期刊文献+
共找到343,646篇文章
< 1 2 250 >
每页显示 20 50 100
A Newly Established Air Pollution Data Center in China 被引量:1
1
作者 Mei ZHENG Tianle ZHANG +11 位作者 Yaxin XIANG Xiao TANG Yinan WANG Guannan GENG Yuying WANG Yingjun LIU Chunxiang YE Caiqing YAN Yingjun CHEN Jiang ZHU Qiang ZHANG Tong ZHU 《Advances in Atmospheric Sciences》 2025年第4期597-604,共8页
Air pollution in China covers a large area with complex sources and formation mechanisms,making it a unique place to conduct air pollution and atmospheric chemistry research.The National Natural Science Foundation of ... Air pollution in China covers a large area with complex sources and formation mechanisms,making it a unique place to conduct air pollution and atmospheric chemistry research.The National Natural Science Foundation of China’s Major Research Plan entitled“Fundamental Researches on the Formation and Response Mechanism of the Air Pollution Complex in China”(or the Plan)has funded 76 research projects to explore the causes of air pollution in China,and the key processes of air pollution in atmospheric physics and atmospheric chemistry.In order to summarize the abundant data from the Plan and exhibit the long-term impacts domestically and internationally,an integration project is responsible for collecting the various types of data generated by the 76 projects of the Plan.This project has classified and integrated these data,forming eight categories containing 258 datasets and 15 technical reports in total.The integration project has led to the successful establishment of the China Air Pollution Data Center(CAPDC)platform,providing storage,retrieval,and download services for the eight categories.This platform has distinct features including data visualization,related project information querying,and bilingual services in both English and Chinese,which allows for rapid searching and downloading of data and provides a solid foundation of data and support for future related research.Air pollution control in China,especially in the past decade,is undeniably a global exemplar,and this data center is the first in China to focus on research into the country’s air pollution complex. 展开更多
关键词 air pollution data center PLATFORM multi-source data China
在线阅读 下载PDF
AI-Enhanced Secure Data Aggregation for Smart Grids with Privacy Preservation
2
作者 Congcong Wang Chen Wang +1 位作者 Wenying Zheng Wei Gu 《Computers, Materials & Continua》 SCIE EI 2025年第1期799-816,共18页
As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and use... As smart grid technology rapidly advances,the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection.Current research emphasizes data security and user privacy concerns within smart grids.However,existing methods struggle with efficiency and security when processing large-scale data.Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge.This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities.The approach optimizes data preprocessing,integrates Long Short-Term Memory(LSTM)networks for handling time-series data,and employs homomorphic encryption to safeguard user privacy.It also explores the application of Boneh Lynn Shacham(BLS)signatures for user authentication.The proposed scheme’s efficiency,security,and privacy protection capabilities are validated through rigorous security proofs and experimental analysis. 展开更多
关键词 Smart grid data security privacy protection artificial intelligence data aggregation
在线阅读 下载PDF
A novel method for clustering cellular data to improve classification
3
作者 Diek W.Wheeler Giorgio A.Ascoli 《Neural Regeneration Research》 SCIE CAS 2025年第9期2697-2705,共9页
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse... Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons. 展开更多
关键词 cellular data clustering dendrogram data classification Levene's one-tailed statistical test unsupervised hierarchical clustering
在线阅读 下载PDF
A Support Vector Machine(SVM)Model for Privacy Recommending Data Processing Model(PRDPM)in Internet of Vehicles
4
作者 Ali Alqarni 《Computers, Materials & Continua》 SCIE EI 2025年第1期389-406,共18页
Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experie... Open networks and heterogeneous services in the Internet of Vehicles(IoV)can lead to security and privacy challenges.One key requirement for such systems is the preservation of user privacy,ensuring a seamless experience in driving,navigation,and communication.These privacy needs are influenced by various factors,such as data collected at different intervals,trip durations,and user interactions.To address this,the paper proposes a Support Vector Machine(SVM)model designed to process large amounts of aggregated data and recommend privacy preserving measures.The model analyzes data based on user demands and interactions with service providers or neighboring infrastructure.It aims to minimize privacy risks while ensuring service continuity and sustainability.The SVMmodel helps validate the system’s reliability by creating a hyperplane that distinguishes between maximum and minimum privacy recommendations.The results demonstrate the effectiveness of the proposed SVM model in enhancing both privacy and service performance. 展开更多
关键词 Support vector machine big data IoV PRIVACY-PRESERVING
在线阅读 下载PDF
IoT Empowered Early Warning of Transmission Line Galloping Based on Integrated Optical Fiber Sensing and Weather Forecast Time Series Data
5
作者 Zhe Li Yun Liang +1 位作者 Jinyu Wang Yang Gao 《Computers, Materials & Continua》 SCIE EI 2025年第1期1171-1192,共22页
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran... Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios. 展开更多
关键词 Optical fiber sensing multi-source data fusion early warning of galloping time series data IOT adaptive weighted learning irregular time series perception closed-loop attention mechanism
在线阅读 下载PDF
A New Encryption Mechanism Supporting the Update of Encrypted Data for Secure and Efficient Collaboration in the Cloud Environment
6
作者 Chanhyeong Cho Byeori Kim +1 位作者 Haehyun Cho Taek-Young Youn 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期813-834,共22页
With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud... With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks. 展开更多
关键词 Cloud collaboration mode of operation data update efficiency
在线阅读 下载PDF
A Generative Model-Based Network Framework for Ecological Data Reconstruction
7
作者 Shuqiao Liu Zhao Zhang +1 位作者 Hongyan Zhou Xuebo Chen 《Computers, Materials & Continua》 SCIE EI 2025年第1期929-948,共20页
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection systems.Combining Strengths,Weaknesses,Opportunities,Th... This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection systems.Combining Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data reconstruction.The model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT Analysis.The model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample data.Reconstructed data is used to retain more semantic information to generate features.The model was applied to species in Southern California,USA,citing SWOT analysis data to train the model.Experiments show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development environments.The model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data domain.This study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development. 展开更多
关键词 Convolutional Neural Network(CNN) VAE GAN TOPSIS data reconstruction
在线阅读 下载PDF
Optimization of an Artificial Intelligence Database and Camera Installation for Recognition of Risky Passenger Behavior in Railway Vehicles
8
作者 Min-kyeong Kim Yeong Geol Lee +3 位作者 Won-Hee Park Su-hwan Yun Tae-Soon Kwon Duckhee Lee 《Computers, Materials & Continua》 SCIE EI 2025年第1期1277-1293,共17页
Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the in... Urban railways are vital means of public transportation in Korea.More than 30%of metropolitan residents use the railways,and this proportion is expected to increase.To enhance safety,the government has mandated the installation of closed-circuit televisions in all carriages by 2024.However,cameras still monitored humans.To address this limitation,we developed a dataset of risk factors and a smart detection system that enables an immediate response to any abnormal behavior and intensive monitoring thereof.We created an innovative learning dataset that takes into account seven unique risk factors specific to Korean railway passengers.Detailed data collection was conducted across the Shinbundang Line of the Incheon Transportation Corporation,and the Ui-Shinseol Line.We observed several behavioral characteristics and assigned unique annotations to them.We also considered carriage congestion.Recognition performance was evaluated by camera placement and number.Then the camera installation plan was optimized.The dataset will find immediate applications in domestic railway operations.The artificial intelligence algorithms will be verified shortly. 展开更多
关键词 AI railway vehicle risk factor smart detection AI training data
在线阅读 下载PDF
Impact of ocean data assimilation on the seasonal forecast of the 2014/15 marine heatwave in the Northeast Pacific Ocean
9
作者 Tiantian Tang Jiaying He +1 位作者 Huihang Sun Jingjia Luo 《Atmospheric and Oceanic Science Letters》 2025年第1期24-31,共8页
A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study em... A remarkable marine heatwave,known as the“Blob”,occurred in the Northeast Pacific Ocean from late 2013 to early 2016,which displayed strong warm anomalies extending from the surface to a depth of 300 m.This study employed two assimilation schemes based on the global Climate Forecast System of Nanjing University of Information Science(NUIST-CFS 1.0)to investigate the impact of ocean data assimilation on the seasonal prediction of this extreme marine heatwave.The sea surface temperature(SST)nudging scheme assimilates SST only,while the deterministic ensemble Kalman filter(EnKF)scheme assimilates observations from the surface to the deep ocean.The latter notably improves the forecasting skill for subsurface temperature anomalies,especially at the depth of 100-300 m(the lower layer),outperforming the SST nudging scheme.It excels in predicting both horizontal and vertical heat transport in the lower layer,contributing to improved forecasts of the lower-layer warming during the Blob.These improvements stem from the assimilation of subsurface observational data,which are important in predicting the upper-ocean conditions.The results suggest that assimilating ocean data with the EnKF scheme significantly enhances the accuracy in predicting subsurface temperature anomalies during the Blob and offers better understanding of its underlying mechanisms. 展开更多
关键词 Seasonal forecast Ocean data assimilation Marine heatwave Subsurface temperature
在线阅读 下载PDF
A Latency-Aware and Fault-Tolerant Framework for Resource Scheduling and Data Management in Fog-Enabled Smart City Transportation Systems
10
作者 Ibrar Afzal Noor ul Amin +1 位作者 Zulfiqar Ahmad Abdulmohsen Algarni 《Computers, Materials & Continua》 SCIE EI 2025年第1期1377-1399,共23页
Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and ... Thedeployment of the Internet of Things(IoT)with smart sensors has facilitated the emergence of fog computing as an important technology for delivering services to smart environments such as campuses,smart cities,and smart transportation systems.Fog computing tackles a range of challenges,including processing,storage,bandwidth,latency,and reliability,by locally distributing secure information through end nodes.Consisting of endpoints,fog nodes,and back-end cloud infrastructure,it provides advanced capabilities beyond traditional cloud computing.In smart environments,particularly within smart city transportation systems,the abundance of devices and nodes poses significant challenges related to power consumption and system reliability.To address the challenges of latency,energy consumption,and fault tolerance in these environments,this paper proposes a latency-aware,faulttolerant framework for resource scheduling and data management,referred to as the FORD framework,for smart cities in fog environments.This framework is designed to meet the demands of time-sensitive applications,such as those in smart transportation systems.The FORD framework incorporates latency-aware resource scheduling to optimize task execution in smart city environments,leveraging resources from both fog and cloud environments.Through simulation-based executions,tasks are allocated to the nearest available nodes with minimum latency.In the event of execution failure,a fault-tolerantmechanism is employed to ensure the successful completion of tasks.Upon successful execution,data is efficiently stored in the cloud data center,ensuring data integrity and reliability within the smart city ecosystem. 展开更多
关键词 Fog computing smart cities smart transportation data management fault tolerance resource scheduling
在线阅读 下载PDF
Tailored Partitioning for Healthcare Big Data: A Novel Technique for Efficient Data Management and Hash Retrieval in RDBMS Relational Architectures
11
作者 Ehsan Soltanmohammadi Neset Hikmet Dilek Akgun 《Journal of Data Analysis and Information Processing》 2025年第1期46-65,共20页
Efficient data management in healthcare is essential for providing timely and accurate patient care, yet traditional partitioning methods in relational databases often struggle with the high volume, heterogeneity, and... Efficient data management in healthcare is essential for providing timely and accurate patient care, yet traditional partitioning methods in relational databases often struggle with the high volume, heterogeneity, and regulatory complexity of healthcare data. This research introduces a tailored partitioning strategy leveraging the MD5 hashing algorithm to enhance data insertion, query performance, and load balancing in healthcare systems. By applying a consistent hash function to patient IDs, our approach achieves uniform distribution of records across partitions, optimizing retrieval paths and reducing access latency while ensuring data integrity and compliance. We evaluated the method through experiments focusing on partitioning efficiency, scalability, and fault tolerance. The partitioning efficiency analysis compared our MD5-based approach with standard round-robin methods, measuring insertion times, query latency, and data distribution balance. Scalability tests assessed system performance across increasing dataset sizes and varying partition counts, while fault tolerance experiments examined data integrity and retrieval performance under simulated partition failures. The experimental results demonstrate that the MD5-based partitioning strategy significantly reduces query retrieval times by optimizing data access patterns, achieving up to X% better performance compared to round-robin methods. It also scales effectively with larger datasets, maintaining low latency and ensuring robust resilience under failure scenarios. This novel approach offers a scalable, efficient, and fault-tolerant solution for healthcare systems, facilitating faster clinical decision-making and improved patient care in complex data environments. 展开更多
关键词 Healthcare data Partitioning Relational database Management Systems (RDBMS) Big data Management Load Balance Query Performance Improvement data Integrity and Fault Tolerance EFFICIENT Big data in Healthcare Dynamic data Distribution Healthcare Information Systems Partitioning Algorithms Performance Evaluation in databases
在线阅读 下载PDF
Fishing Effort Estimation of Trawlers Based on Vessel Monitoring System Data
12
作者 LI Dan LU Feng +8 位作者 XU Shuo WANG Yu XUE Muhan NI Hanchen FANG Hui ZHANG Man MA Zhenhua CHEN Zuozhi XU Jian 《农业机械学报》 北大核心 2025年第2期523-532,共10页
Estimating trawler fishing effort plays a critical role in characterizing marine fisheries activities,quantifying the ecological impact of trawling,and refining regulatory frameworks and policies.Understanding trawler... Estimating trawler fishing effort plays a critical role in characterizing marine fisheries activities,quantifying the ecological impact of trawling,and refining regulatory frameworks and policies.Understanding trawler fishing inputs offers crucial scientific data to support the sustainable management of offshore fishery resources in China.An XGBoost algorithm was introduced and optimized through Harris Hawks Optimization(HHO),to develop a model for identifying trawler fishing behaviour.The model demonstrated exceptional performance,achieving accuracy,sensitivity,specificity,and the Matthews correlation coefficient of 0.9713,0.9806,0.9632,and 0.9425,respectively.Using this model to detect fishing activities,the fishing effort of trawlers from Shandong Province in the sea area between 119°E to 124°E and 32°N to 40°N in 2021 was quantified.A heatmap depicting fishing effort,generated with a spatial resolution of 1/8°,revealed that fishing activities were predominantly concentrated in two regions:121.1°E to 124°E,35.7°N to 38.7°N,and 119.8°E to 122.8°E,33.6°N to 35.4°N.This research can provide a foundation for quantitative evaluations of fishery resources,which can offer vital data to promote the sustainable development of marine capture fisheries. 展开更多
关键词 TRAWLER vessel position data machine learning fishing effort
在线阅读 下载PDF
Biomedical Data in China:Policy,Accumulation,Platform Construction,and Applications
13
作者 Jing-Chen Zhang Jing-Wen Sun +4 位作者 Xiao-Meng Liu Jin-Yan Liu Wei Luo Sheng-Fa Zhang Wei Zhou 《Chinese Medical Sciences Journal》 2025年第1期9-17,I0003,共10页
Biomedical data is surging due to technological innovations and integration of multidisciplinary data,posing challenges to data management.This article summarizes the policies,data collection efforts,platform construc... Biomedical data is surging due to technological innovations and integration of multidisciplinary data,posing challenges to data management.This article summarizes the policies,data collection efforts,platform construction,and applications of biomedical data in China,aiming to identify key issues and needs,enhance the capacity-building of platform construction,unleash the value of data,and leverage the advantages of China's vast amount of data. 展开更多
关键词 biomedical data data management dataBASE data sharing data resources data platform
在线阅读 下载PDF
Designing a Comprehensive Data Governance Maturity Model for Kenya Ministry of Defence
14
作者 Gilly Gitahi Gathogo Simon Maina Karume Josphat Karani 《Journal of Information Security》 2025年第1期44-69,共26页
The study aimed to develop a customized Data Governance Maturity Model (DGMM) for the Ministry of Defence (MoD) in Kenya to address data governance challenges in military settings. Current frameworks lack specific req... The study aimed to develop a customized Data Governance Maturity Model (DGMM) for the Ministry of Defence (MoD) in Kenya to address data governance challenges in military settings. Current frameworks lack specific requirements for the defence industry. The model uses Key Performance Indicators (KPIs) to enhance data governance procedures. Design Science Research guided the study, using qualitative and quantitative methods to gather data from MoD personnel. Major deficiencies were found in data integration, quality control, and adherence to data security regulations. The DGMM helps the MOD improve personnel, procedures, technology, and organizational elements related to data management. The model was tested against ISO/IEC 38500 and recommended for use in other government sectors with similar data governance issues. The DGMM has the potential to enhance data management efficiency, security, and compliance in the MOD and guide further research in military data governance. 展开更多
关键词 data Governance Maturity Model Maturity Index Kenya Ministry of Defence Key Performance Indicators data Security Regulations
在线阅读 下载PDF
Effect of pseudo-random number on the security of quantum key distribution protocol
15
作者 Xiao-Liang Yang Yu-Qing Li Hong-Wei Li 《Chinese Physics B》 2025年第2期41-46,共6页
In the process of quantum key distribution(QKD), the communicating parties need to randomly determine quantum states and measurement bases. To ensure the security of key distribution, we aim to use true random sequenc... In the process of quantum key distribution(QKD), the communicating parties need to randomly determine quantum states and measurement bases. To ensure the security of key distribution, we aim to use true random sequences generated by true random number generators as the source of randomness. In practical systems, due to the difficulty of obtaining true random numbers, pseudo-random number generators are used instead. Although the random numbers generated by pseudorandom number generators are statistically random, meeting the requirements of uniform distribution and independence,they rely on an initial seed to generate corresponding pseudo-random sequences. Attackers may predict future elements from the initial elements of the random sequence, posing a security risk to quantum key distribution. This paper analyzes the problems existing in current pseudo-random number generators and proposes corresponding attack methods and applicable scenarios based on the vulnerabilities in the pseudo-random sequence generation process. Under certain conditions, it is possible to obtain the keys of the communicating parties with very low error rates, thus effectively attacking the quantum key system. This paper presents new requirements for the use of random numbers in quantum key systems, which can effectively guide the security evaluation of quantum key distribution protocols. 展开更多
关键词 quantum key distribution pseudo-random SECURITY
在线阅读 下载PDF
Data Spaces in Medicine and Health:Technologies,Applications,and Challenges
16
作者 Wan-Fei Hu Si-Zhu Wu Qing Qian 《Chinese Medical Sciences Journal》 2025年第1期18-28,I0004,共12页
Data space,as an innovative data management and sharing model,is emerging in the medical and health sectors.This study expounds on the conceptual connotation of data space and delineates its key technologies,including... Data space,as an innovative data management and sharing model,is emerging in the medical and health sectors.This study expounds on the conceptual connotation of data space and delineates its key technologies,including distributed data storage,standardization and interoperability of data sharing,data security and privacy protection,data analysis and mining,and data space assessment.By analyzing the real-world cases of data spaces within medicine and health,this study compares the similarities and differences across various dimensions such as purpose,architecture,data interoperability,and privacy protection.Meanwhile,data spaces in these fields are challenged by the limited computing resources,the complexities of data integration,and the need for optimized algorithms.Additionally,legal and ethical issues such as unclear data ownership,undefined usage rights,risks associated with privacy protection need to be addressed.The study notes organizational and management difficulties,calling for enhancements in governance framework,data sharing mechanisms,and value assessment systems.In the future,technological innovation,sound regulations,and optimized management will help the development of the medical and health data space.These developments will enable the secure and efficient utilization of data,propelling the medical industry into an era characterized by precision,intelligence,and personalization. 展开更多
关键词 data space medical and health data data sharing privacy protection data security
在线阅读 下载PDF
National Population Health Data Center
17
《Chinese Medical Sciences Journal》 2025年第1期F0003-F0003,共1页
National Population Health Data Center(NPHDC)is one of China's 20 national-level science data centers,jointly designated by the Ministry of Science and Technology and the Ministry of Finance.Operated by the Chines... National Population Health Data Center(NPHDC)is one of China's 20 national-level science data centers,jointly designated by the Ministry of Science and Technology and the Ministry of Finance.Operated by the Chinese Academy of Medical Sciences under the oversight of the National Health Commission,NPHDC adheres to national regulations including the Scientific Data Management Measures and the National Science and Technology Infrastructure Service Platform Management Measures,and is committed to collecting,integrating,managing,and sharing biomedical and health data through openaccess platform,fostering open sharing and engaging in international cooperation. 展开更多
关键词 science technology infrastructure population health data open access international cooperation national population health data center scientific data management biomedical data health data
在线阅读 下载PDF
Diversity,Complexity,and Challenges of Viral Infectious Disease Data in the Big Data Era:A Comprehensive Review
18
作者 Yun Ma Lu-Yao Qin +1 位作者 Xiao Ding Ai-Ping Wu 《Chinese Medical Sciences Journal》 2025年第1期29-44,I0005,共17页
Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning fr... Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape. 展开更多
关键词 viral infectious diseases big data data diversity and complexity data standardization artificial intelligence data analysis
在线阅读 下载PDF
Research on the Development Strategies of Realtime Data Analysis and Decision-support Systems
19
作者 Wei Tang 《Journal of Electronic Research and Application》 2025年第2期204-210,共7页
With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This... With the advent of the big data era,real-time data analysis and decision-support systems have been recognized as essential tools for enhancing enterprise competitiveness and optimizing the decision-making process.This study aims to explore the development strategies of real-time data analysis and decision-support systems,and analyze their application status and future development trends in various industries.The article first reviews the basic concepts and importance of real-time data analysis and decision-support systems,and then discusses in detail the key technical aspects such as system architecture,data collection and processing,analysis methods,and visualization techniques. 展开更多
关键词 Real-time data analysis Decision-support system Big data System architecture data processing Visualization technology
在线阅读 下载PDF
A Brief Discussion on Data Encryption and Decryption Technology and Its Applications
20
作者 Zhihong Jin 《Journal of Electronic Research and Application》 2025年第2期159-165,共7页
With the rapid development of information technology,data security issues have received increasing attention.Data encryption and decryption technology,as a key means of ensuring data security,plays an important role i... With the rapid development of information technology,data security issues have received increasing attention.Data encryption and decryption technology,as a key means of ensuring data security,plays an important role in multiple fields such as communication security,data storage,and data recovery.This article explores the fundamental principles and interrelationships of data encryption and decryption,examines the strengths,weaknesses,and applicability of symmetric,asymmetric,and hybrid encryption algorithms,and introduces key application scenarios for data encryption and decryption technology.It examines the challenges and corresponding countermeasures related to encryption algorithm security,key management,and encryption-decryption performance.Finally,it analyzes the development trends and future prospects of data encryption and decryption technology.This article provides a systematic understanding of data encryption and decryption techniques,which has good reference value for software designers. 展开更多
关键词 data encryption data decryption Communication security data storage encryption Key management
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部