Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face ...Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation.展开更多
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r...Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.展开更多
The sampling problem for input-queued (IQ) randomized scheduling algorithms is analyzed.We observe that if the current scheduling decision is a maximum weighted matching (MWM),the MWM for the next slot mostly falls in...The sampling problem for input-queued (IQ) randomized scheduling algorithms is analyzed.We observe that if the current scheduling decision is a maximum weighted matching (MWM),the MWM for the next slot mostly falls in those matchings whose weight is closed to the current MWM.Using this heuristic,a novel randomized algorithm for IQ scheduling,named genetic algorithm-like scheduling algorithm (GALSA),is proposed.Evolutionary strategy is used for choosing sampling points in GALSA.GALSA works with only O(N) samples which means that GALSA has lower complexity than the famous randomized scheduling algorithm,APSARA.Simulation results show that the delay performance of GALSA is quite competitive with respect to that of APSARA.展开更多
Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach wa...Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.展开更多
This paper presents an improved Randomized Circle Detection (RCD) algorithm with the characteristic of circularity to detect randomized circle in images with complex background, which is not based on the Hough Transfo...This paper presents an improved Randomized Circle Detection (RCD) algorithm with the characteristic of circularity to detect randomized circle in images with complex background, which is not based on the Hough Transform. The experimental results denote that this algorithm can locate the circular mark of Printed Circuit Board (PCB).展开更多
This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is design...This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is designed to estimate the chance of a random fuzzy event and the optimistic value to a random fuzzy variable. In CQHBA, each bee carries a group of quantum bits representing a solution. Chaos optimization searches space around the selected best-so-far food source. In the marriage process, random interferential discrete quantum crossover is done between selected drones and the queen. Gaussian quantum mutation is used to keep the diversity of whole population. New methods of computing quantum rotation angles are designed based on grads. A proof of con- vergence for CQHBA is developed and a theoretical analysis of the computational overhead for the algorithm is presented. Numerical examples are presented to demonstrate its superiority in robustness and stability, efficiency of computational complexity, success rate, and accuracy of solution quality. CQHBA is manifested to be highly robust under various conditions and capable of handling most random fuzzy programmings with any parameter settings, variable initializations, system tolerance and confidence level, perturbations, and noises.展开更多
The traditional collaborative filtering recommendation technology has some shortcomings in the large data environment. To solve this problem, a personalized recommendation method based on cloud computing technology is...The traditional collaborative filtering recommendation technology has some shortcomings in the large data environment. To solve this problem, a personalized recommendation method based on cloud computing technology is proposed. The large data set and recommendation computation are decomposed into parallel processing on multiple computers. A parallel recommendation engine based on Hadoop open source framework is established, and the effectiveness of the system is validated by learning recommendation on an English training platform. The experimental results show that the scalability of the recommender system can be greatly improved by using cloud computing technology to handle massive data in the cluster. On the basis of the comparison of traditional recommendation algorithms, combined with the advantages of cloud computing, a personalized recommendation system based on cloud computing is proposed.展开更多
This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the se...This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the search on the graph to the multi-solution case, it can be applied to analyze the multi-solution case of quantum random-walk search on the graph directly. Thus, the computational complexity of the optimized quantum random-walk search algorithm for the multi-solution search is obtained. Through numerical simulations and analysis, we obtain a critical value of the proportion of solutions q. For a given q, we derive the relationship between the success rate of the algorithm and the number of iterations when q is no longer than the critical value.展开更多
Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstructio...Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstruction and evolution of the sampling distributions over the space of candidate solutions. Iterativeconstruction of the sampling distributions is based on the idea of the global random search of generationalmethods. Under this frame, propontional selection is characterized as a gobal search operator, and recombination is characerized as the search process that exploits similarities. It is shown-that by properly constraining the search breadth of recombination operators, weak convergence of evolutionary algorithms to aglobal optimum can be ensured.展开更多
This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the opt...This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative.展开更多
The random forest algorithm was applied to study the nuclear binding energy and charge radius.The regularized root-mean-square of error(RMSE)was proposed to avoid overfitting during the training of random forest.RMSE ...The random forest algorithm was applied to study the nuclear binding energy and charge radius.The regularized root-mean-square of error(RMSE)was proposed to avoid overfitting during the training of random forest.RMSE for nuclides with Z,N>7 is reduced to 0.816 MeV and 0.0200 fm compared with the six-term liquid drop model and a three-term nuclear charge radius formula,respectively.Specific interest is in the possible(sub)shells among the superheavy region,which is important for searching for new elements and the island of stability.The significance of shell features estimated by the so-called shapely additive explanation method suggests(Z,N)=(92,142)and(98,156)as possible subshells indicated by the binding energy.Because the present observed data is far from the N=184 shell,which is suggested by mean-field investigations,its shell effect is not predicted based on present training.The significance analysis of the nuclear charge radius suggests Z=92 and N=136 as possible subshells.The effect is verified by the shell-corrected nuclear charge radius model.展开更多
The order of the projection in the algebraic reconstruction technique(ART)method has great influence on the rate of the convergence.Although many scholars have studied the order of the projection,few theoretical proof...The order of the projection in the algebraic reconstruction technique(ART)method has great influence on the rate of the convergence.Although many scholars have studied the order of the projection,few theoretical proofs are given.Thomas Strohmer and Roman Vershynin introduced a randomized version of the Kaczmarz method for consistent,and over-determined linear systems and proved whose rate does not depend on the number of equations in the systems in 2009.In this paper,we apply this method to computed tomography(CT)image reconstruction and compared images generated by the sequential Kaczmarz method and the randomized Kaczmarz method.Experiments demonstrates the feasibility of the randomized Kaczmarz algorithm in CT image reconstruction and its exponential curve convergence.展开更多
Tikhonov regularization is a powerful tool for solving linear discrete ill-posed problems.However,effective methods for dealing with large-scale ill-posed problems are still lacking.The Kaczmarz method is an effective...Tikhonov regularization is a powerful tool for solving linear discrete ill-posed problems.However,effective methods for dealing with large-scale ill-posed problems are still lacking.The Kaczmarz method is an effective iterative projection algorithm for solving large linear equations due to its simplicity.We propose a regularized randomized extended Kaczmarz(RREK)algorithm for solving large discrete ill-posed problems via combining the Tikhonov regularization and the randomized Kaczmarz method.The convergence of the algorithm is proved.Numerical experiments illustrate that the proposed algorithm has higher accuracy and better image restoration quality compared with the existing randomized extended Kaczmarz(REK)method.展开更多
A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can ...A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.展开更多
This paper introduces the principle of genetic algorithm and the basic method of solving Markov random field parameters.Focusing on the shortcomings in present methods,a new method based on genetic algorithms is propo...This paper introduces the principle of genetic algorithm and the basic method of solving Markov random field parameters.Focusing on the shortcomings in present methods,a new method based on genetic algorithms is proposed to solve the parameters in the Markov random field.The detailed procedure is discussed.On the basis of the parameters solved by genetic algorithms,some experiments on classification of aerial images are given.Experimental results show that the proposed method is effective and the classification results are satisfactory.展开更多
This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this ...This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this algorithm, a model of the algorithm with phase errors is established, and the relationship between the success rate of the algorithm, the database size, the number of iterations, and the phase error is determined. For a given database size, we obtain both the maximum success rate of the algorithm and the required number of iterations when phase errors are present in the algorithm. Analyses and numerical simulations show that the optimized quantum random-walk search algorithm is more robust against phase errors than Grover's algorithm.展开更多
A pseudo-random coding side-lobe suppression method based on CLEAN algorithm is introduced.The CLEAN algorithm mainly processes pulse compression results of a pseudo-random coding,and estimates a target's distance by...A pseudo-random coding side-lobe suppression method based on CLEAN algorithm is introduced.The CLEAN algorithm mainly processes pulse compression results of a pseudo-random coding,and estimates a target's distance by a method named interpolation method,so that we can get an ideal pulse compression result of the target,and then use the adjusted ideal pulse compression side-lobe to cut the actual pulse compression result,so as to achieve the remarkable performance of side-lobe suppression for large targets,and let the adjacent small targets appear.The computer simulations by MATLAB with this method analyze the effect of side-lobe suppression in an ideal or noisy environment.It is proved that this method can effectively solve the problem due to the side-lobe of pseudo-random coding being too high,and can enhance the radar's multi-target detection ability.展开更多
In this paper, we consider the planar multi-facility Weber problem with restricted zones and non-Euclidean distances, propose an algorithm based on the probability changing method (special kind of genetic algorithms) ...In this paper, we consider the planar multi-facility Weber problem with restricted zones and non-Euclidean distances, propose an algorithm based on the probability changing method (special kind of genetic algorithms) and prove its efficiency for approximate solving this problem by replacing the continuous coordinate values by discrete ones. Version of the algorithm for multiprocessor systems is proposed. Experimental results for a high-performance cluster are given.展开更多
Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 ...Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 amino acid residues are extracted as research object and thefixed-length pattern of 12 amino acids are selected. When using the same characteristic parameters and the same test method, Random Forest algorithm is more effective than Support Vector Machine. In addition, because of Random Forest algorithm doesn’t produce overfitting phenomenon while the dimension of characteristic parameters is higher, we use Random Forest based on higher dimension characteristic parameters to predictβ-hairpin motifs. The better prediction results are obtained;the overall accuracy and Matthew’s correlation coefficient of 5-fold cross-validation achieve 83.3% and 0.59, respectively.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52174001)the National Natural Science Foundation of China(No.52004064)+1 种基金the Hainan Province Science and Technology Special Fund “Research on Real-time Intelligent Sensing Technology for Closed-loop Drilling of Oil and Gas Reservoirs in Deepwater Drilling”(ZDYF2023GXJS012)Heilongjiang Provincial Government and Daqing Oilfield's first batch of the scientific and technological key project “Research on the Construction Technology of Gulong Shale Oil Big Data Analysis System”(DQYT-2022-JS-750)。
文摘Real-time intelligent lithology identification while drilling is vital to realizing downhole closed-loop drilling. The complex and changeable geological environment in the drilling makes lithology identification face many challenges. This paper studies the problems of difficult feature information extraction,low precision of thin-layer identification and limited applicability of the model in intelligent lithologic identification. The author tries to improve the comprehensive performance of the lithology identification model from three aspects: data feature extraction, class balance, and model design. A new real-time intelligent lithology identification model of dynamic felling strategy weighted random forest algorithm(DFW-RF) is proposed. According to the feature selection results, gamma ray and 2 MHz phase resistivity are the logging while drilling(LWD) parameters that significantly influence lithology identification. The comprehensive performance of the DFW-RF lithology identification model has been verified in the application of 3 wells in different areas. By comparing the prediction results of five typical lithology identification algorithms, the DFW-RF model has a higher lithology identification accuracy rate and F1 score. This model improves the identification accuracy of thin-layer lithology and is effective and feasible in different geological environments. The DFW-RF model plays a truly efficient role in the realtime intelligent identification of lithologic information in closed-loop drilling and has greater applicability, which is worthy of being widely used in logging interpretation.
基金Under the auspices of National Natural Science Foundation of China(No.52079103)。
文摘Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.
文摘The sampling problem for input-queued (IQ) randomized scheduling algorithms is analyzed.We observe that if the current scheduling decision is a maximum weighted matching (MWM),the MWM for the next slot mostly falls in those matchings whose weight is closed to the current MWM.Using this heuristic,a novel randomized algorithm for IQ scheduling,named genetic algorithm-like scheduling algorithm (GALSA),is proposed.Evolutionary strategy is used for choosing sampling points in GALSA.GALSA works with only O(N) samples which means that GALSA has lower complexity than the famous randomized scheduling algorithm,APSARA.Simulation results show that the delay performance of GALSA is quite competitive with respect to that of APSARA.
文摘Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.
基金supported by Science and Technology Project of Fujian Provincial Department of Education under contract JAT170917Youth Science and Research Foundation of Chengyi College Jimei University under contract C16005.
文摘This paper presents an improved Randomized Circle Detection (RCD) algorithm with the characteristic of circularity to detect randomized circle in images with complex background, which is not based on the Hough Transform. The experimental results denote that this algorithm can locate the circular mark of Printed Circuit Board (PCB).
基金supported by National High Technology Research and Development Program of China (863 Program) (No. 2007AA041603)National Natural Science Foundation of China (No. 60475035)+2 种基金Key Technologies Research and Development Program Foundation of Hunan Province of China (No. 2007FJ1806)Science and Technology Research Plan of National University of Defense Technology (No. CX07-03-01)Top Class Graduate Student Innovation Sustentation Fund of National University of Defense Technology (No. B070302.)
文摘This paper proposes an adaptive chaos quantum honey bee algorithm (CQHBA) for solving chance-constrained program- ming in random fuzzy environment based on random fuzzy simulations. Random fuzzy simulation is designed to estimate the chance of a random fuzzy event and the optimistic value to a random fuzzy variable. In CQHBA, each bee carries a group of quantum bits representing a solution. Chaos optimization searches space around the selected best-so-far food source. In the marriage process, random interferential discrete quantum crossover is done between selected drones and the queen. Gaussian quantum mutation is used to keep the diversity of whole population. New methods of computing quantum rotation angles are designed based on grads. A proof of con- vergence for CQHBA is developed and a theoretical analysis of the computational overhead for the algorithm is presented. Numerical examples are presented to demonstrate its superiority in robustness and stability, efficiency of computational complexity, success rate, and accuracy of solution quality. CQHBA is manifested to be highly robust under various conditions and capable of handling most random fuzzy programmings with any parameter settings, variable initializations, system tolerance and confidence level, perturbations, and noises.
文摘The traditional collaborative filtering recommendation technology has some shortcomings in the large data environment. To solve this problem, a personalized recommendation method based on cloud computing technology is proposed. The large data set and recommendation computation are decomposed into parallel processing on multiple computers. A parallel recommendation engine based on Hadoop open source framework is established, and the effectiveness of the system is validated by learning recommendation on an English training platform. The experimental results show that the scalability of the recommender system can be greatly improved by using cloud computing technology to handle massive data in the cluster. On the basis of the comparison of traditional recommendation algorithms, combined with the advantages of cloud computing, a personalized recommendation system based on cloud computing is proposed.
基金supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘This study investigates the multi-solution search of the optimized quantum random-walk search algorithm on the hypercube. Through generalizing the abstract search algorithm which is a general tool for analyzing the search on the graph to the multi-solution case, it can be applied to analyze the multi-solution case of quantum random-walk search on the graph directly. Thus, the computational complexity of the optimized quantum random-walk search algorithm for the multi-solution search is obtained. Through numerical simulations and analysis, we obtain a critical value of the proportion of solutions q. For a given q, we derive the relationship between the success rate of the algorithm and the number of iterations when q is no longer than the critical value.
文摘Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstruction and evolution of the sampling distributions over the space of candidate solutions. Iterativeconstruction of the sampling distributions is based on the idea of the global random search of generationalmethods. Under this frame, propontional selection is characterized as a gobal search operator, and recombination is characerized as the search process that exploits similarities. It is shown-that by properly constraining the search breadth of recombination operators, weak convergence of evolutionary algorithms to aglobal optimum can be ensured.
基金supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative.
基金Supported by Basic and Applied Basic Research Project of Guangdong Province(2021B0301030006)。
文摘The random forest algorithm was applied to study the nuclear binding energy and charge radius.The regularized root-mean-square of error(RMSE)was proposed to avoid overfitting during the training of random forest.RMSE for nuclides with Z,N>7 is reduced to 0.816 MeV and 0.0200 fm compared with the six-term liquid drop model and a three-term nuclear charge radius formula,respectively.Specific interest is in the possible(sub)shells among the superheavy region,which is important for searching for new elements and the island of stability.The significance of shell features estimated by the so-called shapely additive explanation method suggests(Z,N)=(92,142)and(98,156)as possible subshells indicated by the binding energy.Because the present observed data is far from the N=184 shell,which is suggested by mean-field investigations,its shell effect is not predicted based on present training.The significance analysis of the nuclear charge radius suggests Z=92 and N=136 as possible subshells.The effect is verified by the shell-corrected nuclear charge radius model.
基金National Natural Science Foundation of China(No.61171179,No.61171178)Natural Science Foundation of Shanxi Province(No.2010011002-1,No.2010011002-2and No.2012021011-2)
文摘The order of the projection in the algebraic reconstruction technique(ART)method has great influence on the rate of the convergence.Although many scholars have studied the order of the projection,few theoretical proofs are given.Thomas Strohmer and Roman Vershynin introduced a randomized version of the Kaczmarz method for consistent,and over-determined linear systems and proved whose rate does not depend on the number of equations in the systems in 2009.In this paper,we apply this method to computed tomography(CT)image reconstruction and compared images generated by the sequential Kaczmarz method and the randomized Kaczmarz method.Experiments demonstrates the feasibility of the randomized Kaczmarz algorithm in CT image reconstruction and its exponential curve convergence.
基金supported by the National Natural Science Foundations of China(Nos.11571171,62073161,and 61473148)。
文摘Tikhonov regularization is a powerful tool for solving linear discrete ill-posed problems.However,effective methods for dealing with large-scale ill-posed problems are still lacking.The Kaczmarz method is an effective iterative projection algorithm for solving large linear equations due to its simplicity.We propose a regularized randomized extended Kaczmarz(RREK)algorithm for solving large discrete ill-posed problems via combining the Tikhonov regularization and the randomized Kaczmarz method.The convergence of the algorithm is proved.Numerical experiments illustrate that the proposed algorithm has higher accuracy and better image restoration quality compared with the existing randomized extended Kaczmarz(REK)method.
基金This project is supported by National Natural Science Foundation of China (No.59805001)
文摘A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.
文摘This paper introduces the principle of genetic algorithm and the basic method of solving Markov random field parameters.Focusing on the shortcomings in present methods,a new method based on genetic algorithms is proposed to solve the parameters in the Markov random field.The detailed procedure is discussed.On the basis of the parameters solved by genetic algorithms,some experiments on classification of aerial images are given.Experimental results show that the proposed method is effective and the classification results are satisfactory.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘This study investigates the effects of systematic errors in phase inversions on the success rate and number of iterations in the optimized quantum random-walk search algorithm. Using the geometric description of this algorithm, a model of the algorithm with phase errors is established, and the relationship between the success rate of the algorithm, the database size, the number of iterations, and the phase error is determined. For a given database size, we obtain both the maximum success rate of the algorithm and the required number of iterations when phase errors are present in the algorithm. Analyses and numerical simulations show that the optimized quantum random-walk search algorithm is more robust against phase errors than Grover's algorithm.
文摘A pseudo-random coding side-lobe suppression method based on CLEAN algorithm is introduced.The CLEAN algorithm mainly processes pulse compression results of a pseudo-random coding,and estimates a target's distance by a method named interpolation method,so that we can get an ideal pulse compression result of the target,and then use the adjusted ideal pulse compression side-lobe to cut the actual pulse compression result,so as to achieve the remarkable performance of side-lobe suppression for large targets,and let the adjacent small targets appear.The computer simulations by MATLAB with this method analyze the effect of side-lobe suppression in an ideal or noisy environment.It is proved that this method can effectively solve the problem due to the side-lobe of pseudo-random coding being too high,and can enhance the radar's multi-target detection ability.
文摘In this paper, we consider the planar multi-facility Weber problem with restricted zones and non-Euclidean distances, propose an algorithm based on the probability changing method (special kind of genetic algorithms) and prove its efficiency for approximate solving this problem by replacing the continuous coordinate values by discrete ones. Version of the algorithm for multiprocessor systems is proposed. Experimental results for a high-performance cluster are given.
文摘Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 amino acid residues are extracted as research object and thefixed-length pattern of 12 amino acids are selected. When using the same characteristic parameters and the same test method, Random Forest algorithm is more effective than Support Vector Machine. In addition, because of Random Forest algorithm doesn’t produce overfitting phenomenon while the dimension of characteristic parameters is higher, we use Random Forest based on higher dimension characteristic parameters to predictβ-hairpin motifs. The better prediction results are obtained;the overall accuracy and Matthew’s correlation coefficient of 5-fold cross-validation achieve 83.3% and 0.59, respectively.