Quantitative structure-biodegradability relationships (QSBRs) were established to develop predictive models and mechanistic explanations for acid dyestuffs as well as biological activities. With a total of four desc...Quantitative structure-biodegradability relationships (QSBRs) were established to develop predictive models and mechanistic explanations for acid dyestuffs as well as biological activities. With a total of four descriptors, molecular weight (MW), energies of the highest occupied molecular orbital (EHOMO), the lowest unoccupied molecular orbital (ELUMO), and the excited state (EES), calculated using quantum chemical semi-empirical methodology, a series of models were analyzed between the dye biodegradability and each descriptor. Results showed that EHOMO and Mw were the dominant parameters controlling the biodegradability of acid dyes. A statistically robust QSBR model was developed for all studied dyes, with the combined application of EHOMO and Mw. The calculated biodegradations fitted well with the experimental data monitored in a facultative-aerobic process, indicative of the reliable prediction and mechanistic character of the developed model.展开更多
A set of novel structural descriptors (molecular hybridization electronegativity-distance vector, VMEDh) was put forward, and the quantitative structure–activity relationship (QSAR) of a series of 17α-Acetoxyprogest...A set of novel structural descriptors (molecular hybridization electronegativity-distance vector, VMEDh) was put forward, and the quantitative structure–activity relationship (QSAR) of a series of 17α-Acetoxyprogesterones (APs) was investigated. Taking into account the effect of various hybridized orbits on atomic electronegativities, we developed the structure descriptors with amended electronegativities to build a QSAR model. The 10-parameter model based on VMEDh yields a correlation coefficient R=0.972 and standard deviation SD=0.262, which are more desirable than those of the previous molecular electonegativity-distance vector (MEDV-4) (R=0.969, SD=0.275). By stepwise multiple linear regression, several parameters are selected to construct optimal models. The 7-parameter model based on VMEDh has R=0.960 and SD=0.276; its correlation coefficient (RCV) and standard deviation (SDCV) for leave-one-out procedure crossvalidation are respectively RCV=0.890 and SDCV=0.445. The 6-parameter MEDV-4 model has R=0.946, SD=0.304, RCV=0.903 and SDCV=0.406. It is demonstrated that VMEDh has desirable estimation performance and good predictive capability for this series of chemical compounds.展开更多
The genotoxicity of 22 substituted nitrobenzenes were evaluated by the chromosome aberrations test in in vitro human peripheral lymphocytes.18 of 22 compounds exhibit genotoxic activities.Quantitative structure-activi...The genotoxicity of 22 substituted nitrobenzenes were evaluated by the chromosome aberrations test in in vitro human peripheral lymphocytes.18 of 22 compounds exhibit genotoxic activities.Quantitative structure-activity relationship model was established to correlate the genotoxicity of substituted nitrobenzenes with the characteristics of the substituents on benzene ring.展开更多
The structure-activity relationship of several drugs with similar structure has been investigated by using ab initio method. The relation between the dipole moments and biological activities of these drugs was judged ...The structure-activity relationship of several drugs with similar structure has been investigated by using ab initio method. The relation between the dipole moments and biological activities of these drugs was judged after comparing their geometric structures, dipole moments and inhibitory concentrations. In principle, new drug molecule could be reasonably designed by altering the place of groups and ultimately, the potential drug could be screened by comparing the dipole moments of obtained molecules.展开更多
A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure ...A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure activity relationship(QSAR) model was built by partial least-squares(PLS) regression.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The correlation coefficients of established PLS model,leave-one-out(LOO) cross-validation,and predicted values versus experimental ones of external samples were R2=0.899,RCV2=0.854 and Qext2=0.868,respectively.These values indicated that the built PLS model had both favorable estimation stability and good prediction capabilities.Furthermore,the satisfactory results showed that 3D-HoVAIF could preferably express the information related to the biological activity of benzoxazinone derivatives.展开更多
Twenty eight alkyl(1-phenylsulfonyl) cycloalkane carboxylates were computed at the B3LYP/6-31G* level. Based on linear solvation energy theory, two quantitative correlation equations of the molecular structures of alk...Twenty eight alkyl(1-phenylsulfonyl) cycloalkane carboxylates were computed at the B3LYP/6-31G* level. Based on linear solvation energy theory, two quantitative correlation equations of the molecular structures of alkyl(1-phenylsulfonyl) cycloalkane carboxylate com- pounds to their chromatographic retention (capacity factor lgKW) and the toxicity for photo- bacterium phosphoreum (–lgEC50) were developed by using the molecular structural parameters as theoretical descriptors (r2 = 0.9501, 0.9488). The two quantitative correlation equations were consequently cross validated by leave-one-out (LOO) validation method with q2 of 0.9113 and 0.9281, respectively. The result showed that the two equations achieved in this work by B3LYP/6-31G* are both more advantageous than those from AM1, and can be used to predict the lgKW and –lgEC50 of congeneric organics.展开更多
Considering atomic property vector and atomic correlative function, the 3-dimensional structural vector of atomic property correlation (3D-VAPC), a novel descriptor,is defined to characterize a 3-dimensional molecul...Considering atomic property vector and atomic correlative function, the 3-dimensional structural vector of atomic property correlation (3D-VAPC), a novel descriptor,is defined to characterize a 3-dimensional molecular structure by introducing self-adaptability regulation mechanism and the idea of orientating to customers. Characterizing the structures of 25 bisphenol A compounds by this vector, the QSAR models of three kinds of estrogen activities (ER affinities, gene induction and cell proliferation) have high multiple correlation coefficient (Rcum^2=0.933, 0.813, 0.959) and cross verification coefficient (Qcum^2=0.847, 0.953, 0.798) by support vector machine (SVM), which suits for nonlinear circumstances. The above results show that the models successfully express the correlation between structure and three kinds of estrogen activities. Therefore, 3D-VAPC exactly reflects the molecular structural information and SVM method correctly describes the correlation between information and property of the compounds.展开更多
Phenylthio-carboxylates were computed at the B3LYP/6-31G* level with DFT method. Based on linear solvation energy theory, the structural parameters were firstly taken as theoretical descriptors, and the correspondin...Phenylthio-carboxylates were computed at the B3LYP/6-31G* level with DFT method. Based on linear solvation energy theory, the structural parameters were firstly taken as theoretical descriptors, and the corresponding linear solvation energy relationship (LSER) equation (r = 0.8989) to the toxicity of photobacterium phosphoreum (–lgEC50) was thus obtained. Then the structural and thermodynamic parameters were taken as theoretical descriptors, and as a result the other corresponding correlation equation (r = 0.9274) relating to –lgEC50 was provided. The two equations achieved in this work by B3LYP/6-31G* are both more advantageous than that from AM1.展开更多
Based on the quantum chemical descriptors,quantitative structure-property relationship(QSPR) models have been developed to estimate and predict the photodegradation rate constant(logK) of polycyclic aromatic hydro...Based on the quantum chemical descriptors,quantitative structure-property relationship(QSPR) models have been developed to estimate and predict the photodegradation rate constant(logK) of polycyclic aromatic hydrocarbons(PAHs) by use of linear method(multiple linear regression,MLR) and non-linear method(back propagation artificial neural network,BP-ANN).A BP-ANN with 3-3-1 architecture was generated by using three quantum chemical descriptors appearing in the MLR model.The standard heat of formation(HOF),the gap of frontier molecular orbital energies(ΔELH) and total energy(TE) were inputs and its output was logK.Leave-One-Out(LOO) Cross-Validated correlation coefficient(R^2CV) of the established MLR and BP-ANN models were 0.6383 and 0.7843,respectively.The nonlinear BP-ANN model has better predictive ability compared to the linear MLR model with the root mean square error(RMSE) for training and validation sets to be 0.1071,0.1514 and the squared correlation coefficient(R^2) of 0.9791,0.9897,respectively.In addition,some insights into the molecular structural features affecting the photodegradation of PAHs were also discussed.展开更多
29 aromatic compounds were computed at the HF/6-31G^* level. Based on linear solvation energy theory firstly, the parameters of molecular structure were taken as theoretical descriptors, and the corresponding linear ...29 aromatic compounds were computed at the HF/6-31G^* level. Based on linear solvation energy theory firstly, the parameters of molecular structure were taken as theoretical descriptors, and the corresponding linear solvation energy relationship (LSER) (r^2= 0.8993, q^2=0.8559) between the structural parameters and inhibition phytotoxicity to the seed germination rate of cucumis (-lgGC50) was thus obtained. Then the parameters of molecular structure and thermodynamics were taken as theoretical descriptors, and as a result the other corresponding correlation equation (r^2=0.9268, q^2=0.8960) relating to -lgGC50 was achieved. The two equations obtained in this work by HF/6-31G^* are both more advantageous than that from AM 1.展开更多
Based on two-dimensional topological structures, a novel molecular electronegativity interaction vector with hybridization (MEHIV) was developed to describe atomic hybridization state in different molecular environm...Based on two-dimensional topological structures, a novel molecular electronegativity interaction vector with hybridization (MEHIV) was developed to describe atomic hybridization state in different molecular environments. Five quantitative models by MEHIV characterization and multiple linear regression modeling were successfully established to predict reduced ion mobility constants (Ko) of alkanes, aromatic hydrocarbons, fatty alcohols, fatty aldehydes and ketones and carboxylic esters. The correlation coefficients Roy by leave-one-out cross-validation are 0.792, 0.787, 0,949, 0.972 and 0.981, respectively, and the standard deviations SDcv are 0.067, 0.086, 0.064, 0.043 and 0.042, respectively. These results suggested that MEHIV is an excellent topological index descriptor with many advantages such as straightforward physicochemical meaning, high characterization competence, convenient expansibility and easy manipulation.展开更多
Breast cancer is presently one of the most common malignancies worldwide,with a higher fatality rate.In this study,a quantitative structure-activity relationship(QSAR)model of compound biological activity and ADMET(Ab...Breast cancer is presently one of the most common malignancies worldwide,with a higher fatality rate.In this study,a quantitative structure-activity relationship(QSAR)model of compound biological activity and ADMET(Absorption,Distribution,Metabolism,Excretion,Toxicity)properties prediction model were performed using estrogen receptor alpha(ERα)antagonist information collected from compound samples.We first utilized grey relation analysis(GRA)in conjunction with the random forest(RF)algorithm to identify the top 20 molecular descriptor variables that have the greatest influence on biological activity,and then we used Spearman correlation analysis to identify 16 independent variables.Second,a QSAR model of the compound were developed based on BP neural network(BPNN),genetic algorithm optimized BP neural network(GA-BPNN),and support vector regression(SVR).The BPNN,the SVR,and the logistic regression(LR)models were then used to identify and predict the ADMET properties of substances,with the prediction impacts of each model compared and assessed.The results reveal that a SVR model was used in QSAR quantitative prediction,and in the classification prediction of ADMET properties:the SVR model predicts the Caco-2 and hERG(human Ether-a-go-go Related Gene)properties,the LR model predicts the cytochrome P450 enzyme 3A4 subtype(CYP3A4)and Micronucleus(MN)properties,and the BPNN model predicts the Human Oral Bioavailability(HOB)properties.Finally,information entropy theory is used to validate the rationality of variable screening,and sensitivity analysis of the model demonstrates that the constructed model has high accuracy and stability,which can be used as a reference for screening probable active compounds and drug discovery.展开更多
Estrogen compounds may pose a serious threat to the health of humans and wildlife. The estrogen receptor (ER) exists as two subtypes, ERα and ERβ. Compounds might have different relative affinities and binding mod...Estrogen compounds may pose a serious threat to the health of humans and wildlife. The estrogen receptor (ER) exists as two subtypes, ERα and ERβ. Compounds might have different relative affinities and binding modes for ERα and ERβ. In this study, the heuristic method was performed on 31 compounds binding to ERβ to select 5 variances most related to the activity (LogRBA) from 1524 variances, which were then employed to develop the best model with the significant correlation and the best predictive power (γ^2 = 0.829, q^2LOO = 0.742, γ^2pred = 0.772, q^2ext = 0.724, RMSEE = 0.395) using multiple linear regression (MLR). The model derived identified critical structural features related to the activity of binding to ERβ. The applicability domain (AD) of the model was assessed by Williams plot.展开更多
以物质的电子、空间等结构性质为基础,运用Gaussian98和Cerius2程序包对偶极距(Dipole)、最高占据轨道能量(EHOMO)、最低空轨道能量(ELUMO)、分子总能量(E)、旋转键(Rotlbonds)、最弱的R-NO2键长(R-NO2 bond length,R为C或N)、氢键供体(...以物质的电子、空间等结构性质为基础,运用Gaussian98和Cerius2程序包对偶极距(Dipole)、最高占据轨道能量(EHOMO)、最低空轨道能量(ELUMO)、分子总能量(E)、旋转键(Rotlbonds)、最弱的R-NO2键长(R-NO2 bond length,R为C或N)、氢键供体(Hbond donor)和中点势(Vmid)8种描述符进行了计算,采用Cerius2程序包中的QSPR方法建立了芳香系炸药密度与8种描述符之间的构效关系式,相关系数R为0.909,30个化合物所构成的训练集和15个化合物所构成的预测集预测密度与实测密度之间的平均误差分别为3.33%和2.94%。展开更多
基金Project supported by the Natural Science Foundation of Shanghai, China(No. 06ZR14002).
文摘Quantitative structure-biodegradability relationships (QSBRs) were established to develop predictive models and mechanistic explanations for acid dyestuffs as well as biological activities. With a total of four descriptors, molecular weight (MW), energies of the highest occupied molecular orbital (EHOMO), the lowest unoccupied molecular orbital (ELUMO), and the excited state (EES), calculated using quantum chemical semi-empirical methodology, a series of models were analyzed between the dye biodegradability and each descriptor. Results showed that EHOMO and Mw were the dominant parameters controlling the biodegradability of acid dyes. A statistically robust QSBR model was developed for all studied dyes, with the combined application of EHOMO and Mw. The calculated biodegradations fitted well with the experimental data monitored in a facultative-aerobic process, indicative of the reliable prediction and mechanistic character of the developed model.
基金Funded by Chongqing Medical University Scientific Research Foundation
文摘A set of novel structural descriptors (molecular hybridization electronegativity-distance vector, VMEDh) was put forward, and the quantitative structure–activity relationship (QSAR) of a series of 17α-Acetoxyprogesterones (APs) was investigated. Taking into account the effect of various hybridized orbits on atomic electronegativities, we developed the structure descriptors with amended electronegativities to build a QSAR model. The 10-parameter model based on VMEDh yields a correlation coefficient R=0.972 and standard deviation SD=0.262, which are more desirable than those of the previous molecular electonegativity-distance vector (MEDV-4) (R=0.969, SD=0.275). By stepwise multiple linear regression, several parameters are selected to construct optimal models. The 7-parameter model based on VMEDh has R=0.960 and SD=0.276; its correlation coefficient (RCV) and standard deviation (SDCV) for leave-one-out procedure crossvalidation are respectively RCV=0.890 and SDCV=0.445. The 6-parameter MEDV-4 model has R=0.946, SD=0.304, RCV=0.903 and SDCV=0.406. It is demonstrated that VMEDh has desirable estimation performance and good predictive capability for this series of chemical compounds.
文摘The genotoxicity of 22 substituted nitrobenzenes were evaluated by the chromosome aberrations test in in vitro human peripheral lymphocytes.18 of 22 compounds exhibit genotoxic activities.Quantitative structure-activity relationship model was established to correlate the genotoxicity of substituted nitrobenzenes with the characteristics of the substituents on benzene ring.
基金The project was supported by the National Natural Science Foundation of China (No.10274055) and Natural Science Foundation of Henan Province (2004601107)
文摘The structure-activity relationship of several drugs with similar structure has been investigated by using ab initio method. The relation between the dipole moments and biological activities of these drugs was judged after comparing their geometric structures, dipole moments and inhibitory concentrations. In principle, new drug molecule could be reasonably designed by altering the place of groups and ultimately, the potential drug could be screened by comparing the dipole moments of obtained molecules.
基金supported by the Natural Science Foundation of Shaanxi Province (2009JQ2005)Foundation of Educational Commission of Shaanxi Province (09JK358) Graduate Innovation Fund of Shaanxi University of Science and Technology
文摘A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure activity relationship(QSAR) model was built by partial least-squares(PLS) regression.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The correlation coefficients of established PLS model,leave-one-out(LOO) cross-validation,and predicted values versus experimental ones of external samples were R2=0.899,RCV2=0.854 and Qext2=0.868,respectively.These values indicated that the built PLS model had both favorable estimation stability and good prediction capabilities.Furthermore,the satisfactory results showed that 3D-HoVAIF could preferably express the information related to the biological activity of benzoxazinone derivatives.
基金This work was financially supported by the National Basic Research Program of China (2003CB415002), the China Postdoctoral Science Foundation (No. 2003033486) and the Natural Science Research Fund of University in Jiangsu (04KJB150149)
文摘Twenty eight alkyl(1-phenylsulfonyl) cycloalkane carboxylates were computed at the B3LYP/6-31G* level. Based on linear solvation energy theory, two quantitative correlation equations of the molecular structures of alkyl(1-phenylsulfonyl) cycloalkane carboxylate com- pounds to their chromatographic retention (capacity factor lgKW) and the toxicity for photo- bacterium phosphoreum (–lgEC50) were developed by using the molecular structural parameters as theoretical descriptors (r2 = 0.9501, 0.9488). The two quantitative correlation equations were consequently cross validated by leave-one-out (LOO) validation method with q2 of 0.9113 and 0.9281, respectively. The result showed that the two equations achieved in this work by B3LYP/6-31G* are both more advantageous than those from AM1, and can be used to predict the lgKW and –lgEC50 of congeneric organics.
基金This work was supported by the Natural Science Foundation of CQ CSTC (No. 2006BB5177)
文摘Considering atomic property vector and atomic correlative function, the 3-dimensional structural vector of atomic property correlation (3D-VAPC), a novel descriptor,is defined to characterize a 3-dimensional molecular structure by introducing self-adaptability regulation mechanism and the idea of orientating to customers. Characterizing the structures of 25 bisphenol A compounds by this vector, the QSAR models of three kinds of estrogen activities (ER affinities, gene induction and cell proliferation) have high multiple correlation coefficient (Rcum^2=0.933, 0.813, 0.959) and cross verification coefficient (Qcum^2=0.847, 0.953, 0.798) by support vector machine (SVM), which suits for nonlinear circumstances. The above results show that the models successfully express the correlation between structure and three kinds of estrogen activities. Therefore, 3D-VAPC exactly reflects the molecular structural information and SVM method correctly describes the correlation between information and property of the compounds.
基金This work was supported by the China Postdoctoral Science Foundation (No. 2003033486) National Natural Science Foundation of China (No. 20177008)
文摘Phenylthio-carboxylates were computed at the B3LYP/6-31G* level with DFT method. Based on linear solvation energy theory, the structural parameters were firstly taken as theoretical descriptors, and the corresponding linear solvation energy relationship (LSER) equation (r = 0.8989) to the toxicity of photobacterium phosphoreum (–lgEC50) was thus obtained. Then the structural and thermodynamic parameters were taken as theoretical descriptors, and as a result the other corresponding correlation equation (r = 0.9274) relating to –lgEC50 was provided. The two equations achieved in this work by B3LYP/6-31G* are both more advantageous than that from AM1.
基金supported by the Natural Science Foundation of Fujian Province (D0710019)the Natural Science Foundation of Overseas Chinese Affairs Office of the State Council (06QZR09)
文摘Based on the quantum chemical descriptors,quantitative structure-property relationship(QSPR) models have been developed to estimate and predict the photodegradation rate constant(logK) of polycyclic aromatic hydrocarbons(PAHs) by use of linear method(multiple linear regression,MLR) and non-linear method(back propagation artificial neural network,BP-ANN).A BP-ANN with 3-3-1 architecture was generated by using three quantum chemical descriptors appearing in the MLR model.The standard heat of formation(HOF),the gap of frontier molecular orbital energies(ΔELH) and total energy(TE) were inputs and its output was logK.Leave-One-Out(LOO) Cross-Validated correlation coefficient(R^2CV) of the established MLR and BP-ANN models were 0.6383 and 0.7843,respectively.The nonlinear BP-ANN model has better predictive ability compared to the linear MLR model with the root mean square error(RMSE) for training and validation sets to be 0.1071,0.1514 and the squared correlation coefficient(R^2) of 0.9791,0.9897,respectively.In addition,some insights into the molecular structural features affecting the photodegradation of PAHs were also discussed.
基金This work was financially supported by the National Basic Research Program of China (2003CB415002), the China Postdoctoral Science Foundation (No. 2003033486) and the Natural Science Research Fund of University in Jiangsu Province (04KJB150149)
文摘29 aromatic compounds were computed at the HF/6-31G^* level. Based on linear solvation energy theory firstly, the parameters of molecular structure were taken as theoretical descriptors, and the corresponding linear solvation energy relationship (LSER) (r^2= 0.8993, q^2=0.8559) between the structural parameters and inhibition phytotoxicity to the seed germination rate of cucumis (-lgGC50) was thus obtained. Then the parameters of molecular structure and thermodynamics were taken as theoretical descriptors, and as a result the other corresponding correlation equation (r^2=0.9268, q^2=0.8960) relating to -lgGC50 was achieved. The two equations obtained in this work by HF/6-31G^* are both more advantageous than that from AM 1.
基金the State Key Laboratory of Chemo/Biosensing and Chemometrics Foundation(No.05-12-1)
文摘Based on two-dimensional topological structures, a novel molecular electronegativity interaction vector with hybridization (MEHIV) was developed to describe atomic hybridization state in different molecular environments. Five quantitative models by MEHIV characterization and multiple linear regression modeling were successfully established to predict reduced ion mobility constants (Ko) of alkanes, aromatic hydrocarbons, fatty alcohols, fatty aldehydes and ketones and carboxylic esters. The correlation coefficients Roy by leave-one-out cross-validation are 0.792, 0.787, 0,949, 0.972 and 0.981, respectively, and the standard deviations SDcv are 0.067, 0.086, 0.064, 0.043 and 0.042, respectively. These results suggested that MEHIV is an excellent topological index descriptor with many advantages such as straightforward physicochemical meaning, high characterization competence, convenient expansibility and easy manipulation.
基金Supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0082)
文摘Breast cancer is presently one of the most common malignancies worldwide,with a higher fatality rate.In this study,a quantitative structure-activity relationship(QSAR)model of compound biological activity and ADMET(Absorption,Distribution,Metabolism,Excretion,Toxicity)properties prediction model were performed using estrogen receptor alpha(ERα)antagonist information collected from compound samples.We first utilized grey relation analysis(GRA)in conjunction with the random forest(RF)algorithm to identify the top 20 molecular descriptor variables that have the greatest influence on biological activity,and then we used Spearman correlation analysis to identify 16 independent variables.Second,a QSAR model of the compound were developed based on BP neural network(BPNN),genetic algorithm optimized BP neural network(GA-BPNN),and support vector regression(SVR).The BPNN,the SVR,and the logistic regression(LR)models were then used to identify and predict the ADMET properties of substances,with the prediction impacts of each model compared and assessed.The results reveal that a SVR model was used in QSAR quantitative prediction,and in the classification prediction of ADMET properties:the SVR model predicts the Caco-2 and hERG(human Ether-a-go-go Related Gene)properties,the LR model predicts the cytochrome P450 enzyme 3A4 subtype(CYP3A4)and Micronucleus(MN)properties,and the BPNN model predicts the Human Oral Bioavailability(HOB)properties.Finally,information entropy theory is used to validate the rationality of variable screening,and sensitivity analysis of the model demonstrates that the constructed model has high accuracy and stability,which can be used as a reference for screening probable active compounds and drug discovery.
基金supported by the Science and Technology Development Foundation Key Project of Nanjing Medical University (09NJMUZ16)
文摘Estrogen compounds may pose a serious threat to the health of humans and wildlife. The estrogen receptor (ER) exists as two subtypes, ERα and ERβ. Compounds might have different relative affinities and binding modes for ERα and ERβ. In this study, the heuristic method was performed on 31 compounds binding to ERβ to select 5 variances most related to the activity (LogRBA) from 1524 variances, which were then employed to develop the best model with the significant correlation and the best predictive power (γ^2 = 0.829, q^2LOO = 0.742, γ^2pred = 0.772, q^2ext = 0.724, RMSEE = 0.395) using multiple linear regression (MLR). The model derived identified critical structural features related to the activity of binding to ERβ. The applicability domain (AD) of the model was assessed by Williams plot.
文摘以物质的电子、空间等结构性质为基础,运用Gaussian98和Cerius2程序包对偶极距(Dipole)、最高占据轨道能量(EHOMO)、最低空轨道能量(ELUMO)、分子总能量(E)、旋转键(Rotlbonds)、最弱的R-NO2键长(R-NO2 bond length,R为C或N)、氢键供体(Hbond donor)和中点势(Vmid)8种描述符进行了计算,采用Cerius2程序包中的QSPR方法建立了芳香系炸药密度与8种描述符之间的构效关系式,相关系数R为0.909,30个化合物所构成的训练集和15个化合物所构成的预测集预测密度与实测密度之间的平均误差分别为3.33%和2.94%。