在装配整体式剪力墙结构中,由于套筒灌浆连接的质量具有一定的随机性,势必影响结构的竖向连接性能和结构抗震性能。根据不同缺陷程度的套筒灌浆拉拔试验,建立了一套等效套筒灌浆缺陷连接承载力模型,并基于某实际工程结构,建立了装配整...在装配整体式剪力墙结构中,由于套筒灌浆连接的质量具有一定的随机性,势必影响结构的竖向连接性能和结构抗震性能。根据不同缺陷程度的套筒灌浆拉拔试验,建立了一套等效套筒灌浆缺陷连接承载力模型,并基于某实际工程结构,建立了装配整体式剪力墙结构有限元模型。通过考虑灌浆缺陷的随机性,赋予连接接头相应缺陷程度的力学连接性能,来反映套筒灌浆中可能存在的缺陷。通过非线性有限元分析并结合概率密度演化方法(probability density evolution method,PDEM)进行了结构随机非线性反应分析和可靠度评估。结果表明:在动力作用下,结构非线性与随机性具有明显的耦合效应;缺陷的随机性会随着时间的推移,逐渐放大对结构响应的影响;在不同的安全域内,结构的整体可靠度将存在较大的差异。展开更多
Response surface method is used to study the reliability analysis of laterally loaded piles in sloping ground. A development load-displacement (p-y) curve for laterally loaded pile response in sloping ground is used...Response surface method is used to study the reliability analysis of laterally loaded piles in sloping ground. A development load-displacement (p-y) curve for laterally loaded pile response in sloping ground is used to model the pile-soil system, both the pile head displacement and the maximum bending moment of the piles are used as the performance criteria in this study. The reliability analysis method of the laterally loaded pile in sloping ground under the pile head displacement and the maximum bending moment failure modes is proposed, which is in good agreement with the Monte Carlo method. The influences on the probability index of failure by a number of parameters are discussed. It is shown that the variability of pile head displacement increases with the increase in the coefficients of variation of ultimate bearing capacity factor (Npu), secant elastic modulus at 50%(E50) and level load (H). A negative correlation between Npu and non-dimensional factor (λ) leads to less spread out probability density function (PDF) of the pile head displacement;in contrast, a positive correlation between Npu andλgives a great variation in the PDF of pile head displacement. As for bearing capacity factor on ground surface (Npo) and λ, both negative and positive correlations between them give a great variation in the PDF of pile head displacement, and a negative correlation will obviously increase the variability of the response.展开更多
The reliability based optimization (RBO) issue of composite laminates trader fundamental frequency constraint is studied. Considering the tmcertainties of material properties, the frequency constraint reliability of...The reliability based optimization (RBO) issue of composite laminates trader fundamental frequency constraint is studied. Considering the tmcertainties of material properties, the frequency constraint reliability of the structure is evaluated by the combination of response surface method (RSM) and finite element method. An optimization algorithm is developed based on the mechanism of laminate frequency characteristics, to optimize the laminate in terms of the ply amount and orientation angles. Numerical examples of composite laminates and cylindrical shell illustrate the advantages of the present optimization algorithm on the efficiency and applicability respects. The optimal solutions of RBO are obviously different from the deterministic optimization results, and the necessity of considering material property uncertainties in the composite structural frequency constraint optimization is revealed.展开更多
文摘在装配整体式剪力墙结构中,由于套筒灌浆连接的质量具有一定的随机性,势必影响结构的竖向连接性能和结构抗震性能。根据不同缺陷程度的套筒灌浆拉拔试验,建立了一套等效套筒灌浆缺陷连接承载力模型,并基于某实际工程结构,建立了装配整体式剪力墙结构有限元模型。通过考虑灌浆缺陷的随机性,赋予连接接头相应缺陷程度的力学连接性能,来反映套筒灌浆中可能存在的缺陷。通过非线性有限元分析并结合概率密度演化方法(probability density evolution method,PDEM)进行了结构随机非线性反应分析和可靠度评估。结果表明:在动力作用下,结构非线性与随机性具有明显的耦合效应;缺陷的随机性会随着时间的推移,逐渐放大对结构响应的影响;在不同的安全域内,结构的整体可靠度将存在较大的差异。
基金Projects(5147847951322403)supported by the National Natural Science Foundation of China+3 种基金Project(2015CX005)supported by Innovation Driven Plan of Central South University,ChinaProject(14JJ4003)supported by Hunan Provincial Natural Science Foundation,ChinaProject(SKLGP2014K008)supported by Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,ChinaProject(2015CB060200)supported by the National Basic Research Program of China
文摘Response surface method is used to study the reliability analysis of laterally loaded piles in sloping ground. A development load-displacement (p-y) curve for laterally loaded pile response in sloping ground is used to model the pile-soil system, both the pile head displacement and the maximum bending moment of the piles are used as the performance criteria in this study. The reliability analysis method of the laterally loaded pile in sloping ground under the pile head displacement and the maximum bending moment failure modes is proposed, which is in good agreement with the Monte Carlo method. The influences on the probability index of failure by a number of parameters are discussed. It is shown that the variability of pile head displacement increases with the increase in the coefficients of variation of ultimate bearing capacity factor (Npu), secant elastic modulus at 50%(E50) and level load (H). A negative correlation between Npu and non-dimensional factor (λ) leads to less spread out probability density function (PDF) of the pile head displacement;in contrast, a positive correlation between Npu andλgives a great variation in the PDF of pile head displacement. As for bearing capacity factor on ground surface (Npo) and λ, both negative and positive correlations between them give a great variation in the PDF of pile head displacement, and a negative correlation will obviously increase the variability of the response.
基金National Natural Science Foundation of China (51412060104HK0123)
文摘The reliability based optimization (RBO) issue of composite laminates trader fundamental frequency constraint is studied. Considering the tmcertainties of material properties, the frequency constraint reliability of the structure is evaluated by the combination of response surface method (RSM) and finite element method. An optimization algorithm is developed based on the mechanism of laminate frequency characteristics, to optimize the laminate in terms of the ply amount and orientation angles. Numerical examples of composite laminates and cylindrical shell illustrate the advantages of the present optimization algorithm on the efficiency and applicability respects. The optimal solutions of RBO are obviously different from the deterministic optimization results, and the necessity of considering material property uncertainties in the composite structural frequency constraint optimization is revealed.