Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a w...Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).展开更多
Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including...Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act...Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.展开更多
Rosenblatt and Rosenblatt-Volterra processes are two families of stochastic processes that are described by double Wiener-Itôintegrals with singular kernels.The Rosenblatt processes have exponential singular kern...Rosenblatt and Rosenblatt-Volterra processes are two families of stochastic processes that are described by double Wiener-Itôintegrals with singular kernels.The Rosenblatt processes have exponential singular kernels and the Rosenblatt-Volterra processes have singular Volterra kernels for the Wiener-Itoôintegrals.Empirical evidence shows that for many control systems the assumption of Gaussian noise is not appropriate so Rosenblatt and Rosenblatt-Volterra processes are some generalizations of Gaussian processes that can provide natural alternatives to Gaussian probability laws.Furthermore,the results for Rosenblatt and Rosenblatt-Volterra processes are tractable for some applications.These results can be compared to prediction for Gaussian processes and Gauss-Volterra processes.展开更多
This critical review looks at the assessment of the application of artificial intelligence in handling legal documents with specific reference to medical negligence cases with a view of identifying its transformative ...This critical review looks at the assessment of the application of artificial intelligence in handling legal documents with specific reference to medical negligence cases with a view of identifying its transformative potentialities, issues and ethical concerns. The review consolidates findings that show the impact of AI in improving the efficiency, accuracy and justice delivery in the legal profession. The studies show increased efficiency in speed of document review and enhancement of the accuracy of the reviewed documents, with time efficiency estimates of 60% reduction of time. However, the review also outlines some of the problems that continue to characterize AI, such as data quality problems, biased algorithms and the problem of the opaque decision-making system. This paper assesses ethical issues related to patient autonomy, justice and non-malignant suffering, with particular focus on patient privacy and fair process, and on potential unfairness to patients. This paper’s review of AI innovations finds that regulations lag behind AI developments, leading to unsettled issues regarding legal responsibility for AI and user control over AI-generated results and findings in legal proceedings. Some of the future avenues that are presented in the study are the future of XAI for legal purposes, utilizing federated learning for resolving privacy issues, and the need to foster adaptive regulation. Finally, the review advocates for Legal Subject Matter Experts to collaborate with legal informatics experts, ethicists, and policy makers to develop the best solutions to implement AI in medical negligence claims. It reasons that there is great potential for AI to have a deep impact on the practice of law but when done, it must do so in a way that respects justice and on the Rights of Individuals.展开更多
Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel...Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel traffic modelling framework for aggregate traffic on urban roads. The main idea is that road traffic flow is random, even for the recurrent flow, such as rush hour traffic, which is predisposed to congestion. Therefore, the structure of the aggregate traffic flow model for urban roads should correlate well with the essential variables of the observed random dynamics of the traffic flow phenomena. The novelty of this paper is the developed framework, based on the Poisson process, the kinematics of urban road traffic flow, and the intermediate modelling approach, which were combined to formulate the model. Empirical data from an urban road in Ghana was used to explore the model’s fidelity. The results show that the distribution from the model correlates well with that of the empirical traffic, providing a strong validation of the new framework and instilling confidence in its potential for significantly improved forecasts and, hence, a more hopeful outlook for real-world traffic management.展开更多
Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This r...Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This review mainly summarized the research reports on short process forming techniques for brazing and soldering materials.Firstly,the traditional process and its shortcomings were presented.Secondly,the latest research of short process forming technologies,such as continuous casting technique,atomization powder technique,solder ball forming technique,and rapid solidification technique,was summarized,and the traditional forming performance of several brazing and soldering materials was introduced.Finally,the current restrictions and research trends of short process forming technique for brazing and solder materials were put forward,providing theoretical guidance and reference for related research and technique development in brazing and soldering field.展开更多
[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key ...[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key factors, including crystallization temperature, stirring speed, solvent drop rate, and seed crystal content, were employed as independent variables, while the crystallization rate served as the response variable. The Box-Behnken response surface method was utilized for the optimization design. [Results] The optimal parameters for the crystallization process, determined through optimization, were as follows: a temperature of 10.6 ℃, a stirring rate of 150 rpm, a solvent drop rate of 1.50 mL/min, and a seed crystal content of 0.12 g. Validation tests conducted under these conditions yielded an average crystallization rate of 94.38% for the refined product. [Conclusions] The crystallization efficiency of ceftriaxone sodium is markedly enhanced, thereby offering substantial support for its industrial production and clinical application.展开更多
Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing ...Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.展开更多
Objective: To explore the effect of Health Action Process Approach (HAPA) theory in patients with type D personality psoriasis. Methods: A total of 66 patients with type D personality psoriasis admitted to the dermato...Objective: To explore the effect of Health Action Process Approach (HAPA) theory in patients with type D personality psoriasis. Methods: A total of 66 patients with type D personality psoriasis admitted to the dermatology department of a top-three hospital in Jingzhou City from November 2022 to July 2023 were selected and divided into control group and test group with 33 cases in each group by random number table method. The control group received routine health education, and the experimental group received health education based on the HAPA theory. Chronic disease self-efficacy scale, hospital anxiety and depression scale and skin disease quality of life scale were used to evaluate the effect of intervention. Results: After 3 months of intervention, the scores of self-efficacy in experimental group were higher than those in control group (P P Conclusion: Health education based on the theory of HAPA can enhance the self-efficacy of patients with type D personality psoriasis, relieve negative emotions and improve their quality of life.展开更多
Multi-photon polymerization is a well-established,yet actively developing,additive manufacturing technique for 3D printing on the micro/nanoscale.Like all additive manufacturing techniques,determining the process para...Multi-photon polymerization is a well-established,yet actively developing,additive manufacturing technique for 3D printing on the micro/nanoscale.Like all additive manufacturing techniques,determining the process parameters necessary to achieve dimensional accuracy for a structure 3D printed using this method is not always straightforward and can require time-consuming experimentation.In this work,an active machine learning based framework is presented for determining optimal process parameters for the recently developed,high-speed,layer-by-layer continuous projection 3D printing process.The proposed active learning framework uses Bayesian optimization to inform optimal experimentation in order to adaptively collect the most informative data for effective training of a Gaussian-process-regression-based machine learning model.This model then serves as a surrogate for the manufacturing process:predicting optimal process parameters for achieving a target geometry,e.g,the 2D geometry of each printed layer.Three representative 2D shapes at three different scales are used as test cases.In each case,the active learning framework improves the geometric accuracy,with drastic reductions of the errors to within the measurement accuracy in just four iterations of the Bayesian optimization using only a few hundred of total training data.The case studies indicate that the active learning framework developed in this work can be broadly applied to other additive manufacturing processes to increase accuracy with significantly reduced experimental data collection effortforoptimization.展开更多
This paper introduces a computational cognitive architecture that serves as a comprehensive computational theory of the human mind,from cognitive science and computational psychology.The cognitive architecture(named C...This paper introduces a computational cognitive architecture that serves as a comprehensive computational theory of the human mind,from cognitive science and computational psychology.The cognitive architecture(named Clarion)has been justified by,and validated against,psychological data,findings,and theoretical constructs.One important theoretical background for it is the dual-process theories,which led to its overall two-level structuring in a hybrid neuro-symbolic way.Furthermore,given the recent advances in AI and computing technology,LLMs are being incorporated into the model to better capture human intuition and instinct(and implicit processes in general),in order to further enhance Clarion.Integrating Clarion and LLMs can also help to develop AI systems that are more capable,more reliable,and more human-like.Overall,the paper advocates a multidisciplinary approach towards developing better models for cognitive science and for AI.展开更多
Cell senescence has attracted much attention in the long history of human beings,and telomere shortening(TS)is one of the main concerns in the study of cell senescence.To reveal the microscopic mechanism of TS process...Cell senescence has attracted much attention in the long history of human beings,and telomere shortening(TS)is one of the main concerns in the study of cell senescence.To reveal the microscopic mechanism of TS process,we model it based on molecular stochastic process from the perspective of nonequilibrium statistical physics.We associate the TS process with the continuous time random walk and derive the Fokker–Planck equation to describe the length distribution of the TS.We further modify the model describing the TS process,similar to the anomalous tempered diffusion,and derive the Feynman–Kac equation characterizing the functional distribution of the TS process.Finally,we study the statistics related to the critical telomere length l_(c),including the occupation time and first passage time.These two kinds of statistics help us understand the time scale of cell senescence.展开更多
The effect of hot band annealing processes—batch annealing and continuous annealing—on the texture evolution and ridging performance of ferritic stainless steel was investigated.The surface and central layers of the...The effect of hot band annealing processes—batch annealing and continuous annealing—on the texture evolution and ridging performance of ferritic stainless steel was investigated.The surface and central layers of the hot band exhibited strong shear and plane deformation textures,respectively.After batch annealing,the texture intensity of the hot-rolled sheet texture significantly decreased,and a weak recrystallization texture appeared,while fully recrystallized grains occurred after continuous annealing.A complete recrystallized{111}texture was obtained after recrystallization annealing.The sheet subjected to continuous annealing exhibited the highest intensity of{111}texture,which was accompanied by a dispersed grain orientation distribution,resulting in the lowest ridging height.展开更多
Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mec...Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mechanism of arsenopyrite by evaluating the effects of physical and chemical changes of arsenopyrite in BOS chemical oxidation stage on mineral dissolution kinetics,as well as microbial growth activity and community structure composition in bio-oxidation stage.The results showed that the chemical oxidation contributed to destroying the physical and chemical structure of arsenopyrite surface and reducing the particle size,and led to the formation of nitrogenous substances on mineral surface.These chemical oxidation behaviors effectively promoted Fe^(3+)cycling in the bio-oxidation system and weakened the inhibitory effect of the sulfur film on ionic diffusion,thereby enhancing the dissolution kinetics of the arsenopyrite.Therefore,the bio-oxidation efficiency of arsenopyrite was significantly increased in the two-stage oxidation process.After 18 d,the two-stage oxidation process achieved total extraction rates of(88.8±2.0)%,(86.7±1.3)%,and(74.7±3.0)%for As,Fe,and S elements,respectively.These values represented a significant increase of(50.8±3.4)%,(47.1±2.7)%,and(46.0±0.7)%,respectively,compared to the one-stage bio-oxidation process.展开更多
1 Introduction On-device deep learning(DL)on mobile and embedded IoT devices drives various applications[1]like robotics image recognition[2]and drone swarm classification[3].Efficient local data processing preserves ...1 Introduction On-device deep learning(DL)on mobile and embedded IoT devices drives various applications[1]like robotics image recognition[2]and drone swarm classification[3].Efficient local data processing preserves privacy,enhances responsiveness,and saves bandwidth.However,current ondevice DL relies on predefined patterns,leading to accuracy and efficiency bottlenecks.It is difficult to provide feedback on data processing performance during the data acquisition stage,as processing typically occurs after data acquisition.展开更多
By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using comput...By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.展开更多
The Hualien M 7.3 earthquake on April 3,2024,was a significant and strong earthquake in Taiwan,China in the past two decades.The rupture process of the main shock and strong aftershocks is of great significance to the...The Hualien M 7.3 earthquake on April 3,2024,was a significant and strong earthquake in Taiwan,China in the past two decades.The rupture process of the main shock and strong aftershocks is of great significance to the subsequent seismic activity and seismogenic tectonic research.Based on local strong-motion data,we used the IDS(Iterative Deconvolution and Stacking)method to obtain the rupture process of the mainshock and two strong aftershocks on the 23rd.The rupture of the mainshock was mainly unilateral,lasting 31 s,with a maximum slip of 2m,and the depth of the large slip zone is about 41–49 km.There is a clear difference between the rupture depth of the main shock and the two strong aftershocks.The depths of the large slip zones of the latter two are 3–9 km and 8–10 km,respectively.There is also a significant difference in the seismogenic fault between the mainshock and the aftershocks,and we believe that there are two seismogenic fault zones in the study area,the deep and the shallow fault zone.The slip of the deep faults activates the shallow faults.展开更多
基金funded by CONAHCYT grant(252808)to GFCONAHCYT’s“Estancias Posdoctorales por México”program(662350)to HTB。
文摘Recent reports suggest that aging is not solely a physiological process in living beings;instead, it should be considered a pathological process or disease(Amorim et al., 2022). Consequently, this process involves a wide range of factors, spanning from genetic to environmental factors, and even includes the gut microbiome(GM)(Mayer et al., 2022). All these processes coincide at some point in the inflammatory process, oxidative stress, and apoptosis, at different degrees in various organs and systems that constitute a living organism(Mayer et al., 2022;AguilarHernández et al., 2023).
基金supported by the National Natural Science Foundation of China(Nos.22206050 and 52270047).
文摘Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
基金Technology Development Program of Jilin Province(YDZJ202201ZYTS640)the National Key Research and Development Program of China(2022YFB4200400)funded by MOST+4 种基金the National Natural Science Foundation of China(52172048 and 52103221)Shandong Provincial Natural Science Foundation(ZR2021QB024 and ZR2021ZD06)Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,and 2024A1515010023)the Qingdao New Energy Shandong Laboratory open Project(QNESL OP 202309)the Fundamental Research Funds of Shandong University.
文摘Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.
基金supported by AFOSR under Grant No.FA9550-12-1-0384.
文摘Rosenblatt and Rosenblatt-Volterra processes are two families of stochastic processes that are described by double Wiener-Itôintegrals with singular kernels.The Rosenblatt processes have exponential singular kernels and the Rosenblatt-Volterra processes have singular Volterra kernels for the Wiener-Itoôintegrals.Empirical evidence shows that for many control systems the assumption of Gaussian noise is not appropriate so Rosenblatt and Rosenblatt-Volterra processes are some generalizations of Gaussian processes that can provide natural alternatives to Gaussian probability laws.Furthermore,the results for Rosenblatt and Rosenblatt-Volterra processes are tractable for some applications.These results can be compared to prediction for Gaussian processes and Gauss-Volterra processes.
文摘This critical review looks at the assessment of the application of artificial intelligence in handling legal documents with specific reference to medical negligence cases with a view of identifying its transformative potentialities, issues and ethical concerns. The review consolidates findings that show the impact of AI in improving the efficiency, accuracy and justice delivery in the legal profession. The studies show increased efficiency in speed of document review and enhancement of the accuracy of the reviewed documents, with time efficiency estimates of 60% reduction of time. However, the review also outlines some of the problems that continue to characterize AI, such as data quality problems, biased algorithms and the problem of the opaque decision-making system. This paper assesses ethical issues related to patient autonomy, justice and non-malignant suffering, with particular focus on patient privacy and fair process, and on potential unfairness to patients. This paper’s review of AI innovations finds that regulations lag behind AI developments, leading to unsettled issues regarding legal responsibility for AI and user control over AI-generated results and findings in legal proceedings. Some of the future avenues that are presented in the study are the future of XAI for legal purposes, utilizing federated learning for resolving privacy issues, and the need to foster adaptive regulation. Finally, the review advocates for Legal Subject Matter Experts to collaborate with legal informatics experts, ethicists, and policy makers to develop the best solutions to implement AI in medical negligence claims. It reasons that there is great potential for AI to have a deep impact on the practice of law but when done, it must do so in a way that respects justice and on the Rights of Individuals.
文摘Road traffic flow forecasting provides critical information for the operational management of road mobility challenges, and models are used to generate the forecast. This paper uses a random process to present a novel traffic modelling framework for aggregate traffic on urban roads. The main idea is that road traffic flow is random, even for the recurrent flow, such as rush hour traffic, which is predisposed to congestion. Therefore, the structure of the aggregate traffic flow model for urban roads should correlate well with the essential variables of the observed random dynamics of the traffic flow phenomena. The novelty of this paper is the developed framework, based on the Poisson process, the kinematics of urban road traffic flow, and the intermediate modelling approach, which were combined to formulate the model. Empirical data from an urban road in Ghana was used to explore the model’s fidelity. The results show that the distribution from the model correlates well with that of the empirical traffic, providing a strong validation of the new framework and instilling confidence in its potential for significantly improved forecasts and, hence, a more hopeful outlook for real-world traffic management.
基金National Key Research and Development Program(2021YFB3401101)。
文摘Short process forming techniques for brazing and soldering materials can shorten the process,improve product quality,and increase production efficiency,which has received much attention from welding researchers.This review mainly summarized the research reports on short process forming techniques for brazing and soldering materials.Firstly,the traditional process and its shortcomings were presented.Secondly,the latest research of short process forming technologies,such as continuous casting technique,atomization powder technique,solder ball forming technique,and rapid solidification technique,was summarized,and the traditional forming performance of several brazing and soldering materials was introduced.Finally,the current restrictions and research trends of short process forming technique for brazing and solder materials were put forward,providing theoretical guidance and reference for related research and technique development in brazing and soldering field.
基金Supported by Central Guided Local Science and Technology Development Funds(ZY20230102)Guilin Scientific Research and Technology Development Programme Project(2023010301-1,20220104-4)+1 种基金Guangxi Science and Technology Programme Project(GK AB24010263)Guangxi Innovation Driving Development Special Funds Project(GK AA22096020).
文摘[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key factors, including crystallization temperature, stirring speed, solvent drop rate, and seed crystal content, were employed as independent variables, while the crystallization rate served as the response variable. The Box-Behnken response surface method was utilized for the optimization design. [Results] The optimal parameters for the crystallization process, determined through optimization, were as follows: a temperature of 10.6 ℃, a stirring rate of 150 rpm, a solvent drop rate of 1.50 mL/min, and a seed crystal content of 0.12 g. Validation tests conducted under these conditions yielded an average crystallization rate of 94.38% for the refined product. [Conclusions] The crystallization efficiency of ceftriaxone sodium is markedly enhanced, thereby offering substantial support for its industrial production and clinical application.
文摘Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.
文摘Objective: To explore the effect of Health Action Process Approach (HAPA) theory in patients with type D personality psoriasis. Methods: A total of 66 patients with type D personality psoriasis admitted to the dermatology department of a top-three hospital in Jingzhou City from November 2022 to July 2023 were selected and divided into control group and test group with 33 cases in each group by random number table method. The control group received routine health education, and the experimental group received health education based on the HAPA theory. Chronic disease self-efficacy scale, hospital anxiety and depression scale and skin disease quality of life scale were used to evaluate the effect of intervention. Results: After 3 months of intervention, the scores of self-efficacy in experimental group were higher than those in control group (P P Conclusion: Health education based on the theory of HAPA can enhance the self-efficacy of patients with type D personality psoriasis, relieve negative emotions and improve their quality of life.
基金supported by the National Science Foundation(NSF)through grant numbers CMMI-2135585 and CMMI-2229143J.EJ.acknowledges the National Science Foundation for support under the Graduate Research Fellowship Program(GRFP)under grant number DGE-1842166.
文摘Multi-photon polymerization is a well-established,yet actively developing,additive manufacturing technique for 3D printing on the micro/nanoscale.Like all additive manufacturing techniques,determining the process parameters necessary to achieve dimensional accuracy for a structure 3D printed using this method is not always straightforward and can require time-consuming experimentation.In this work,an active machine learning based framework is presented for determining optimal process parameters for the recently developed,high-speed,layer-by-layer continuous projection 3D printing process.The proposed active learning framework uses Bayesian optimization to inform optimal experimentation in order to adaptively collect the most informative data for effective training of a Gaussian-process-regression-based machine learning model.This model then serves as a surrogate for the manufacturing process:predicting optimal process parameters for achieving a target geometry,e.g,the 2D geometry of each printed layer.Three representative 2D shapes at three different scales are used as test cases.In each case,the active learning framework improves the geometric accuracy,with drastic reductions of the errors to within the measurement accuracy in just four iterations of the Bayesian optimization using only a few hundred of total training data.The case studies indicate that the active learning framework developed in this work can be broadly applied to other additive manufacturing processes to increase accuracy with significantly reduced experimental data collection effortforoptimization.
文摘This paper introduces a computational cognitive architecture that serves as a comprehensive computational theory of the human mind,from cognitive science and computational psychology.The cognitive architecture(named Clarion)has been justified by,and validated against,psychological data,findings,and theoretical constructs.One important theoretical background for it is the dual-process theories,which led to its overall two-level structuring in a hybrid neuro-symbolic way.Furthermore,given the recent advances in AI and computing technology,LLMs are being incorporated into the model to better capture human intuition and instinct(and implicit processes in general),in order to further enhance Clarion.Integrating Clarion and LLMs can also help to develop AI systems that are more capable,more reliable,and more human-like.Overall,the paper advocates a multidisciplinary approach towards developing better models for cognitive science and for AI.
基金National Natural Science Foundation of China,Grant/Award Numbers:12225107,12071195Major Science and Technology Projects in Gansu Province-Leading Talents in Science and Technology,Grant/Award Number:23ZDKA0005+1 种基金Innovative Groups of Basic Research in Gansu Province,Grant/Award Number:22JR5RA391Lanzhou Talent Work Special Fund。
文摘Cell senescence has attracted much attention in the long history of human beings,and telomere shortening(TS)is one of the main concerns in the study of cell senescence.To reveal the microscopic mechanism of TS process,we model it based on molecular stochastic process from the perspective of nonequilibrium statistical physics.We associate the TS process with the continuous time random walk and derive the Fokker–Planck equation to describe the length distribution of the TS.We further modify the model describing the TS process,similar to the anomalous tempered diffusion,and derive the Feynman–Kac equation characterizing the functional distribution of the TS process.Finally,we study the statistics related to the critical telomere length l_(c),including the occupation time and first passage time.These two kinds of statistics help us understand the time scale of cell senescence.
文摘The effect of hot band annealing processes—batch annealing and continuous annealing—on the texture evolution and ridging performance of ferritic stainless steel was investigated.The surface and central layers of the hot band exhibited strong shear and plane deformation textures,respectively.After batch annealing,the texture intensity of the hot-rolled sheet texture significantly decreased,and a weak recrystallization texture appeared,while fully recrystallized grains occurred after continuous annealing.A complete recrystallized{111}texture was obtained after recrystallization annealing.The sheet subjected to continuous annealing exhibited the highest intensity of{111}texture,which was accompanied by a dispersed grain orientation distribution,resulting in the lowest ridging height.
基金Project(52274348)supported by the National Natural Science Foundation of ChinaProject(2022JH1/10400024)supported by the Major Projects for the“Revealed Top”Science and Technology of Liaoning Province,China。
文摘Applying bio-oxidation waste solution(BOS)to chemical-biological two-stage oxidation process can significantly improve the bio-oxidation efficiency of arsenopyrite.This study aims to clarify the enhanced oxidation mechanism of arsenopyrite by evaluating the effects of physical and chemical changes of arsenopyrite in BOS chemical oxidation stage on mineral dissolution kinetics,as well as microbial growth activity and community structure composition in bio-oxidation stage.The results showed that the chemical oxidation contributed to destroying the physical and chemical structure of arsenopyrite surface and reducing the particle size,and led to the formation of nitrogenous substances on mineral surface.These chemical oxidation behaviors effectively promoted Fe^(3+)cycling in the bio-oxidation system and weakened the inhibitory effect of the sulfur film on ionic diffusion,thereby enhancing the dissolution kinetics of the arsenopyrite.Therefore,the bio-oxidation efficiency of arsenopyrite was significantly increased in the two-stage oxidation process.After 18 d,the two-stage oxidation process achieved total extraction rates of(88.8±2.0)%,(86.7±1.3)%,and(74.7±3.0)%for As,Fe,and S elements,respectively.These values represented a significant increase of(50.8±3.4)%,(47.1±2.7)%,and(46.0±0.7)%,respectively,compared to the one-stage bio-oxidation process.
基金supported by the National Science Fund for Distinguished Young Scholars(62025205)the National Natural Science Foundation of China(Grant Nos.62032020,62102317)CityU APRC Grant(9610633).
文摘1 Introduction On-device deep learning(DL)on mobile and embedded IoT devices drives various applications[1]like robotics image recognition[2]and drone swarm classification[3].Efficient local data processing preserves privacy,enhances responsiveness,and saves bandwidth.However,current ondevice DL relies on predefined patterns,leading to accuracy and efficiency bottlenecks.It is difficult to provide feedback on data processing performance during the data acquisition stage,as processing typically occurs after data acquisition.
基金supported by the National Natural Science Foundation of China(Grant No.11972194).
文摘By combining with an improved model on engraving process,a two-phase flow interior ballistic model has been proposed to accurately predict the flow and energy conversion behaviors of pyrotechnic actuators.Using computational fluid dynamics(CFD),the two-phase flow and piston engraving characteristics of a pyrotechnic actuator are investigated.Initially,the current model was utilized to examine the intricate,multi-dimensional flow,and energy conversion characteristics of the propellant grains and combustion gas within the pyrotechnic actuator chamber.It was discovered that the combustion gas on the wall's constant transition from potential to kinetic energy,along with the combined effect of the propellant motion,are what create the pressure oscillation within the chamber.Additionally,a numerical analysis was conducted to determine the impact of various parameters on the pressure oscillation and piston motion,including pyrotechnic charge,pyrotechnic particle size,and chamber structural dimension.The findings show that decreasing the pyrotechnic charge will lower the terminal velocity,while increasing and decreasing the pyrotechnic particle size will reduce the pressure oscillation in the chamber.The pyrotechnic particle size has minimal bearing on the terminal velocity.The results of this investigation offer a trustworthy forecasting instrument for comprehending and creating pyrotechnic actuator designs.
基金sponsored by the Earthquake Spark Technology Project(XH23051B)。
文摘The Hualien M 7.3 earthquake on April 3,2024,was a significant and strong earthquake in Taiwan,China in the past two decades.The rupture process of the main shock and strong aftershocks is of great significance to the subsequent seismic activity and seismogenic tectonic research.Based on local strong-motion data,we used the IDS(Iterative Deconvolution and Stacking)method to obtain the rupture process of the mainshock and two strong aftershocks on the 23rd.The rupture of the mainshock was mainly unilateral,lasting 31 s,with a maximum slip of 2m,and the depth of the large slip zone is about 41–49 km.There is a clear difference between the rupture depth of the main shock and the two strong aftershocks.The depths of the large slip zones of the latter two are 3–9 km and 8–10 km,respectively.There is also a significant difference in the seismogenic fault between the mainshock and the aftershocks,and we believe that there are two seismogenic fault zones in the study area,the deep and the shallow fault zone.The slip of the deep faults activates the shallow faults.