To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast typhoon storm surge. However, typhoon surge is a complex nonlinear process that is difficult to forecast accurately. We appl...To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast typhoon storm surge. However, typhoon surge is a complex nonlinear process that is difficult to forecast accurately. We applied a principal component back-propagation neural network (PCBPNN) to predict the deviation in typhoon storm surge, in which data of the typhoon, upstream flood, and historical case studies were involved. With principal component analysis, 15 input factors were reduced to five principal components, and the application of the model was improved. Observation data from Huangpu Park in Shanghai, China were used to test the feasibility of the model. The results indicate that the model is capable of predicting a 12-hour warning before a typhoon surge.展开更多
Quadratic Discrimination Function (QDF) is commonly used in speech emotion recognition, which proceeds on the premise that the input data is normal distribution. In this paper, we propose a transformation to normali...Quadratic Discrimination Function (QDF) is commonly used in speech emotion recognition, which proceeds on the premise that the input data is normal distribution. In this paper, we propose a transformation to normalize the emotional features, emotion recognition. Features based on prosody then derivate a Modified QDF (MQDF) to speech and voice quality are extracted and Principal Component Analysis Neural Network (PCANN) is used to reduce dimension of the feature vectors. The results show that voice quality features are effective supplement for recognition, and the method in this paper could improve the recognition ratio effectively.展开更多
基金Supported by National Marine Public Scientific Research Fund of China(No. 200905010)the Talent Training Fund Project for Basic Sciences of the National Natural Science Foundation of China (No. J0730534)+2 种基金the Fundamental Research Funds for the Central Universitiesthe Open Research Funding Program of KLGIS (No. KLGIS2011A12)the Open Fund from Key Laboratory of Marine Management Technique of State Oceanic Administration (No. 201112)
文摘To reduce typhoon-caused damages, numerical and empirical methods are often used to forecast typhoon storm surge. However, typhoon surge is a complex nonlinear process that is difficult to forecast accurately. We applied a principal component back-propagation neural network (PCBPNN) to predict the deviation in typhoon storm surge, in which data of the typhoon, upstream flood, and historical case studies were involved. With principal component analysis, 15 input factors were reduced to five principal components, and the application of the model was improved. Observation data from Huangpu Park in Shanghai, China were used to test the feasibility of the model. The results indicate that the model is capable of predicting a 12-hour warning before a typhoon surge.
基金the Ministry of Education Fund (No: 20050286001)Ministry of Education "New Century Tal-ents Support Plan" (No:NCET-04-0483)Doctoral Foundation of Ministry of Education (No:20050286001).
文摘Quadratic Discrimination Function (QDF) is commonly used in speech emotion recognition, which proceeds on the premise that the input data is normal distribution. In this paper, we propose a transformation to normalize the emotional features, emotion recognition. Features based on prosody then derivate a Modified QDF (MQDF) to speech and voice quality are extracted and Principal Component Analysis Neural Network (PCANN) is used to reduce dimension of the feature vectors. The results show that voice quality features are effective supplement for recognition, and the method in this paper could improve the recognition ratio effectively.