indicating that structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt interface. The modeled porosity and the classified seismic facies are in good agreement with the ones observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent thickness-prediction capability. 展开更多
关键词 Stochastic inversion Bayesian classification Porosity modeling Carbonate reservoirs Igneous rocks
在线阅读 下载PDF
True-temperature inversion algorithm for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization
20
作者 Mei Liang Zhuo Sun +3 位作者 Jiasong Liu Yongsheng Wang Lei Liang Long Zhang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期55-62,共8页
Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order... Herein,a method of true-temperature inversion for a multi-wavelength pyrometer based on fractional-order particle-swarm optimization is proposed for difficult inversion problems with unknown emissivity.Fractional-order calculus has the inherent advantage of easily jumping out of local extreme values;here,it is introduced into the particle-swarm algorithm to invert the true temperature.An improved adaptive-adjustment mechanism is applied to automatically adjust the current velocity order of the particles and update their velocity and position values,increasing the accuracy of the true temperature values.The results of simulations using the proposed algorithm were compared with three algorithms using typical emissivity models:the internal penalty function algorithm,the optimization function(fmincon)algorithm,and the conventional particle-swarm optimization algorithm.The results show that the proposed algorithm has good accuracy for true-temperature inversion.Actual experimental results from a rocket-motor plume were used to demonstrate that the true-temperature inversion results of this algorithm are in good agreement with the theoretical true-temperature values. 展开更多
关键词 Fractional-order particle swarm True-temperature inversion algorithm Multi-wavelength pyrometer
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部