期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于多尺度融合金字塔焦点网络的接触网零部件检测
1
作者 朱新宇 崔浩锐 宋洋 《工程科学学报》 EI 北大核心 2025年第2期315-327,共13页
作为高铁牵引供电系统的重要组成部分,接触网系统承担着向动车组传输电能的重要功能.实际工程运营表明,受弓网交互产生的持续冲击以及外部环境的影响,接触网支撑部件可能会出现“松、脱、断、裂”等缺陷,导致接触网结构可靠性下降,严重... 作为高铁牵引供电系统的重要组成部分,接触网系统承担着向动车组传输电能的重要功能.实际工程运营表明,受弓网交互产生的持续冲击以及外部环境的影响,接触网支撑部件可能会出现“松、脱、断、裂”等缺陷,导致接触网结构可靠性下降,严重影响接触网系统稳定运行.因此,及时精确定位接触网支撑部件(CSCs),对保障高铁安全运行和完善接触网检修维护策略具有重大意义.然而,CSCs的检测通常面临着零部件种类多、尺度差异大、部分零部件微小的问题.针对以上问题,本文提出一种基于多尺度融合金字塔焦点网络的接触网零部件检测算法,将平衡模块和特征金字塔模块相结合,提高对小目标的检测性能.首先,设计了可分离残差金字塔聚合模块(SRPAM),用于优化模型多尺度特征提取能力、扩大感受野,缓解CSCs检测的多尺度问题;其次,设计了一种基于平衡特征金字塔的路径聚合网络(PA-BFPN),用于提升跨层特征融合效率和小目标检测性能.最后,通过对比试验、可视化实验和消融实验证明了所提方法的有效性和优越性.其中,所提的MFPFCOS在CSCs数据集上的检测精度(mAP)能够在达到48.6%的同时,实现30的FLOPs(Floating point operations per second),表明所提方法能够在检测精度和检测速度之间保持良好的平衡. 展开更多
关键词 深度学习 目标检测 接触网支撑组件(CSCs) 路径聚合特征金字塔(PA-FPN) 空洞空间卷积池化金字塔(aspp)
在线阅读 下载PDF
DCA-YOLO:Detection Algorithm for YOLOv8 Pulmonary Nodules Based on Attention Mechanism Optimization
2
作者 SONG Yongsheng LIU Guohua 《Journal of Donghua University(English Edition)》 2025年第1期78-87,共10页
Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially... Pulmonary nodules represent an early manifestation of lung cancer.However,pulmonary nodules only constitute a small portion of the overall image,posing challenges for physicians in image interpretation and potentially leading to false positives or missed detections.To solve these problems,the YOLOv8 network is enhanced by adding deformable convolution and atrous spatial pyramid pooling(ASPP),along with the integration of a coordinate attention(CA)mechanism.This allows the network to focus on small targets while expanding the receptive field without losing resolution.At the same time,context information on the target is gathered and feature expression is enhanced by attention modules in different directions.It effectively improves the positioning accuracy and achieves good results on the LUNA16 dataset.Compared with other detection algorithms,it improves the accuracy of pulmonary nodule detection to a certain extent. 展开更多
关键词 pulmonary nodule YOLOv8 network object detection deformable convolution atrous spatial pyramid pooling(aspp) coordinate attention(CA)mechanism
在线阅读 下载PDF
基于FCN-AC-ASPP的手写体去除方法
3
作者 方海泉 邓明明 冶运涛 《高技术通讯》 CAS 2022年第9期972-979,共8页
针对印刷体和手写体分类准确率不够高的问题,本文首先提出了一种印刷体与手写体像素级样本制作方法,并制作了印刷体和手写体数据集。其次提出了一种基于带空洞卷积和空洞空间金字塔池化的全卷积神经网络(FCN-AC-ASPP)模型。经过对FCNAC-... 针对印刷体和手写体分类准确率不够高的问题,本文首先提出了一种印刷体与手写体像素级样本制作方法,并制作了印刷体和手写体数据集。其次提出了一种基于带空洞卷积和空洞空间金字塔池化的全卷积神经网络(FCN-AC-ASPP)模型。经过对FCNAC-ASPP模型的训练和检测,该模型的分类准确率平均交并比(IoU)达到96.10%,优于全卷积神经网络(FCN)、DeeplabV3+、带空洞卷积的全卷积神经网络(FCN-AC)模型。最后对于同时含有印刷体和手写体的新图片,用训练好的FCN-AC-ASPP模型对印刷体和手写体分类,从而把手写体去除。 展开更多
关键词 手写体 印刷体 分类 全卷积神经网络(FCN) 空洞卷积(AC) 空洞空间金字塔池化(aspp)
在线阅读 下载PDF
基于DeeplabV3+网络的轻量化语义分割算法 被引量:1
4
作者 张秀再 张昊 杨昌军 《科学技术与工程》 北大核心 2024年第24期10382-10393,共12页
针对传统语义分割模型参数量大、计算速度慢且效率不高等问题,改进一种基于DeeplabV3+网络的轻量化语义分割模型Faster-DeeplabV3+。Faster-DeeplabV3+模型采用轻量级MobilenetV2代替Xception作为主干特征提取网络,大幅减少参数量,提高... 针对传统语义分割模型参数量大、计算速度慢且效率不高等问题,改进一种基于DeeplabV3+网络的轻量化语义分割模型Faster-DeeplabV3+。Faster-DeeplabV3+模型采用轻量级MobilenetV2代替Xception作为主干特征提取网络,大幅减少参数量,提高计算速度;引入深度可分离卷积(deep separable convolution, DSC)与空洞空间金字塔(atrous spatia pyramid pooling, ASPP)中的膨胀卷积设计成新的深度可分离膨胀卷积(depthwise separable dilated convolution, DSD-Conv),即组成深度可分离空洞空间金字塔模块(DP-ASPP),扩大感受野的同时减少原本卷积参数量,提高运算速度;加入改进的双注意力机制模块分别对编码区生成的低级特征图和高级特征图进行处理,增强网络对不同维度特征信息提取的敏感性和准确性;融合使用交叉熵和Dice Loss两种损失函数,为模型提供更全面、更多样的优化。改进模型在PASCAL VOC 2012数据集上进行测试。实验结果表明:平均交并比由76.57%提升至79.07%,分割准确度由91.2%提升至94.3%。改进模型的网络参数量(params)减少了3.86×10~6,浮点计算量(GFLOPs)减少了117.98 G。因此,Faster-DeeplabV3+算法在大幅降低参数量、提高运算速度的同时保持较高语义分割效果。 展开更多
关键词 语义分割 DeeplabV3+ 轻量化 深度可分离卷积(DSC) 空洞空间金字塔池化(aspp)
在线阅读 下载PDF
改进Mask R-CNN的无人机影像建筑物提取
5
作者 方超 廖运茂 +2 位作者 刘飞 王坚 赵小平 《北京测绘》 2024年第1期97-101,共5页
从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以R... 从无人机影像中自动提取建筑物对城乡规划和管理至关重要,然而,在复杂背景干扰和建筑物外观变化很大的情况下给实例提取带来挑战。因此,提出一种改进的Mask区域卷积神经网络(R-CNN)方法用于无人机影像的建筑物自动实例提取。改进方法以ResNet-101作为特征提取网络,在特征融合网络方面,通过添加自底向上的路径增强整个特征层次的定位能力,同时在特征融合中加入空洞空间金字塔池化模块(ASPP)来提高多尺度能力与改善模型性能。在自制建筑物数据集上的综合实验结果表明,与原始的Mask R-CNN方法相比,改进方法的mAP值提高了2.6%,能够很好地实现无人机影像建筑物实例提取。 展开更多
关键词 建筑物提取 Mask R-CNN 路径融合 空洞空间金字塔池化模块
在线阅读 下载PDF
基于改进YOLOv7算法的井场作业安全检测方法研究 被引量:1
6
作者 孙亚招 王景浩 李宗祥 《石油工业技术监督》 2024年第5期43-47,70,共6页
针对油井场作业中因监管效率低下导致的安全事故问题,提出了一种改进的YOLOv7算法来检测井场作业人员不安全行为。首先,将YOLOv7模型颈部中的原金字塔池化模块替换为空洞空间金字塔池化(ASPP)模块,ASPP采用多个并行的空洞卷积分支,每个... 针对油井场作业中因监管效率低下导致的安全事故问题,提出了一种改进的YOLOv7算法来检测井场作业人员不安全行为。首先,将YOLOv7模型颈部中的原金字塔池化模块替换为空洞空间金字塔池化(ASPP)模块,ASPP采用多个并行的空洞卷积分支,每个分支具有不同的采样率,从而获得不同尺度的感受野,提高了模型对多尺度特征信息的捕获能力;其次将YOLOv7模型检测头中的普通卷积替换为全维度动态卷积,从4个维度来学习卷积核内部的注意力值,从而获得全维度的卷积核权重,增强了模型对关键特征的关注度。最后,与原YOLOv7模型进行实验对比。结果表明,改进后的模型平均精度均值提高了5.58%。与其他目标检测模型相比,检测性能有显著提升。 展开更多
关键词 YOLOv7算法 不安全行为 空洞空间金字塔池化 全维度动态卷积
在线阅读 下载PDF
面向畸变扭曲文档的两种图像矫正网络
7
作者 冯瑾 池越 +1 位作者 周亚同 何静飞 《数据采集与处理》 CSCD 北大核心 2024年第1期167-180,共14页
由于文档纸张的几何形变、拍摄场景的干扰及拍摄角度不理想导致的透视失真,移动设备获取的文档图像的光学字符识别(Optical character recognition,OCR)性能受到很大挑战。针对折叠和扭曲的畸变文档图像预处理问题,设计了两种基于自编... 由于文档纸张的几何形变、拍摄场景的干扰及拍摄角度不理想导致的透视失真,移动设备获取的文档图像的光学字符识别(Optical character recognition,OCR)性能受到很大挑战。针对折叠和扭曲的畸变文档图像预处理问题,设计了两种基于自编码器的网络结构,以实现自适应性图像矫正并提高文字识别正确率。首先提出空洞残差块和非对称卷积残差块两种残差块,然后将残差块与自编码器相结合,设计了一种非对称空洞自编码器网络;同时利用空间金字塔池化代替全连接层,并用非对称卷积残差块实现特征提取,设计了另一种空间金字塔自编码器网络。实验结果表明,与畸变图像相比,经非对称空洞自编码器网络矫正后的图像在OCR正确率、OCR召回率和文本相似度上分别提高了26.3%、20.4%和12.3%,而经空间金字塔自编码器网络矫正后的图像在正确率、召回率和文本相似度上分别提高了27.7%、22.0%和15.5%。与RectiNet等其他图像矫正网络相比,这两种网络可以自适应矫正多种类型的畸变文档图像,且矫正后的图像在文字识别上表现更为优异。本文提出的两种矫正网络能有效提高图像文字识别正确率、召回率和文本相似度,同时在鲁棒性、泛化性等方面与现有矫正网络相比具有明显的优势。 展开更多
关键词 图像矫正 畸变文档图像 机器学习 自编码器 卷积残差块 空间金字塔池化
在线阅读 下载PDF
利用Deeplab v3提取高分辨率遥感影像道路 被引量:10
8
作者 韩玲 杨朝辉 +2 位作者 李良志 刘志恒 黄勃学 《遥感信息》 CSCD 北大核心 2021年第1期22-28,共7页
针对传统道路提取方法存在的道路边缘粗糙、抗干扰性弱、提取精度低等问题,提出了一种基于编码解码器的空洞卷积模型(Deeplab v3)的道路提取方法。首先,对原始高分辨率遥感影像进行标注;其次,利用标注数据集对Deeplab v3模型进行训练、... 针对传统道路提取方法存在的道路边缘粗糙、抗干扰性弱、提取精度低等问题,提出了一种基于编码解码器的空洞卷积模型(Deeplab v3)的道路提取方法。首先,对原始高分辨率遥感影像进行标注;其次,利用标注数据集对Deeplab v3模型进行训练、测试;最后,得到高分辨率遥感影像道路提取结果。分析结果可知,该模型能够较好地提取高分辨率遥感影像中的道路边缘特征,相比其他道路提取方法具有更高的提取精度和更加完整的道路信息,正确率可达到93%以上。 展开更多
关键词 道路提取 高分辨率遥感影像 深度学习 Deeplab v3 空洞卷积 空洞空间金字塔池化(aspp)
在线阅读 下载PDF
基于空间金字塔池化和深度卷积神经网络的作物害虫识别 被引量:50
9
作者 张博 张苗辉 陈运忠 《农业工程学报》 EI CAS CSCD 北大核心 2019年第19期209-215,共7页
为了减少因作物害虫姿态多样性和尺度多样性导致其识别精度相对较低的问题,该文将空间金字塔池化与改进的YOLOv3深度卷积神经网络相结合,提出了一种基于空间金字塔池化的深度卷积神经网络农作物害虫种类识别算法,首先对测试图像上的害... 为了减少因作物害虫姿态多样性和尺度多样性导致其识别精度相对较低的问题,该文将空间金字塔池化与改进的YOLOv3深度卷积神经网络相结合,提出了一种基于空间金字塔池化的深度卷积神经网络农作物害虫种类识别算法,首先对测试图像上的害虫进行检测定位,然后对检测定位出的害虫进行种类识别。通过改进YOLOv3的网络结构,采用上采样与卷积操作相结合的方法实现反卷积,使算法能够有效地检测到图片中体型较小的作物害虫样本;通过对采集到的实际场景下20类害虫进行识别测试,识别精度均值可达到88.07%。试验结果表明,本文提出的识别算法能够有效地对作物害虫进行检测和种类识别。 展开更多
关键词 图像识别 算法 害虫分类 深度卷积神经网络 空间金字塔池化 反卷积
在线阅读 下载PDF
基于随机子图像模型的遥感图像分类 被引量:4
10
作者 方希禄 付伟 +2 位作者 胡正言 竺凡超 周建含 《计算机工程与应用》 CSCD 北大核心 2020年第21期204-209,共6页
高分辨率遥感图像(HRRS)的分类是一项具有挑战性的任务。针对遥感数据集图像本身的语义特性,提出一种对数据集图像进行随机子图像提取并带有金字塔池化模型的卷积神经网络(Convolutional Neural Network,CNN)。对输入图像的尺寸进行基... 高分辨率遥感图像(HRRS)的分类是一项具有挑战性的任务。针对遥感数据集图像本身的语义特性,提出一种对数据集图像进行随机子图像提取并带有金字塔池化模型的卷积神经网络(Convolutional Neural Network,CNN)。对输入图像的尺寸进行基于柯西分布的随机尺寸剪切,将这些尺寸不同但是标签相同的子图像送进带有SPP(空间金字塔池化)的卷积神经网络,将子图像的预测类别众数作为最终分类输出。实验结果表明该方法对多类遥感图像的分类精度有一定提升。 展开更多
关键词 遥感图像 柯西分布 子图像 卷积神经网络 空间金字塔池化
在线阅读 下载PDF
基于改进YOLOv7的口罩佩戴检测 被引量:3
11
作者 付惠琛 高军伟 车鲁阳 《液晶与显示》 CAS CSCD 北大核心 2023年第8期1139-1147,共9页
佩戴好口罩是居民预防新冠和配合国家疫情防控的有效方式。针对口罩佩戴是否正确、拍摄角度不同以及被遮挡等问题,提出了一种改进的YOLOv7算法。该算法以YOLOv7为基础,在网络的Head区引入卷积注意力机制,使得特征网络在对口罩区域的处... 佩戴好口罩是居民预防新冠和配合国家疫情防控的有效方式。针对口罩佩戴是否正确、拍摄角度不同以及被遮挡等问题,提出了一种改进的YOLOv7算法。该算法以YOLOv7为基础,在网络的Head区引入卷积注意力机制,使得特征网络在对口罩区域的处理中更具有针对性,从而增强特征网络对口罩区域的学习能力;对Backbone区结构进行优化,对ConvNeXt网络结构进行改进,并引入网络中代替部分卷积,提高模型的检测精度和鲁棒性,增强预测精确度的同时不会引入大量额外的计算。对Head层的空间金字塔池化进行改进,提高了训练速度并且加快模型收敛。实验结果表明,在复杂及遮挡的情况下,改进后的YOLOv7的损失函数大幅下降,在测试集上的mAP为93.8%,相比于原始YOLOv7算法提高了3.6%。各个类别的检测精度均有提升,没佩戴口罩、正确佩戴口罩、不正确佩戴口罩类别的精度分别提升6.8%、2.1%、1.7%。本文算法的错检情况明显减少,泛化能力有显著提升。 展开更多
关键词 图像处理 目标检测 YOLOv7算法 卷积注意力机制 空间金字塔池化
在线阅读 下载PDF
基于CNN深度模型的小麦不完善粒识别 被引量:21
12
作者 曹婷翠 何小海 +2 位作者 董德良 石恒 熊淑华 《现代计算机》 2017年第24期9-14,共6页
针对小麦不完善粒识别中传统图像处理方法需要复杂的特征提取且识别效果不佳的问题,设计并实现基于CNN深度模型的小麦不完善粒识别方法。建立图像数据库Wheat Image,并结合空间金字塔池化理论构建CNN网络模型,接着对样本集进行扩展,以... 针对小麦不完善粒识别中传统图像处理方法需要复杂的特征提取且识别效果不佳的问题,设计并实现基于CNN深度模型的小麦不完善粒识别方法。建立图像数据库Wheat Image,并结合空间金字塔池化理论构建CNN网络模型,接着对样本集进行扩展,以提高模型泛化能力,设计双面识别方案并完成对小麦完善粒、破碎粒和病斑粒的识别。所提出的方法相对于传统的图像处理识别方法,识别率提高15个百分点;相对于常规CNN模型,识别率提高5%;对于引入噪声以及亮度改变的图像,识别率也达到90%以上;设计的双面识别方案有效地降低了识别的错误率。提出的方法不仅避免复杂的特征提取步骤,而且有效地提升麦粒识别率,对小麦的智能检测识别具有重要意义。 展开更多
关键词 卷积神经网络(CNN) 小麦不完善粒 空间金字塔池化 模型
在线阅读 下载PDF
基于改进的YOLOv5s算法的水下小目标检测 被引量:4
13
作者 魏养养 李本银 曹孟新 《安徽工程大学学报》 CAS 2022年第6期31-41,共11页
针对目前水下小目标检测任务中检测精度低、目标重叠等问题,提出了一种改进YOLOv5s网络的水下小目标检测算法。首先在YOLOv5s的骨干网络中研究嵌入不同数量与位置的卷积块注意力模块来增强网络对特征图重要目标信息的关注;然后在网络颈... 针对目前水下小目标检测任务中检测精度低、目标重叠等问题,提出了一种改进YOLOv5s网络的水下小目标检测算法。首先在YOLOv5s的骨干网络中研究嵌入不同数量与位置的卷积块注意力模块来增强网络对特征图重要目标信息的关注;然后在网络颈部增添金字塔池化层,加强局部特征与全局特征的融合,使得特征图表达的信息更加丰富;最后将传统的非极大值抑制算法用中心距离非极大值抑制来代替,改善漏检误检的情况。实验结果表明,该算法在通用水下目标数据集RUIE以及小目标数据集VEDAI上平均精度分别可以达到85.25%和75.12%,显著提升了水下小目标检测的精度,降低了误检率。 展开更多
关键词 水下小目标检测 卷积块注意力机制 空间金字塔池化 中心距离非极大值抑制
在线阅读 下载PDF
基于非对称空间金字塔池化的立体匹配网络
14
作者 王金鹤 苏翠丽 +3 位作者 孟凡云 车志龙 谭浩 张楠 《计算机工程》 CAS CSCD 北大核心 2020年第7期228-234,242,共8页
卷积神经网络因具有强大的表征能力而被广泛用于图像处理算法,但其在处理过程中存在耗时和信息损失等不足。为此,提出一种基于非对称空间金字塔池化模型的卷积神经网络结构。设计非对称金字塔池化方法融入立体匹配网络,以获取更详细的... 卷积神经网络因具有强大的表征能力而被广泛用于图像处理算法,但其在处理过程中存在耗时和信息损失等不足。为此,提出一种基于非对称空间金字塔池化模型的卷积神经网络结构。设计非对称金字塔池化方法融入立体匹配网络,以获取更详细的图像特征信息。分别叠加卷积核为3×3和1×1的卷积层,用于融合多尺度信息和提升网络收敛速度,同时将网络结构由4层增加至7层,以提高匹配精度。在KITTI和Middlebury数据集上进行视差预测,实验结果表明,与基准网络相比,该网络结构可使收敛时间缩短约50.1%,匹配错误率从6.65%降低至4.78%,在立体匹配中获得更平滑的视差效果。 展开更多
关键词 卷积神经网络 非对称空间金字塔池化 多尺度融合 信息损失 立体匹配
在线阅读 下载PDF
MF~2ResU-Net:a multi-feature fusion deep learning architecture for retinal blood vessel segmentation
15
作者 CUI Zhenchao SONG Shujie QI Jing 《Digital Chinese Medicine》 2022年第4期406-418,共13页
Objective For computer-aided Chinese medical diagnosis and aiming at the problem of insufficient segmentation,a novel multi-level method based on the multi-scale fusion residual neural network(MF2ResU-Net)model is pro... Objective For computer-aided Chinese medical diagnosis and aiming at the problem of insufficient segmentation,a novel multi-level method based on the multi-scale fusion residual neural network(MF2ResU-Net)model is proposed.Methods To obtain refined features of retinal blood vessels,three cascade connected UNet networks are employed.To deal with the problem of difference between the parts of encoder and decoder,in MF2ResU-Net,shortcut connections are used to combine the encoder and decoder layers in the blocks.To refine the feature of segmentation,atrous spatial pyramid pooling(ASPP)is embedded to achieve multi-scale features for the final segmentation networks.Results The MF2ResU-Net was superior to the existing methods on the criteria of sensitivity(Sen),specificity(Spe),accuracy(ACC),and area under curve(AUC),the values of which are 0.8013 and 0.8102,0.9842 and 0.9809,0.9700 and 0.9776,and 0.9797 and 0.9837,respectively for DRIVE and CHASE DB1.The results of experiments demonstrated the effectiveness and robustness of the model in the segmentation of complex curvature and small blood vessels.Conclusion Based on residual connections and multi-feature fusion,the proposed method can obtain accurate segmentation of retinal blood vessels by refining the segmentation features,which can provide another diagnosis method for computer-aided Chinese medical diagnosis. 展开更多
关键词 Medical image processing Atrous space pyramid pooling(aspp) Residual neural network Multi-level model Retinal vessels segmentation
在线阅读 下载PDF
基于改进HRNet的眼底视网膜血管分割算法
16
作者 梁礼明 曾嵩 +1 位作者 冯骏 盛校棋 《计算机系统应用》 2021年第9期219-225,共7页
针对现有眼底视网膜血管分割算法普遍存在的微小血管细节丢失和病灶信息误判等问题,提出一种基于改进HRNet的血管分割算法.在预处理阶段,利用限制对比度自适应直方图均衡化和自适应的Gamma矫正提高血管与背景对比度;在编码阶段,将HRNet... 针对现有眼底视网膜血管分割算法普遍存在的微小血管细节丢失和病灶信息误判等问题,提出一种基于改进HRNet的血管分割算法.在预处理阶段,利用限制对比度自适应直方图均衡化和自适应的Gamma矫正提高血管与背景对比度;在编码阶段,将HRNet原始卷积替换为可变形卷积,提升卷积对复杂血管形态结构的适应能力;在多尺度特征融合阶段,引入空间金字塔池化和多尺度卷积,扩大感受野同时增强对目标局部特征关注度,改善血管伪影和细微信息丢失的问题.该算法在DRIVE数据库上仿真实验,其准确率、灵敏度和特异性分别为95.79%、80.33%和98.12%. 展开更多
关键词 视网膜血管分割 HRNet 可变形卷积 空间金字塔池化 多尺度
在线阅读 下载PDF
DECANet:基于改进DeepLabv3+的图像语义分割方法 被引量:9
17
作者 唐璐 万良 +1 位作者 王婷婷 李树胜 《激光与光电子学进展》 CSCD 北大核心 2023年第4期82-90,共9页
在图像的语义分割任务中,不同对象之间像素值存在差异,导致现有的网络模型在图像语义分割过程中丢失图像局部细节信息。针对上述问题,提出一种图像语义分割方法(DECANet)。首先,引入通道注意力网络模块,通过对所有通道的依赖关系进行建... 在图像的语义分割任务中,不同对象之间像素值存在差异,导致现有的网络模型在图像语义分割过程中丢失图像局部细节信息。针对上述问题,提出一种图像语义分割方法(DECANet)。首先,引入通道注意力网络模块,通过对所有通道的依赖关系进行建模提高网络的表达能力,选择性地学习并强化通道特征,提取有用信息,抑制无用信息。其次,利用改进的空洞空间金字塔池化(ASPP)结构,对提取到的图像卷积特征进行多尺度融合,减少图像细节信息丢失,且在权重参数不改变的情况下提取语义像素位置信息,加快模型的收敛速度。最后,DECANet在PASCAL VOC2012和Cityscapes数据集上的平均交并比分别达81.08%和76%,与现有的先进网络模型相比,检测性能更优,可以有效地捕获局部细节信息,减少图像语义像素分类错误。 展开更多
关键词 图像语义分割 注意力机制 空洞空间金字塔池化 多尺度融合
原文传递
多方向条状卷积与金字塔双池化的视网膜血管分割
18
作者 孔林锋 吴云 《激光与光电子学进展》 2025年第2期273-282,共10页
视网膜血管的自动化分割在许多眼科疾病的辅助诊断和治疗方面至关重要。针对视网膜血管分割中存在血管丢失、血管断裂和将背景误分割成血管等问题,提出一种结合多方向条状卷积与金字塔双池化的视网膜血管分割方法。首先,使用四方向条状... 视网膜血管的自动化分割在许多眼科疾病的辅助诊断和治疗方面至关重要。针对视网膜血管分割中存在血管丢失、血管断裂和将背景误分割成血管等问题,提出一种结合多方向条状卷积与金字塔双池化的视网膜血管分割方法。首先,使用四方向条状卷积模块来加强血管特征提取,其中四方向是指水平、垂直、反对角线和主对角线方向。其次,引入一个金字塔双池化特征融合模块,通过多种尺度的平均池化和最大池化提取特征,并将得到的多尺度特征进行融合,使模型能更全面地理解和利用局部细节和全局上下文。最后,在跳跃连接中使用通道-空间双注意力模块,使模型能更好地关注重要特征。在CHASE-DB1和DRIVE数据集上的实验结果表明,所提方法在受试者工作特征曲线下的面积和准确率评价指标上优于现有主流分割方法,说明其对临床相关眼科疾病的辅助诊断具有一定的应用价值。 展开更多
关键词 视网膜血管分割 四方向条状卷积 金字塔双池化 通道-空间双注意力
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部