Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation...Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy.Therefore,balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation.To address these challenges,this paper proposes a lightweight bilateral dual-residual network.By introducing a novel residual structure combined with feature extraction and fusion modules,the proposed network significantly enhances representational capacity while reducing computational costs.Specifically,an improved compound residual structure is designed to optimize the efficiency of information propagation and feature extraction.Furthermore,the proposed feature extraction and fusion module enables the network to better capture multi-scale information in images,improving the ability to detect both detailed and global semantic features.Experimental results on the publicly available Cityscapes dataset demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining low computational complexity.In particular,the network achieved a mean Intersection over Union(mIoU)of 78.4%on the Cityscapes validation set,surpassing many existing semantic segmentation models.Additionally,in terms of inference speed,the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,significantly improving real-time performance.展开更多
In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing perme...In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing permeability and injection-induced seismicity during hot dry rock geothermal extraction.For optimizing injection strategies and improving engineering safety,real-time permeability,deformation,and energy release characteristics of fractured granite samples driven by injected water pressure under different critical sliding conditions were evaluated.The results indicated that:(1)A low injection water pressure induced intermittent small-deformation stick-slip behavior in fractures,and a high injection pressure primarily caused continuous high-speed large-deformation sliding in fractures.The optimal injection water pressure range was defined for enhancing hydraulic shear permeability and preventing large injection-induced earthquakes.(2)Under the same experimental conditions,fracture sliding was deemed as the major factor that enhanced the hydraulic shear-permeability enhancement and the maximum permeability increased by 36.54 and 41.59 times,respectively,in above two slip modes.(3)Based on the real-time transient evolution of water pressure during fracture sliding,the variation coefficients of slip rate,permeability,and water pressure were fitted,and the results were different from those measured under quasi-static conditions.(4)The maximum and minimum shear strength criteria for injection-induced fracture sliding were also determined(μ=0.6665 andμ=0.1645,respectively,μis friction coefficient).Using the 3D(three-dimensional)fracture surface scanning technology,the weakening effect of injection pressure on fracture surface damage characteristics was determined,which provided evidence for the geological markers of fault sliding mode and sliding nature transitions under the fluid influence.展开更多
In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the fea...In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.展开更多
Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter...Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter.Therefore,the need to monitor disc cutter wear in real-time has emerged as a technical challenge for TBMs.In this study,real-time disc cutter wear monitoring is developed based on sound and vibration sensors.For this purpose,the microphone and accelerometer were used to record the sound and vibration signals of cutting three different types of rocks with varying abrasions on a laboratory scale.The relationship between disc cutter wear and the sound and vibration signal was determined by comparing the measurements of disc cutter wear with the signal plots for each sample.The features extracted from the signals showed that the sound and vibration signals are impacted by the progression of disc wear during the rock-cutting process.The signal features obtained from the rock-cutting operation were utilized to verify the machine learning techniques.The results showed that the multilayer perceptron(MLP),random subspace-based decision tree(RS-DT),DT,and random forest(RF)methods could predict the wear level of the disc cutter with an accuracy of 0.89,0.951,0.951,and 0.927,respectively.Based on the accuracy of the models and the confusion matrix,it was found that the RS-DT model has the best estimate for predicting the level of disc wear.This research has developed a method that can potentially determine when to replace a tool and assess disc wear in real-time.展开更多
In recent years,the country has spent significant workforce and material resources to prevent traffic accidents,particularly those caused by fatigued driving.The current studies mainly concentrate on driver physiologi...In recent years,the country has spent significant workforce and material resources to prevent traffic accidents,particularly those caused by fatigued driving.The current studies mainly concentrate on driver physiological signals,driving behavior,and vehicle information.However,most of the approaches are computationally intensive and inconvenient for real-time detection.Therefore,this paper designs a network that combines precision,speed and lightweight and proposes an algorithm for facial fatigue detection based on multi-feature fusion.Specifically,the face detection model takes YOLOv8(You Only Look Once version 8)as the basic framework,and replaces its backbone network with MobileNetv3.To focus on the significant regions in the image,CPCA(Channel Prior Convolution Attention)is adopted to enhance the network’s capacity for feature extraction.Meanwhile,the network training phase employs the Focal-EIOU(Focal and Efficient Intersection Over Union)loss function,which makes the network lightweight and increases the accuracy of target detection.Ultimately,the Dlib toolkit was employed to annotate 68 facial feature points.This study established an evaluation metric for facial fatigue and developed a novel fatigue detection algorithm to assess the driver’s condition.A series of comparative experiments were carried out on the self-built dataset.The suggested method’s mAP(mean Average Precision)values for object detection and fatigue detection are 96.71%and 95.75%,respectively,as well as the detection speed is 47 FPS(Frames Per Second).This method can balance the contradiction between computational complexity and model accuracy.Furthermore,it can be transplanted to NVIDIA Jetson Orin NX and quickly detect the driver’s state while maintaining a high degree of accuracy.It contributes to the development of automobile safety systems and reduces the occurrence of traffic accidents.展开更多
Jacket platforms constitute the foundational infrastructure of offshore oil and gas field exploitation.How to efficiently and accurately monitor the mechanical properties of jacket structures is one of the key problem...Jacket platforms constitute the foundational infrastructure of offshore oil and gas field exploitation.How to efficiently and accurately monitor the mechanical properties of jacket structures is one of the key problems to be solved to ensure the safe operation of the platform.To address the practical engineering problem that it is difficult to monitor the stress response of the tubular joints of jacket platforms online,a digital twin reduced-order method for real-time prediction of the stress response of tubular joints is proposed.In the offline construction phase,multi-scale modeling and multi-parameter experimental design methods are used to obtain the stress response data set of the jacket structure.Proper orthogonal decomposition is employed to extract the main feature information from the snapshot matrix,resulting in a reduced-order basis.The leave-one-out cross-validation method is used to select the optimal modal order for constructing the reduced-order model(ROM).In the online prediction phase,a digital twin model of the tubular joint is established,and the prediction performance of the ROM is analyzed and verified through using random environmental load and field environmental monitoring data.The results indicate that,compared with traditional numerical simulations of tubular joints,the ROM based on the proposed reduced-order method is more efficient in predicting the stress response of tubular joints while ensuring accuracy and robustness.展开更多
The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a samp...The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a sample to investigate the influence of porous media on the phase behavior of the gas condensate.The pore structure was first analyzed using computed tomography(CT)scanning,digital core technology,and a pore network model.The sandstone core sample was then saturated with gas condensate for the pressure depletion experiment.After each pressure-depletion state was stable,realtime CT scanning was performed on the sample.The scanning results of the sample were reconstructed into three-dimensional grayscale images,and the gas condensate and condensate liquid were segmented based on gray value discrepancy to dynamically characterize the phase behavior of the gas condensate in porous media.Pore network models of the condensate liquid ganglia under different pressures were built to calculate the characteristic parameters,including the average radius,coordination number,and tortuosity,and to analyze the changing mechanism caused by the phase behavior change of the gas condensate.Four types of condensate liquid(clustered,branched,membranous,and droplet ganglia)were then classified by shape factor and Euler number to investigate their morphological changes dynamically and elaborately.The results show that the dew point pressure of the gas condensate in porous media is 12.7 MPa,which is 0.7 MPa higher than 12.0 MPa in PVT cells.The average radius,volume,and coordination number of the condensate liquid ganglia increased when the system pressure was between the dew point pressure(12.7 MPa)and the pressure for the maximum liquid dropout,Pmax(10.0 MPa),and decreased when it was below Pmax.The volume proportion of clustered ganglia was the highest,followed by branched,membranous,and droplet ganglia.This study provides crucial experimental evidence for the phase behavior changing process of gas condensate in porous media during the depletion production of gas condensate reservoirs.展开更多
Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this devic...Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.展开更多
In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on ...In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process.展开更多
文摘Real-time semantic segmentation tasks place stringent demands on network inference speed,often requiring a reduction in network depth to decrease computational load.However,shallow networks tend to exhibit degradation in feature extraction completeness and inference accuracy.Therefore,balancing high performance with real-time requirements has become a critical issue in the study of real-time semantic segmentation.To address these challenges,this paper proposes a lightweight bilateral dual-residual network.By introducing a novel residual structure combined with feature extraction and fusion modules,the proposed network significantly enhances representational capacity while reducing computational costs.Specifically,an improved compound residual structure is designed to optimize the efficiency of information propagation and feature extraction.Furthermore,the proposed feature extraction and fusion module enables the network to better capture multi-scale information in images,improving the ability to detect both detailed and global semantic features.Experimental results on the publicly available Cityscapes dataset demonstrate that the proposed lightweight dual-branch network achieves outstanding performance while maintaining low computational complexity.In particular,the network achieved a mean Intersection over Union(mIoU)of 78.4%on the Cityscapes validation set,surpassing many existing semantic segmentation models.Additionally,in terms of inference speed,the network reached 74.5 frames per second when tested on an NVIDIA GeForce RTX 3090 GPU,significantly improving real-time performance.
基金supported by the National Natural Science Foundation of China (Grant No.52122405)Science and Technology Major Project of Shanxi Province,China (Grant No.202101060301024)Science and Technology Major Project of Xizang Autonomous Region,China (Grant No.XZ202201ZD0004G0204).
文摘In this study,a high-confining pressure and real-time large-displacement shearing-flow setup was developed.The test setup can be used to analyze the injection pressure conditions that increase the hydro-shearing permeability and injection-induced seismicity during hot dry rock geothermal extraction.For optimizing injection strategies and improving engineering safety,real-time permeability,deformation,and energy release characteristics of fractured granite samples driven by injected water pressure under different critical sliding conditions were evaluated.The results indicated that:(1)A low injection water pressure induced intermittent small-deformation stick-slip behavior in fractures,and a high injection pressure primarily caused continuous high-speed large-deformation sliding in fractures.The optimal injection water pressure range was defined for enhancing hydraulic shear permeability and preventing large injection-induced earthquakes.(2)Under the same experimental conditions,fracture sliding was deemed as the major factor that enhanced the hydraulic shear-permeability enhancement and the maximum permeability increased by 36.54 and 41.59 times,respectively,in above two slip modes.(3)Based on the real-time transient evolution of water pressure during fracture sliding,the variation coefficients of slip rate,permeability,and water pressure were fitted,and the results were different from those measured under quasi-static conditions.(4)The maximum and minimum shear strength criteria for injection-induced fracture sliding were also determined(μ=0.6665 andμ=0.1645,respectively,μis friction coefficient).Using the 3D(three-dimensional)fracture surface scanning technology,the weakening effect of injection pressure on fracture surface damage characteristics was determined,which provided evidence for the geological markers of fault sliding mode and sliding nature transitions under the fluid influence.
基金the financial support of the Natural Science Foundation of Hubei Province,China (Grant No.2022CFB770)。
文摘In the foundry industries,process design has traditionally relied on manuals and complex theoretical calculations.With the advent of 3D design in casting,computer-aided design(CAD)has been applied to integrate the features of casting process,thereby expanding the scope of design options.These technologies use parametric model design techniques for rapid component creation and use databases to access standard process parameters and design specifications.However,3D models are currently still created through inputting or calling parameters,which requires numerous verifications through calculations to ensure the design rationality.This process may be significantly slowed down due to repetitive modifications and extended design time.As a result,there are increasingly urgent demands for a real-time verification mechanism to address this issue.Therefore,this study proposed a novel closed-loop model and software development method that integrated contextual design with real-time verification,dynamically verifying relevant rules for designing 3D casting components.Additionally,the study analyzed three typical closed-loop scenarios of agile design in an independent developed intelligent casting process system.It is believed that foundry industries can potentially benefit from favorably reduced design cycles to yield an enhanced competitive product market.
文摘Large portions of the tunnel boring machine(TBM)construction cost are attributed to disc cutter consumption,and assessing the disc cutter's wear level can help determine the optimal time to replace the disc cutter.Therefore,the need to monitor disc cutter wear in real-time has emerged as a technical challenge for TBMs.In this study,real-time disc cutter wear monitoring is developed based on sound and vibration sensors.For this purpose,the microphone and accelerometer were used to record the sound and vibration signals of cutting three different types of rocks with varying abrasions on a laboratory scale.The relationship between disc cutter wear and the sound and vibration signal was determined by comparing the measurements of disc cutter wear with the signal plots for each sample.The features extracted from the signals showed that the sound and vibration signals are impacted by the progression of disc wear during the rock-cutting process.The signal features obtained from the rock-cutting operation were utilized to verify the machine learning techniques.The results showed that the multilayer perceptron(MLP),random subspace-based decision tree(RS-DT),DT,and random forest(RF)methods could predict the wear level of the disc cutter with an accuracy of 0.89,0.951,0.951,and 0.927,respectively.Based on the accuracy of the models and the confusion matrix,it was found that the RS-DT model has the best estimate for predicting the level of disc wear.This research has developed a method that can potentially determine when to replace a tool and assess disc wear in real-time.
基金supported by the Science and Technology Bureau of Xi’an project(24KGDW0049)the Key Research and Development Programof Shaanxi(2023-YBGY-264)the Key Research and Development Program of Guangxi(GK-AB20159032).
文摘In recent years,the country has spent significant workforce and material resources to prevent traffic accidents,particularly those caused by fatigued driving.The current studies mainly concentrate on driver physiological signals,driving behavior,and vehicle information.However,most of the approaches are computationally intensive and inconvenient for real-time detection.Therefore,this paper designs a network that combines precision,speed and lightweight and proposes an algorithm for facial fatigue detection based on multi-feature fusion.Specifically,the face detection model takes YOLOv8(You Only Look Once version 8)as the basic framework,and replaces its backbone network with MobileNetv3.To focus on the significant regions in the image,CPCA(Channel Prior Convolution Attention)is adopted to enhance the network’s capacity for feature extraction.Meanwhile,the network training phase employs the Focal-EIOU(Focal and Efficient Intersection Over Union)loss function,which makes the network lightweight and increases the accuracy of target detection.Ultimately,the Dlib toolkit was employed to annotate 68 facial feature points.This study established an evaluation metric for facial fatigue and developed a novel fatigue detection algorithm to assess the driver’s condition.A series of comparative experiments were carried out on the self-built dataset.The suggested method’s mAP(mean Average Precision)values for object detection and fatigue detection are 96.71%and 95.75%,respectively,as well as the detection speed is 47 FPS(Frames Per Second).This method can balance the contradiction between computational complexity and model accuracy.Furthermore,it can be transplanted to NVIDIA Jetson Orin NX and quickly detect the driver’s state while maintaining a high degree of accuracy.It contributes to the development of automobile safety systems and reduces the occurrence of traffic accidents.
基金financially supported by the National Natural Science Foundation of China(Grant No.11472076).
文摘Jacket platforms constitute the foundational infrastructure of offshore oil and gas field exploitation.How to efficiently and accurately monitor the mechanical properties of jacket structures is one of the key problems to be solved to ensure the safe operation of the platform.To address the practical engineering problem that it is difficult to monitor the stress response of the tubular joints of jacket platforms online,a digital twin reduced-order method for real-time prediction of the stress response of tubular joints is proposed.In the offline construction phase,multi-scale modeling and multi-parameter experimental design methods are used to obtain the stress response data set of the jacket structure.Proper orthogonal decomposition is employed to extract the main feature information from the snapshot matrix,resulting in a reduced-order basis.The leave-one-out cross-validation method is used to select the optimal modal order for constructing the reduced-order model(ROM).In the online prediction phase,a digital twin model of the tubular joint is established,and the prediction performance of the ROM is analyzed and verified through using random environmental load and field environmental monitoring data.The results indicate that,compared with traditional numerical simulations of tubular joints,the ROM based on the proposed reduced-order method is more efficient in predicting the stress response of tubular joints while ensuring accuracy and robustness.
基金the National Natural Science Foundation of China(Nos.52122402,12172334,52034010,52174051)Shandong Provincial Natural Science Foundation(Nos.ZR2021ME029,ZR2022JQ23)Fundamental Research Funds for the Central Universities(No.22CX01001A-4)。
文摘The phase behavior of gas condensate in reservoir formations differs from that in pressure-volume-temperature(PVT)cells because it is influenced by porous media in the reservoir formations.Sandstone was used as a sample to investigate the influence of porous media on the phase behavior of the gas condensate.The pore structure was first analyzed using computed tomography(CT)scanning,digital core technology,and a pore network model.The sandstone core sample was then saturated with gas condensate for the pressure depletion experiment.After each pressure-depletion state was stable,realtime CT scanning was performed on the sample.The scanning results of the sample were reconstructed into three-dimensional grayscale images,and the gas condensate and condensate liquid were segmented based on gray value discrepancy to dynamically characterize the phase behavior of the gas condensate in porous media.Pore network models of the condensate liquid ganglia under different pressures were built to calculate the characteristic parameters,including the average radius,coordination number,and tortuosity,and to analyze the changing mechanism caused by the phase behavior change of the gas condensate.Four types of condensate liquid(clustered,branched,membranous,and droplet ganglia)were then classified by shape factor and Euler number to investigate their morphological changes dynamically and elaborately.The results show that the dew point pressure of the gas condensate in porous media is 12.7 MPa,which is 0.7 MPa higher than 12.0 MPa in PVT cells.The average radius,volume,and coordination number of the condensate liquid ganglia increased when the system pressure was between the dew point pressure(12.7 MPa)and the pressure for the maximum liquid dropout,Pmax(10.0 MPa),and decreased when it was below Pmax.The volume proportion of clustered ganglia was the highest,followed by branched,membranous,and droplet ganglia.This study provides crucial experimental evidence for the phase behavior changing process of gas condensate in porous media during the depletion production of gas condensate reservoirs.
基金financial support from the National Natural Science Foundation of China(Grant Nos.52209125 and 51839003).
文摘Deep engineering disasters,such as rockbursts and collapses,are more related to the shear slip of rock joints.A novel multifunctional device was developed to study the shear failure mechanism in rocks.Using this device,the complete shearedeformation process and long-term shear creep tests could be performed on rocks under constant normal stiffness(CNS)or constant normal loading(CNL)conditions in real-time at high temperature and true-triaxial stress.During the research and development process,five key technologies were successfully broken through:(1)the ability to perform true-triaxial compressioneshear loading tests on rock samples with high stiffness;(2)a shear box with ultra-low friction throughout the entire stress space of the rock sample during loading;(3)a control system capable of maintaining high stress for a long time and responding rapidly to the brittle fracture of a rock sample as well;(4)a refined ability to measure the volumetric deformation of rock samples subjected to true triaxial shearing;and(5)a heating system capable of maintaining uniform heating of the rock sample over a long time.By developing these technologies,loading under high true triaxial stress conditions was realized.The apparatus has a maximum normal stiffness of 1000 GPa/m and a maximum operating temperature of 300C.The differences in the surface temperature of the sample are constant to within5C.Five types of true triaxial shear tests were conducted on homogeneous sandstone to verify that the apparatus has good performance and reliability.The results show that temperature,lateral stress,normal stress and time influence the shear deformation,failure mode and strength of the sandstone.The novel apparatus can be reliably used to conduct true-triaxial shear tests on rocks subjected to high temperatures and stress.
基金supported by CNPC-CZU Innovation Alliancesupported by the Program of Polar Drilling Environmental Protection and Waste Treatment Technology (2022YFC2806403)。
文摘In petroleum engineering,real-time lithology identification is very important for reservoir evaluation,drilling decisions and petroleum geological exploration.A lithology identification method while drilling based on machine learning and mud logging data is studied in this paper.This method can effectively utilize downhole parameters collected in real-time during drilling,to identify lithology in real-time and provide a reference for optimization of drilling parameters.Given the imbalance of lithology samples,the synthetic minority over-sampling technique(SMOTE)and Tomek link were used to balance the sample number of five lithologies.Meanwhile,this paper introduces Tent map,random opposition-based learning and dynamic perceived probability to the original crow search algorithm(CSA),and establishes an improved crow search algorithm(ICSA).In this paper,ICSA is used to optimize the hyperparameter combination of random forest(RF),extremely random trees(ET),extreme gradient boosting(XGB),and light gradient boosting machine(LGBM)models.In addition,this study combines the recognition advantages of the four models.The accuracy of lithology identification by the weighted average probability model reaches 0.877.The study of this paper realizes high-precision real-time lithology identification method,which can provide lithology reference for the drilling process.