期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
基于卷积金字塔网络的PPO算法求解作业车间调度问题
1
作者 徐帅 李艳武 +1 位作者 谢辉 牛晓伟 《现代制造工程》 北大核心 2025年第3期19-30,共12页
作业车间调度问题是一个经典的NP-hard组合优化问题,其调度方案的优劣直接影响制造系统的运行效率。为得到更优的调度策略,以最小化最大完工时间为优化目标,提出了一种基于近端策略优化(Proximal Policy Optimization,PPO)和卷积神经网... 作业车间调度问题是一个经典的NP-hard组合优化问题,其调度方案的优劣直接影响制造系统的运行效率。为得到更优的调度策略,以最小化最大完工时间为优化目标,提出了一种基于近端策略优化(Proximal Policy Optimization,PPO)和卷积神经网络(Convolutional Neural Network,CNN)的深度强化学习(Deep Reinforcement Learning,DRL)调度方法。设计了一种三通道状态表示方法,选取16种启发式调度规则作为动作空间,将奖励函数等价为最小化机器总空闲时间。为使训练得到的调度策略能够处理不同规模的调度算例,在卷积神经网络中使用空间金字塔池化(Spatial Pyramid Pooling,SPP),将不同维度的特征矩阵转化为固定长度的特征向量。在公开OR-Library的42个作业车间调度(Job-Shop Scheduling Problem,JSSP)算例上进行了计算实验。仿真实验结果表明,该算法优于单一启发式调度规则和遗传算法,在大部分算例中取得了比现有深度强化学习算法更好的结果,且平均完工时间最小。 展开更多
关键词 深度强化学习 作业车间调度 卷积神经网络 近端策略优化 空间金字塔池化
在线阅读 下载PDF
自适应奖励函数的PPO曲面覆盖方法
2
作者 李淑怡 阳波 +2 位作者 陈灵 沈玲 唐文胜 《计算机工程》 北大核心 2025年第3期86-94,共9页
针对机器人清洁作业过程中现有曲面覆盖方法难以适应曲面变化且覆盖效率低的问题,提出一种自适应奖励函数的近端策略优化(PPO)曲面覆盖方法(SC-SRPPO)。首先,将目标曲面离散化,以球查询方式获得协方差矩阵,求解点云的法向量,建立3D曲面... 针对机器人清洁作业过程中现有曲面覆盖方法难以适应曲面变化且覆盖效率低的问题,提出一种自适应奖励函数的近端策略优化(PPO)曲面覆盖方法(SC-SRPPO)。首先,将目标曲面离散化,以球查询方式获得协方差矩阵,求解点云的法向量,建立3D曲面模型;其次,以曲面局部点云的覆盖状态特征和曲率变化特征作为曲面模型观测值以构建状态模型,有利于机器人移动轨迹拟合曲面,提高机器人对曲面变化的适应能力;接着,基于曲面的全局覆盖率和与时间相关的指数模型构建一种自适应奖励函数,引导机器人向未覆盖区域移动,提高覆盖效率;最后,将曲面局部状态模型、奖励函数、PPO强化学习算法相融合,训练机器人完成曲面覆盖路径规划任务。在球形、马鞍形、立体心形等3种曲面模型上,以点云覆盖率与覆盖完成时间作为主要评价指标进行实验,结果表明,SC-SRPPO的平均覆盖率为90.72%,与NSGA Ⅱ、PPO、SAC这3种方法对比,覆盖率分别提升4.98%、14.56%、27.11%,覆盖完成时间分别缩短15.20%、67.18%、62.64%。SC-SRPPO能够在适应曲面变化的基础上使机器人更加高效地完成曲面覆盖任务。 展开更多
关键词 清洁机器人 曲面 覆盖路径规划 强化学习 近端策略优化
在线阅读 下载PDF
基于自注意力PPO算法的智能配电网多设备协同无功优化控制策略 被引量:1
3
作者 张黎元 宋兴旺 +3 位作者 李冰洁 梁睿 刘长德 彭奕洲 《智慧电力》 北大核心 2024年第10期40-48,共9页
针对智能配电网无功可调控资源多样化场景下的快速趋优难题,提出了一种基于多头自注意力近端策略优化算法的多设备协同无功优化控制方法。首先,将无功优化问题建模为马尔可夫决策过程;然后,在深度强化学习框架下使用多头自注意力改进近... 针对智能配电网无功可调控资源多样化场景下的快速趋优难题,提出了一种基于多头自注意力近端策略优化算法的多设备协同无功优化控制方法。首先,将无功优化问题建模为马尔可夫决策过程;然后,在深度强化学习框架下使用多头自注意力改进近端策略优化(PPO)算法对策略网络进行优化训练,算法采用多头自注意力网络获取配电网的实时状态特征,并通过剪切策略梯度法动态控制策略网络的更新幅度;最后,在改进IEEE69节点系统进行仿真验证。结果表明,所提算法的控制性能优于现有先进强化学习算法。 展开更多
关键词 配电网 分布式光伏 电压无功控制 多头自注意力 近端策略优化算法
在线阅读 下载PDF
基于PPO算法的CIES低碳优化调度方法
4
作者 陈凡 吴凌霄 +2 位作者 王曼 吕干云 张小莲 《电力工程技术》 北大核心 2024年第6期88-99,共12页
阶梯式碳交易机制以及优化调度模型求解算法是进行园区综合能源系统(community integrated energy system,CIES)优化调度的重要因素,现有文献对这两个因素的考虑不够全面。为此,文中在考虑阶梯式碳交易机制的基础上,提出采用近端策略优... 阶梯式碳交易机制以及优化调度模型求解算法是进行园区综合能源系统(community integrated energy system,CIES)优化调度的重要因素,现有文献对这两个因素的考虑不够全面。为此,文中在考虑阶梯式碳交易机制的基础上,提出采用近端策略优化(proximal policy optimization,PPO)算法求解CIES低碳优化调度问题。该方法基于低碳优化调度模型搭建强化学习交互环境,利用设备状态参数及运行参数定义智能体的状态、动作空间及奖励函数,再通过离线训练获取可生成最优策略的智能体。算例分析结果表明,采用PPO算法得到的CIES低碳优化调度方法能够充分发挥阶梯式碳交易机制减少碳排放量和提高能源利用率方面的优势。 展开更多
关键词 园区综合能源系统(CIES) 优化调度 近端策略优化(ppo)算法 阶梯式碳交易机制 惩罚系数 碳排放
在线阅读 下载PDF
基于样本优化的PPO算法在单路口信号控制的应用
5
作者 张国有 张新武 《计算机系统应用》 2024年第6期161-168,共8页
优化交通信号的控制策略可以提高道路车辆通行效率,缓解交通拥堵.针对基于值函数的深度强化学习算法难以高效优化单路口信号控制策略的问题,构建了一种基于样本优化的近端策略优化(MPPO)算法的单路口信号控制方法,通过对传统PPO算法中... 优化交通信号的控制策略可以提高道路车辆通行效率,缓解交通拥堵.针对基于值函数的深度强化学习算法难以高效优化单路口信号控制策略的问题,构建了一种基于样本优化的近端策略优化(MPPO)算法的单路口信号控制方法,通过对传统PPO算法中代理目标函数进行最大化提取,有效提高了模型选择样本的质量,采用多维交通状态向量作为模型观测值的输入方法,以及时跟踪并利用道路交通状态的动态变化过程.为了验证MPPO算法模型的准确性和有效性,在城市交通微观模拟软件(SUMO)上与值函数强化学习控制方法进行对比.仿真实验表明,相比于值函数强化学习控制方法,该方法更贴近真实的交通场景,显著加快了车辆累计等待时间的收敛速度,车辆的平均队列长度和平均等待时间明显缩短,有效提高了单路口车辆的通行效率. 展开更多
关键词 交通信号控制 深度强化学习 近端策略优化算法 代理目标函数 状态特征向量
在线阅读 下载PDF
基于注意力的循环PPO算法及其应用
6
作者 吕相霖 臧兆祥 +1 位作者 李思博 王俊英 《计算机技术与发展》 2024年第1期136-142,共7页
针对深度强化学习算法在部分可观测环境中面临信息掌握不足、存在随机因素等问题,提出了一种融合注意力机制与循环神经网络的近端策略优化算法(ARPPO算法)。该算法首先通过卷积网络层提取特征;其次采用注意力机制突出状态中重要的关键信... 针对深度强化学习算法在部分可观测环境中面临信息掌握不足、存在随机因素等问题,提出了一种融合注意力机制与循环神经网络的近端策略优化算法(ARPPO算法)。该算法首先通过卷积网络层提取特征;其次采用注意力机制突出状态中重要的关键信息;再次通过LSTM网络提取数据的时域特性;最后基于Actor-Critic结构的PPO算法进行策略学习与训练提升。基于Gym-Minigrid环境设计了两项探索任务的消融与对比实验,实验结果表明ARPPO算法较已有的A2C算法、PPO算法、RPPO算法具有更快的收敛速度,且ARPPO算法在收敛之后具有很强的稳定性,并对存在随机因素的未知环境具备更强的适应力。 展开更多
关键词 深度强化学习 部分可观测 注意力机制 LSTM网络 近端策略优化算法
在线阅读 下载PDF
基于MAPPO的无信号灯交叉口自动驾驶决策
7
作者 许曼晨 于镝 +1 位作者 赵理 郭陈栋 《吉林大学学报(信息科学版)》 CAS 2024年第5期790-798,共9页
针对自动驾驶在通过无信号灯交叉口由于车流密集且车辆行为随机不确定的问题,提出一种基于MAPPO(Multi-Agent Proximal Policy Optimization)算法的无信号灯交叉口自动驾驶决策方案。通过MetaDrive仿真环平台搭建多智能体仿真环境,并且... 针对自动驾驶在通过无信号灯交叉口由于车流密集且车辆行为随机不确定的问题,提出一种基于MAPPO(Multi-Agent Proximal Policy Optimization)算法的无信号灯交叉口自动驾驶决策方案。通过MetaDrive仿真环平台搭建多智能体仿真环境,并且设计了综合考虑交通规则、安全到达或发生碰撞等安全性以及交叉口车辆最大、最小速度等车流效率的奖励函数,旨在实现安全高效的自动驾驶决策。仿真实验表明,所提出的自动驾驶决策方案在训练中相较于其他算法具有更出色的稳定性和收敛性,在不同车流密度下均呈现出更高的成功率和安全性。该自动驾驶决策方案在解决无信号灯交叉口环境方面具有显著潜力,并且为复杂路况自动驾驶决策的研究起到促进作用。 展开更多
关键词 自动驾驶 智能决策 无信号灯交叉口 MAppo算法
在线阅读 下载PDF
基于近端策略优化的两栖无人平台路径规划算法研究
8
作者 左哲 覃卫 +2 位作者 徐梓洋 李寓安 陈泰然 《北京理工大学学报》 EI CAS 北大核心 2025年第1期19-25,共7页
为解决水陆两栖无人平台在复杂环境中的路径规划问题,针对传统方法难以应对动态障碍物和多变环境的局限性,提出了一种基于近端策略优化(PPO)的路径规划算法,包含四种感知信息输入方案以及速度强化奖励函数,适应动态和静态环境.该算法通... 为解决水陆两栖无人平台在复杂环境中的路径规划问题,针对传统方法难以应对动态障碍物和多变环境的局限性,提出了一种基于近端策略优化(PPO)的路径规划算法,包含四种感知信息输入方案以及速度强化奖励函数,适应动态和静态环境.该算法通过批次函数正则化、策略熵引入和自适应裁剪因子,显著提升了算法的收敛速度和稳定性.研究中采用了ROS仿真平台,结合Flatland物理引擎和PedSim插件,模拟了包含动态障碍物的多种复杂场景.实验结果表明,采用BEV+V状态空间输入结构和离散动作空间的两栖无人平台,在路径规划中展现出高成功率和低超时率,优于传统方法和其他方案.仿真和对比实验显示采用鸟瞰图与速度组合的状态空间数据结构配合速度强化奖励函数算法提高了性能,收敛速度提高25.58%,路径规划成功率提升25.54%,超时率下降13.73%. 展开更多
关键词 路径规划 两栖 无人平台 近端策略优化(ppo)
在线阅读 下载PDF
基于近端策略优化的数据中心任务调度算法
9
作者 徐涛 常怡明 刘才华 《计算机工程与设计》 北大核心 2025年第3期712-718,共7页
针对调度算法无法动态适应数据中心状态动态变化和用户需求多样化的问题,提出一种基于近端策略优化的数据中心两阶段任务调度算法。通过设计优先级函数为任务提供优先级,采用近端策略优化方法适应数据中心状态动态变化和用户需求的多样... 针对调度算法无法动态适应数据中心状态动态变化和用户需求多样化的问题,提出一种基于近端策略优化的数据中心两阶段任务调度算法。通过设计优先级函数为任务提供优先级,采用近端策略优化方法适应数据中心状态动态变化和用户需求的多样化。在任务选择阶段通过计算任务的优先级,优先调度高优先级任务;在物理服务器选择阶段,智能体根据实时的数据中心状态和用户需求,灵活地调整任务调度决策,实现资源的高效分配。实验结果表明,该算法性能优于现有的启发式算法以及常用强化学习算法。 展开更多
关键词 调度算法 数据中心 任务调度 强化学习 近端策略优化 优先级 两阶段
在线阅读 下载PDF
基于深度强化学习的游戏智能引导算法
10
作者 白天 吕璐瑶 +1 位作者 李储 何加亮 《吉林大学学报(理学版)》 北大核心 2025年第1期91-98,共8页
针对传统游戏智能体算法存在模型输入维度大及训练时间长的问题,提出一种结合状态信息转换与奖励函数塑形技术的新型深度强化学习游戏智能引导算法.首先,利用Unity引擎提供的接口直接读取游戏后台信息,以有效压缩状态空间的维度,减少输... 针对传统游戏智能体算法存在模型输入维度大及训练时间长的问题,提出一种结合状态信息转换与奖励函数塑形技术的新型深度强化学习游戏智能引导算法.首先,利用Unity引擎提供的接口直接读取游戏后台信息,以有效压缩状态空间的维度,减少输入数据量;其次,通过精细化设计奖励机制,加速模型的收敛过程;最后,从主观定性和客观定量两方面对该算法模型与现有方法进行对比实验,实验结果表明,该算法不仅显著提高了模型的训练效率,还大幅度提高了智能体的性能. 展开更多
关键词 深度强化学习 游戏智能体 奖励函数塑形 近端策略优化算法
在线阅读 下载PDF
基于状态空间扩展的深度强化学习混合流水车间调度
11
作者 汤怀钰 王聪 +2 位作者 张宏立 马萍 董颖超 《组合机床与自动化加工技术》 北大核心 2025年第4期195-200,共6页
针对混合流水车间调度问题(hybrid flow shop problem, HFSP),以最小化最大完工时间和最小总能耗为求解目标,提出一种基于状态空间扩展的深度强化学习新方法。将状态特征由传统单一方式转变为多特征状态元组,并通过引入新的动作选择规... 针对混合流水车间调度问题(hybrid flow shop problem, HFSP),以最小化最大完工时间和最小总能耗为求解目标,提出一种基于状态空间扩展的深度强化学习新方法。将状态特征由传统单一方式转变为多特征状态元组,并通过引入新的动作选择规则来优化加工机器的选择。设计了奖励机制为最大加工时间和能耗的负相关,激励系统在调度过程中尽量减少加工时间和总能耗从而更有效地利用资源。通过将PPORL方法应用于不同数据集进行仿真实验,并与现有算法比较,结果表明,所提方法具有更强的稳定性、探索性和泛化能力,显著提高了调度效率和资源利用率,有效地解决了多目标混合流水车间调度问题。 展开更多
关键词 节能减排 混合流水车间调度 深度强化学习 近端策略优化算法
在线阅读 下载PDF
基于PPO的移动平台自主导航 被引量:2
12
作者 徐国艳 熊绎维 +1 位作者 周彬 陈冠宏 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第11期2138-2145,共8页
为解决强化学习算法在自主导航任务中动作输出不连续、训练收敛困难等问题,提出了一种基于近似策略优化(PPO)算法的移动平台自主导航方法。在PPO算法的基础上设计了基于正态分布的动作策略函数,解决了移动平台整车线速度和横摆角速度的... 为解决强化学习算法在自主导航任务中动作输出不连续、训练收敛困难等问题,提出了一种基于近似策略优化(PPO)算法的移动平台自主导航方法。在PPO算法的基础上设计了基于正态分布的动作策略函数,解决了移动平台整车线速度和横摆角速度的输出动作连续性问题。设计了一种改进的人工势场算法作为自身位置评价,有效提高强化学习模型在自主导航场景中的收敛速度。针对导航场景设计了模型的网络框架和奖励函数,并在Gazebo仿真环境中进行模型训练,结果表明,引入自身位置评价的模型收敛速度明显提高。将收敛模型移植入真实环境中,验证了所提方法的有效性。 展开更多
关键词 近似策略优化算法 移动平台 自主导航 强化学习 人工势场
在线阅读 下载PDF
基于改进近端策略优化算法的AGV路径规划与任务调度
13
作者 祁璇 周通 +2 位作者 王村松 彭孝天 彭浩 《计算机集成制造系统》 北大核心 2025年第3期955-964,共10页
自动引导车(AGV)是一种具有高度柔性和灵活性的自动化物料运输设备,可实现路径规划、任务调度和智能分配等功能。目前关于AGV最优路径与调度算法研究仍存在泛化性差、收敛效率低、寻路时间长等问题。因此,提出一种改进近端策略优化算法(... 自动引导车(AGV)是一种具有高度柔性和灵活性的自动化物料运输设备,可实现路径规划、任务调度和智能分配等功能。目前关于AGV最优路径与调度算法研究仍存在泛化性差、收敛效率低、寻路时间长等问题。因此,提出一种改进近端策略优化算法(PPO)。首先,采用多步长动作选择策略增加AGV移动步长,将AGV动作集由原来的4个方向基础上增加了8个方向,优化最优路径;其次,改进动态奖励值函数,根据AGV当前状态实时调整奖励值大小,提高其学习能力;然后,基于不同改进方法比较其奖励值曲线图,验证算法收敛效率与最优路径距离;最后,采用多任务调度优化算法,设计了一种单AGV多任务调度优化算法,提高运输效率。结果表明:改进后的算法最优路径缩短了28.6%,改进后的算法相比于PPO算法收敛效率提升了78.5%,在处理更为复杂、需要高水平策略的任务时表现更佳,具有更强的泛化能力;将改进后的算法与Q学习、深度Q学习(DQN)算法、软演员-评论家(SAC)算法进行比较,算法效率分别提升了84.4%、83.7%、77.9%;单AGV多任务调度优化后,平均路径缩短了47.6%。 展开更多
关键词 自动导引小车 路径规划 任务调度 近端策略优化算法 强化学习
在线阅读 下载PDF
基于可解释强化学习的智能虚拟电厂最优调度
14
作者 袁孝科 沈石兰 +2 位作者 张茂松 石晨旭 杨凌霄 《综合智慧能源》 2025年第1期1-9,共9页
随着电动汽车的不断普及,能源系统日益复杂。虚拟电厂(VPP)可以通过物联网和人工智能技术,将分布式电源、储能系统、可控负荷以及EV等分布式能源进行聚合和协调优化,有助于提升能源的使用效率,并促进非可再生能源的消纳,增强电网稳定性... 随着电动汽车的不断普及,能源系统日益复杂。虚拟电厂(VPP)可以通过物联网和人工智能技术,将分布式电源、储能系统、可控负荷以及EV等分布式能源进行聚合和协调优化,有助于提升能源的使用效率,并促进非可再生能源的消纳,增强电网稳定性。现阶段人工智能技术在电力系统等安全要求较高的应用领域缺乏可靠性和透明度,可能导致用户和运营商难以理解算法如何做出特定的能源调配决策。针对人工智能技术下的VPP实现最优调度并兼顾解释其决策过程的平衡问题,提出一种可解释强化学习的交互式框架,使用近端策略优化算法实现VPP的最优调度,并使用决策树建立一种可解释性强化学习框架,用于提供透明的决策支持,使非专业用户能够理解人工智能在调节能源系统方面的决策过程。试验表明,与传统强化学习优化方法相比,该方法不仅提高了能源分配的效率,而且通过增强模型的可解释性,加强了用户对智能VPP管理系统的信任。 展开更多
关键词 虚拟电厂 电动汽车 近端策略优化算法 强化学习 决策树 可解释性框架 分布式电源 人工智能
在线阅读 下载PDF
基于分层框架混合强化学习的导弹制导与突防策略
15
作者 谭明虎 何昊麟 +1 位作者 艾文洁 柴斌 《宇航学报》 北大核心 2025年第1期117-128,共12页
针对目标-导弹-防御者三方交战场景中攻击导弹面临主动防御拦截的问题,提出了一种基于分层框架混合强化学习的全过程智能制导与突防策略。首先,分析攻击导弹的制导与突防任务需求,构建了三方交战的运动学模型。其次,基于双层策略结构提... 针对目标-导弹-防御者三方交战场景中攻击导弹面临主动防御拦截的问题,提出了一种基于分层框架混合强化学习的全过程智能制导与突防策略。首先,分析攻击导弹的制导与突防任务需求,构建了三方交战的运动学模型。其次,基于双层策略结构提出了混合强化学习方法,以分别应对连续和离散两种动作空间类型。通过近端策略优化(PPO)算法训练下层制导与突防模型,获得了自动驾驶仪的制导指令;同时采用深度Q网络(DQN)算法训练上层决策模型,在每个决策时刻根据全局状态选择调用下层子模型。提出的制导与突防策略通过分层框架实现了导弹打击任务中的全过程实时智能决策。与传统综合制导律的对比实验结果表明,基于分层框架混合强化学习的突防制导策略不仅确保了攻击导弹在三方交战环境中的生存能力,同时在能量消耗方面取得了显著优势。 展开更多
关键词 强化学习 制导突防策略 近端策略优化(ppo) 深度Q网络(DQN)
在线阅读 下载PDF
融合LSTM和PPO算法的移动机器人视觉导航 被引量:17
16
作者 张仪 冯伟 +4 位作者 王卫军 杨之乐 张艳辉 朱子翰 谭勇 《电子测量与仪器学报》 CSCD 北大核心 2022年第8期132-140,共9页
为提高移动机器人在无地图情况下的视觉导航能力,提升导航成功率,提出了一种融合长短期记忆神经网络(long short term memory, LSTM)和近端策略优化算法(proximal policy optimization, PPO)算法的移动机器人视觉导航模型。首先,该模型... 为提高移动机器人在无地图情况下的视觉导航能力,提升导航成功率,提出了一种融合长短期记忆神经网络(long short term memory, LSTM)和近端策略优化算法(proximal policy optimization, PPO)算法的移动机器人视觉导航模型。首先,该模型融合LSTM和PPO算法作为视觉导航的网络模型;其次,通过移动机器人动作,与目标距离,运动时间等因素设计奖励函数,用以训练目标;最后,以移动机器人第一视角获得的RGB-D图像及目标点的极性坐标为输入,以移动机器人的连续动作值为输出,实现无地图的端到端视觉导航任务,并根据推理到达未接受过训练的新目标。对比前序算法,该模型在模拟环境中收敛速度更快,旧目标的导航成功率平均提高17.7%,新目标的导航成功率提高23.3%,具有较好的导航性能。 展开更多
关键词 近端策略优化算法 长短期记忆神经网络 视觉导航
在线阅读 下载PDF
基于改进PPO算法的机器人局部路径规划 被引量:10
17
作者 刘国名 李彩虹 +3 位作者 李永迪 张国胜 张耀玉 高腾腾 《计算机工程》 CAS CSCD 北大核心 2023年第2期119-126,135,共9页
利用强化学习训练机器人局部路径规划模型存在算法收敛速度慢、易陷入死锁区域导致目标不可达等问题。对传统近端策略优化(PPO)算法进行改进,引入长短期记忆(LSTM)神经网络并设计虚拟目标点法,提出LSTM-PPO算法。将PPO神经网络结构中的... 利用强化学习训练机器人局部路径规划模型存在算法收敛速度慢、易陷入死锁区域导致目标不可达等问题。对传统近端策略优化(PPO)算法进行改进,引入长短期记忆(LSTM)神经网络并设计虚拟目标点法,提出LSTM-PPO算法。将PPO神经网络结构中的全连接层替换为LSTM记忆单元,控制样本信息的记忆和遗忘程度,优先学习奖励值高的样本,从而更快地累积奖励优化模型。在此基础上,加入虚拟目标点,通过雷达传感器收集的环境信息判断机器人陷入死锁区域时弃用目标点给予机器人的引导,使机器人走出陷阱区域并趋向目标点,减少在死锁区域不必要的训练。分别在特殊障碍物场景和混合障碍物场景中对LSTM-PPO算法进行仿真验证,结果表明,与传统PPO算法和改进算法SDAS-PPO相比,该算法在两种场景训练中均能最快到达奖励峰值,可加快模型收敛速度,减少冗余路段,优化路径平滑度并缩短路径长度。 展开更多
关键词 机器人 局部路径规划 长短期记忆神经网络 近端策略优化算法 虚拟目标点
在线阅读 下载PDF
基于PPO算法优化的IoT环境温度预测研究 被引量:3
18
作者 朱广 霍跃华 +1 位作者 栾庆磊 史艳琼 《传感器与微系统》 CSCD 北大核心 2021年第4期33-36,共4页
针对现有物联网(IoT)环境温度预测方法存在的预测精度低以及预测结果存在滞后性的问题,提出了一种基于优化的近端策略优化(PPO)算法和AC(Actor-Critic)网络的IoT环境温度预测模型(PPO-AC)。模型结合AC强化学习网络构建用于温度预测的双... 针对现有物联网(IoT)环境温度预测方法存在的预测精度低以及预测结果存在滞后性的问题,提出了一种基于优化的近端策略优化(PPO)算法和AC(Actor-Critic)网络的IoT环境温度预测模型(PPO-AC)。模型结合AC强化学习网络构建用于温度预测的双网络模型,并采用优化的PPO算法动态选择损失函数。最后,采用Kaggle数据平台提供的IoT环境温度数据集,通过实验验证了该模型的有效性和稳定性。 展开更多
关键词 物联网(IoT) 近端策略优化(ppo)算法 AC(Actor-Critic)网络 温度预测
在线阅读 下载PDF
基于PPO算法的无人机近距空战自主引导方法 被引量:4
19
作者 邱妍 赵宝奇 +1 位作者 邹杰 刘仲凯 《电光与控制》 CSCD 北大核心 2023年第1期8-14,共7页
针对无人机近距空战的自主决策问题,提出了一种基于近端策略优化(PPO)算法的无人机自主引导方法。针对敌我距离、角度、速度以及任务约束等信息重塑奖励,建立了无人机三自由度模型,在速度坐标系上构建强化学习的状态和动作,分别对结合... 针对无人机近距空战的自主决策问题,提出了一种基于近端策略优化(PPO)算法的无人机自主引导方法。针对敌我距离、角度、速度以及任务约束等信息重塑奖励,建立了无人机三自由度模型,在速度坐标系上构建强化学习的状态和动作,分别对结合了全连接神经网络的PPO算法(标准PPO算法)和长短时记忆网络的PPO算法(改进PPO算法)模型进行了仿真训练。根据训练的结果可以证明,相比于标准PPO算法,所提的改进PPO算法能够更有效地处理与时间序列高度相关的无人机自主引导任务。 展开更多
关键词 近距空战 近端策略优化 自主引导 长短时记忆网络
在线阅读 下载PDF
基于PPO算法的仿生鱼循迹智能控制 被引量:1
20
作者 李云飞 严嫏 +2 位作者 张来平 邓小刚 邹舒帆 《计算机系统应用》 2023年第9期230-238,共9页
仿生鱼具有广阔的工程应用前景,对于仿生鱼的控制,首先要解决的是循迹问题.然而,现有的基于CFD方式和传统控制算法的鱼游控制方法存在训练数据获取成本高、控制不稳定等缺点.本文提出了基于PPO算法的仿生鱼循迹智能控制方法:使用代理模... 仿生鱼具有广阔的工程应用前景,对于仿生鱼的控制,首先要解决的是循迹问题.然而,现有的基于CFD方式和传统控制算法的鱼游控制方法存在训练数据获取成本高、控制不稳定等缺点.本文提出了基于PPO算法的仿生鱼循迹智能控制方法:使用代理模型替代CFD方式产生训练数据,提高数据的产生效率;引入高效的PPO算法,加快策略模型的学习速度,提高训练数据的效用;引入速度参数,解决鱼体在急转弯区域无法顺利循迹的问题.实验表明,我们提出的方法在多种类型的路径上均具有更快的收敛速度和更加稳定的控制能力,在仿生机器鱼的智能控制方面具有重要的指导意义. 展开更多
关键词 深度强化学习 仿生鱼 智能控制 代理模型 ppo
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部