Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detectio...Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detection and recognition of targets. With the development of ultra-wideband technology, synthetic aperture technology, signal and information processing technology, the radar coverage, detection accuracy and resolution have been greatly improved, especially in terms of one-dimensional(1D) high-resolution radar detection, tracking, recognition, and two-dimensional(2D) synthetic aperture radar imaging technology. Meanwhile, for the application of radar detection and remote sensing with high resolution and wide swath, the amount of data has been greatly increased. Therefore, the radar is required to have low-latency and real-time processing capability under the constraints of size, weight and power consumption. This paper systematically introduces the new technology of high resolution radar and real-time signal and information processing. The key problems and solutions are discussed, including the detection and tracking of 1D high-resolution radar, the accurate signal modeling and wide-swath imaging for geosynchronous orbit synthetic aperture radar, and real-time signal and information processing architecture and efficient algorithms. Finally, the latest research progress and representative results are presented, and the development trends are prospected.展开更多
A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architectu...A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.展开更多
A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer syste...A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.展开更多
Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research comm...Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research community with an opportunity to develop automated real-time identification techniques to detect the signs of hypoxic-ischemic-encephalopathy in larger electroencephalography/amplitude-integrated electroencephalography data sets more easily. This review details the recent achievements, performed by a number of prominent research groups across the world, in the automatic identification and classification of hypoxic-ischemic epileptiform neonatal seizures using advanced signal processing and machine learning techniques. This review also addresses the clinical challenges that current automated techniques face in order to be fully utilized by clinicians, and highlights the importance of upgrading the current clinical bedside sampling frequencies to higher sampling rates in order to provide better hypoxic-ischemic biomarker detection frameworks. Additionally, the article highlights that current clinical automated epileptiform detection strategies for human neonates have been only concerned with seizure detection after the therapeutic latent phase of injury. Whereas recent animal studies have demonstrated that the latent phase of opportunity is critically important for early diagnosis of hypoxic-ischemic-encephalopathy electroencephalography biomarkers and although difficult, detection strategies could utilize biomarkers in the latent phase to also predict the onset of future seizures.展开更多
Using the Radon transform and morphological image processing, an algorithm for ship's wake detection in the SAR (synthetic aperture radar) image is developed. Being manipulated in the Radon space to invert the gra...Using the Radon transform and morphological image processing, an algorithm for ship's wake detection in the SAR (synthetic aperture radar) image is developed. Being manipulated in the Radon space to invert the gray-level and binary images, the linear texture of ship wake in oceanic clutter can be well detected. It has been applied to the automatic detection of a moving ship from the SEASAT SAR image. The results show that this algorithm is well robust in a strong noisy background and is not very sensitive to the threshold parameter and the working window size.展开更多
The grain production prediction is one of the most important links in precision agriculture. In the process of grain production prediction, mechanical noise caused by the factors of difference in field topography and ...The grain production prediction is one of the most important links in precision agriculture. In the process of grain production prediction, mechanical noise caused by the factors of difference in field topography and mechanical vibration will be mixed in the original signal, which undoubtedly will affect the prediction accuracy. Therefore, in order to reduce the influence of vibration noise on the prediction accuracy, an adaptive Ensemble Empirical Mode Decomposition(EEMD) threshold filtering algorithm was applied to the original signal in this paper: the output signal was decomposed into a finite number of Intrinsic Mode Functions(IMF) from high frequency to low frequency by using the Empirical Mode Decomposition(EMD) algorithm which could effectively restrain the mode mixing phenomenon; then the demarcation point of high and low frequency IMF components were determined by Continuous Mean Square Error criterion(CMSE), the high frequency IMF components were denoised by wavelet threshold algorithm, and finally the signal was reconstructed. The algorithm was an improved algorithm based on the commonly used wavelet threshold. The two algorithms were used to denoise the original production signal respectively, the adaptive EEMD threshold filtering algorithm had significant advantages in three denoising performance indexes of signal denoising ratio, root mean square error and smoothness. The five field verification tests showed that the average error of field experiment was 1.994% and the maximum relative error was less than 3%. According to the test results, the relative error of the predicted yield per hectare was 2.97%, which was relative to the actual yield. The test results showed that the algorithm could effectively resist noise and improve the accuracy of prediction.展开更多
In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously pe...In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously perform the local computation,which calls for heavy computational and communication costs.Moreover,in many real-world networks,such as those with straggling nodes,the homogeneous manner may result in serious delay or even failure.To this end,we propose active network decomposition algorithms to select non-straggling nodes(normal nodes)that perform the main computation and communication across the network.To accommodate the decomposition in different kinds of networks,two different approaches are developed,one is centralized decomposition that leverages the adjacency of the network and the other is distributed decomposition that employs the indicator message transmission between neighboring nodes,which constitutes the main contribution of this paper.By incorporating the active decomposition scheme,a distributed Newton method is employed to solve the least squares problem in GSP,where the Hessian inverse is approximately evaluated by patching a series of inverses of local Hessian matrices each of which is governed by one normal node.The proposed algorithm inherits the fast convergence of the second-order algorithms while maintains low computational and communication cost.Numerical examples demonstrate the effectiveness of the proposed algorithm.展开更多
This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail...This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.展开更多
Optimization algorithms are applied to resolve the second-order pileup(SOP)issue from high counting rates occurring in digital alpha spectroscopy.These are antlion optimizer(ALO)and particle swarm optimization(PSO)alg...Optimization algorithms are applied to resolve the second-order pileup(SOP)issue from high counting rates occurring in digital alpha spectroscopy.These are antlion optimizer(ALO)and particle swarm optimization(PSO)algorithms.Both optimization algorithms are coupled to one of the three proposed peak finder algorithms.Three custom time-domain algorithms are proposed for retrieving SOP peaks,namely peak seek,slope tangent,and fast array algorithms.In addition,an average combinational algorithm is applied.The time occurrence of the retrieved peaks is tested for an elimination of illusive pulses.Conventional methods are inaccurate and timeconsuming.ALO and PSO optimizations are used for the localization of retrieved peaks.Optimum cost values that achieve the best fitness values are demonstrated.Thus,the optimum positions of the detected peak heights are achieved.Evaluation metrics of the optimized algorithms and their influences on the retrieved peaks parameters are established.Comparisons among such algorithms are investigated,and the algorithms are inspected in terms of their computational time and average error.The peak seek algorithm achieves the lowest average computational error for pulse parameters(amplitude and position).However,the fast array algorithm introduces the largest average error for pulse parameters.In addition,the peak seek algorithm coupled with an ALO or PSO algorithm is observed to realize a better performance in terms of the optimum cost and computational time.By contrast,the performance of the peak seek recovery algorithm is improved using the PSO.Furthermore,the computational time of the peak optimization using the PSO is much better than that of the ALO algorithm.As a final conclusion,the accuracy of the peaks detected by the PSO surpasses that for the peaks detected by the ALO.The implemented peak retrieval algorithms are validated through a comparison with experimental results from previous studies.The proposed algorithms achieve a notable precision for compensation of the SOP peaks within the alpha ray spectroscopy at a high counting rate.展开更多
The signal processing speed of spectral domain optical coherence tomography(SD-OCT)has become a bottleneck in a lot of medical applications.Recently,a time-domain interpolation method was proposed.This method can get ...The signal processing speed of spectral domain optical coherence tomography(SD-OCT)has become a bottleneck in a lot of medical applications.Recently,a time-domain interpolation method was proposed.This method can get better signal-to-noise ratio(SNR)but much-reduced signal processing time in SD-OCT data processing as compared with the commonly used zeropadding interpolation method.Additionally,the resampled data can be obtained by a few data and coefficients in the cutoff window.Thus,a lot of interpolations can be performed simultaneously.So,this interpolation method is suitable for parallel computing.By using graphics processing unit(GPU)and the compute unified device architecture(CUDA)program model,time-domain interpolation can be accelerated significantly.The computing capability can be achieved more than 250,000 A-lines,200,000 A-lines,and 160,000 A-lines in a second for 2,048 pixel OCT when the cutoff length is L=11,L=21,and L=31,respectively.A frame SD-OCT data(400A-lines×2,048 pixel per line)is acquired and processed on GPU in real time.The results show that signal processing time of SD-OCT can befinished in 6.223 ms when the cutoff length L=21,which is much faster than that on central processing unit(CPU).Real-time signal processing of acquired data can be realized.展开更多
Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to ...Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to realize the automation of computer-aided seam tracking. A PAW (plasma arc welding) seam tracking system was developed, which senses the molten pool and the seam in one frame by a vision sensor, and then detects the seam deviation to adjust the work piece motion adaptively to the seam position sensed by vision sensor. A novel molten pool area image-processing algorithm based on machine vision was proposed. The algorithm processes each image at the speed of 20 frames/second in real-time to extract three feature variables to get the seam deviation. It is proved experimentally that the algorithm is very fast and effective. Issues related to the algorithm are also discussed.展开更多
Parkinson’s disease(PD),one of whose symptoms is dysphonia,is a prevalent neurodegenerative disease.The use of outdated diagnosis techniques,which yield inaccurate and unreliable results,continues to represent an obs...Parkinson’s disease(PD),one of whose symptoms is dysphonia,is a prevalent neurodegenerative disease.The use of outdated diagnosis techniques,which yield inaccurate and unreliable results,continues to represent an obstacle in early-stage detection and diagnosis for clinical professionals in the medical field.To solve this issue,the study proposes using machine learning and deep learning models to analyze processed speech signals of patients’voice recordings.Datasets of these processed speech signals were obtained and experimented on by random forest and logistic regression classifiers.Results were highly successful,with 90%accuracy produced by the random forest classifier and 81.5%by the logistic regression classifier.Furthermore,a deep neural network was implemented to investigate if such variation in method could add to the findings.It proved to be effective,as the neural network yielded an accuracy of nearly 92%.Such results suggest that it is possible to accurately diagnose early-stage PD through merely testing patients’voices.This research calls for a revolutionary diagnostic approach in decision support systems,and is the first step in a market-wide implementation of healthcare software dedicated to the aid of clinicians in early diagnosis of PD.展开更多
Three-dimensional (3-D) matched filtering has been suggested as a powerful processing technique for detecting weak, moving IR point target immersed in a noisy field. Based on the theory of the 3-D matched filtering an...Three-dimensional (3-D) matched filtering has been suggested as a powerful processing technique for detecting weak, moving IR point target immersed in a noisy field. Based on the theory of the 3-D matched filtering and the optimal linear processing, the optimal point target detector is being analyzed in this paper. The performance of the detector is introduced in detail. The results provide a standard reference to evaluate the performance of any other point target detection algorithms.展开更多
Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order ...Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order of the underlying model isunknown.On the basis of several universal formulae for updating nonsymmetric projec-tion operators,this paper presents three kinds of LS algorithms,called nonsymmetric,symmetric and square root normalized fast ORLS algorithms,respectively.As to the au-thors’ knowledge,the first and the third have not been so far provided,and the second isone of those which have the lowest computational requirement.Several simplified versionsof the algorithms are also considered.展开更多
This paper gives a MUSIC signal DOA estimation algorithm based on the modified high-order cumulant matrix which is constructed by the recieved data and their conjugate rearrangements. When the snapshot number is limit...This paper gives a MUSIC signal DOA estimation algorithm based on the modified high-order cumulant matrix which is constructed by the recieved data and their conjugate rearrangements. When the snapshot number is limited, this algorithm can improve the signal DOA estimation performances obviously, and its computational complexity scarcely increases. Finally, some simulation results to verify the theoretical analyses are presented.展开更多
The real-time measurement principle of high rotational projectile's angular velocity based on 2-axis acceleration sensor and the axial acceleration measurement error caused by the installation error are discussed.The...The real-time measurement principle of high rotational projectile's angular velocity based on 2-axis acceleration sensor and the axial acceleration measurement error caused by the installation error are discussed.The 2-axis acceleration sensor is applied to measure the high rotational projectile's angular velocity and the measurement value of axial acceleration,the axial acceleration of the high rotational projectile equals the measurement value of axial acceleration subtracting the centrifugal acceleration component,so that the high-accuracy real-time measurement of axial acceleration is realized.The memory test has confirmed the strike tally of the theoretical analysis and the test result.The measurement technique can satisfy the high-accuracy measurement of the high rotational projectile axial acceleration in the self-determination course correction fuze projectile.展开更多
Block-in-matrix-soils(bimsoils)are geological mixtures that have distinct structures consisting of relatively strong rock blocks and weak matrix soils.It is still a challenge to evaluate the mechanical behaviors of bi...Block-in-matrix-soils(bimsoils)are geological mixtures that have distinct structures consisting of relatively strong rock blocks and weak matrix soils.It is still a challenge to evaluate the mechanical behaviors of bimsoils because of the heterogeneity,chaotic structure,and lithological variability.As a result,only very limited laboratory studies have been reported on the evolution of their internal deformation.In this study,the deformation evolution of bimsoils under uniaxial loading is investigated using real-time X-ray computed tomography(CT)and image correlation algorithm(with a rock block percentage(RBP)of 40%).Three parameters,i.e.heterogeneity coefficient(K),correlation coefficient(CC),and standard deviation(STD)of displacement fields,are proposed to quantify the heterogeneity of the motion of the rock blocks and the progressive deformation of the bimsoils.Experimental results show that the rock blocks in bimsoils are prone to forming clusters with increasing loading,and the sliding surface goes around only one side of a cluster.Based on the movement of the rock blocks recorded by STD and CC,the progressive deformation of the bimsoils is quantitatively divided into three stages:initialization of the rotation of rock blocks,formation of rock block clusters,and formation of a shear band by rock blocks with significant rotation.Moreover,the experimental results demonstrate that the meso-motion of rock blocks controls the macroscopic mechanical properties of the samples.展开更多
Automatic maqam estimation is considered significant toward improving multimedia live music performances and automatic accompaniment. This contribution proposed a real-time maqam estimation model developed in the visu...Automatic maqam estimation is considered significant toward improving multimedia live music performances and automatic accompaniment. This contribution proposed a real-time maqam estimation model developed in the visual programming language MAX/MSP and configured for the nāydukah. The model’s design stood on basic formulas of Arab music maqamat as explained in theory and applied in practice. The model consisted of different layers of competition;the first was for the identification of the instant tonic of the melodic figure, and the second was for the recognition of its identifying E (E, E half-flat and E flat). Those two competitions were used to estimate the maqam in real-time. Then, accumulated estimation results were used to estimate the maqam in longer durations;five-second and full duration. The model was evaluated using professionally performed nāy improvisations. Results reflected a success in estimating all the studied maqamat when the full improvisation was considered. In addition, results were very good for real-time and five-second estimation where average estimation confidence was 75.98% and 80.04%, respectively.展开更多
In the acoustic detection process of buried non-metallic pipelines,the echo signal is often interfered by a large amount of noise,which makes it extremely difficult to effectively extract useful signals.An denoising a...In the acoustic detection process of buried non-metallic pipelines,the echo signal is often interfered by a large amount of noise,which makes it extremely difficult to effectively extract useful signals.An denoising algorithm based on empirical mode decomposition(EMD)and wavelet thresholding was proposed.This method fully considered the nonlinear and non-stationary characteristics of the echo signal,making the denoising effect more significant.Its feasibility and effectiveness were verified through numerical simulation.When the input SNR(SNRin)is between-10 dB and 10 dB,the output SNR(SNRout)of the combined denoising algorithm increases by 12.0%-34.1%compared to the wavelet thresholding method and by 19.60%-56.8%compared to the EMD denoising method.Additionally,the RMSE of the combined denoising algorithm decreases by 18.1%-48.0%compared to the wavelet thresholding method and by 22.1%-48.8%compared to the EMD denoising method.These results indicated that this joint denoising algorithm could not only effectively reduce noise interference,but also significantly improve the positioning accuracy of acoustic detection.The research results could provide technical support for denoising the echo signals of buried non-metallic pipelines,which was conducive to improving the acoustic detection and positioning accuracy of underground non-metallic pipelines.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61427802,31727901,61625103,61501032,61471038the Chang Jiang Scholars Program(T2012122)+1 种基金part by the 111 project of China under Grant B14010supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China
文摘Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detection and recognition of targets. With the development of ultra-wideband technology, synthetic aperture technology, signal and information processing technology, the radar coverage, detection accuracy and resolution have been greatly improved, especially in terms of one-dimensional(1D) high-resolution radar detection, tracking, recognition, and two-dimensional(2D) synthetic aperture radar imaging technology. Meanwhile, for the application of radar detection and remote sensing with high resolution and wide swath, the amount of data has been greatly increased. Therefore, the radar is required to have low-latency and real-time processing capability under the constraints of size, weight and power consumption. This paper systematically introduces the new technology of high resolution radar and real-time signal and information processing. The key problems and solutions are discussed, including the detection and tracking of 1D high-resolution radar, the accurate signal modeling and wide-swath imaging for geosynchronous orbit synthetic aperture radar, and real-time signal and information processing architecture and efficient algorithms. Finally, the latest research progress and representative results are presented, and the development trends are prospected.
基金Sponsored by the National Natural Science Foundation of China (60843005)the Basic Research Foundation of Beijing Institute of Technology(20070142018)
文摘A low-power complementary metal oxide semiconductor(CMOS) operational amplifier (op-amp) for real-time signal processing of micro air vehicle (MAV) is designed in this paper.Traditional folded cascode architecture with positive channel metal oxide semiconductor(PMOS) differential input transistors and sub-threshold technology are applied under the low supply voltage.Simulation results show that this amplifier has significantly low power,while maintaining almost the same gain,bandwidth and other key performances.The power required is only 0.12 mW,which is applicable to low-power and low-voltage real-time signal acquisition and processing system.
文摘A discrete model reference adaptive controller of robot arm is obtained by integrating the reduced dynamic model of robot, model reference adaptive control (MRAC) and digital signal processing (DSP) computer system into an electromechanical system. With the DSP computer system, the control signal of each joint of the robot arm can be processed in real time and independently. The simulation and experiment results show that with the control strategy, the robot achieved a good trajectory following precision, a good decoupling performance and a high real-time adaptivity.
基金supported by the Auckland Medical Research Foundation,No.1117017(to CPU)
文摘Perinatal hypoxic-ischemic-encephalopathy significantly contributes to neonatal death and life-long disability such as cerebral palsy. Advances in signal processing and machine learning have provided the research community with an opportunity to develop automated real-time identification techniques to detect the signs of hypoxic-ischemic-encephalopathy in larger electroencephalography/amplitude-integrated electroencephalography data sets more easily. This review details the recent achievements, performed by a number of prominent research groups across the world, in the automatic identification and classification of hypoxic-ischemic epileptiform neonatal seizures using advanced signal processing and machine learning techniques. This review also addresses the clinical challenges that current automated techniques face in order to be fully utilized by clinicians, and highlights the importance of upgrading the current clinical bedside sampling frequencies to higher sampling rates in order to provide better hypoxic-ischemic biomarker detection frameworks. Additionally, the article highlights that current clinical automated epileptiform detection strategies for human neonates have been only concerned with seizure detection after the therapeutic latent phase of injury. Whereas recent animal studies have demonstrated that the latent phase of opportunity is critically important for early diagnosis of hypoxic-ischemic-encephalopathy electroencephalography biomarkers and although difficult, detection strategies could utilize biomarkers in the latent phase to also predict the onset of future seizures.
基金This project was supported by the National Natural Science Foundation of China (No. 49831060).
文摘Using the Radon transform and morphological image processing, an algorithm for ship's wake detection in the SAR (synthetic aperture radar) image is developed. Being manipulated in the Radon space to invert the gray-level and binary images, the linear texture of ship wake in oceanic clutter can be well detected. It has been applied to the automatic detection of a moving ship from the SEASAT SAR image. The results show that this algorithm is well robust in a strong noisy background and is not very sensitive to the threshold parameter and the working window size.
基金Supported by National Science and Technology Support Program(2014BAD06B04-1-09)China Postdoctoral Fund(2016M601406)Heilongjiang Postdoctoral Fund(LBHZ15024)
文摘The grain production prediction is one of the most important links in precision agriculture. In the process of grain production prediction, mechanical noise caused by the factors of difference in field topography and mechanical vibration will be mixed in the original signal, which undoubtedly will affect the prediction accuracy. Therefore, in order to reduce the influence of vibration noise on the prediction accuracy, an adaptive Ensemble Empirical Mode Decomposition(EEMD) threshold filtering algorithm was applied to the original signal in this paper: the output signal was decomposed into a finite number of Intrinsic Mode Functions(IMF) from high frequency to low frequency by using the Empirical Mode Decomposition(EMD) algorithm which could effectively restrain the mode mixing phenomenon; then the demarcation point of high and low frequency IMF components were determined by Continuous Mean Square Error criterion(CMSE), the high frequency IMF components were denoised by wavelet threshold algorithm, and finally the signal was reconstructed. The algorithm was an improved algorithm based on the commonly used wavelet threshold. The two algorithms were used to denoise the original production signal respectively, the adaptive EEMD threshold filtering algorithm had significant advantages in three denoising performance indexes of signal denoising ratio, root mean square error and smoothness. The five field verification tests showed that the average error of field experiment was 1.994% and the maximum relative error was less than 3%. According to the test results, the relative error of the predicted yield per hectare was 2.97%, which was relative to the actual yield. The test results showed that the algorithm could effectively resist noise and improve the accuracy of prediction.
基金supported by National Natural Science Foundation of China(Grant No.61761011)Natural Science Foundation of Guangxi(Grant No.2020GXNSFBA297078).
文摘In the graph signal processing(GSP)framework,distributed algorithms are highly desirable in processing signals defined on large-scale networks.However,in most existing distributed algorithms,all nodes homogeneously perform the local computation,which calls for heavy computational and communication costs.Moreover,in many real-world networks,such as those with straggling nodes,the homogeneous manner may result in serious delay or even failure.To this end,we propose active network decomposition algorithms to select non-straggling nodes(normal nodes)that perform the main computation and communication across the network.To accommodate the decomposition in different kinds of networks,two different approaches are developed,one is centralized decomposition that leverages the adjacency of the network and the other is distributed decomposition that employs the indicator message transmission between neighboring nodes,which constitutes the main contribution of this paper.By incorporating the active decomposition scheme,a distributed Newton method is employed to solve the least squares problem in GSP,where the Hessian inverse is approximately evaluated by patching a series of inverses of local Hessian matrices each of which is governed by one normal node.The proposed algorithm inherits the fast convergence of the second-order algorithms while maintains low computational and communication cost.Numerical examples demonstrate the effectiveness of the proposed algorithm.
文摘This paper presents a modified Root-MUSIC algorithm by which the signal DOA estimation performance can be improved when the snapshot number is limited. The operation principlesof this algorithm are described in detail. It is also pointed out theoretically that this is equivalentto have increased the snapshot number and can make the DOA estimation better. Finally, somesimulating results to verify the theoretical analyses are presented.
文摘Optimization algorithms are applied to resolve the second-order pileup(SOP)issue from high counting rates occurring in digital alpha spectroscopy.These are antlion optimizer(ALO)and particle swarm optimization(PSO)algorithms.Both optimization algorithms are coupled to one of the three proposed peak finder algorithms.Three custom time-domain algorithms are proposed for retrieving SOP peaks,namely peak seek,slope tangent,and fast array algorithms.In addition,an average combinational algorithm is applied.The time occurrence of the retrieved peaks is tested for an elimination of illusive pulses.Conventional methods are inaccurate and timeconsuming.ALO and PSO optimizations are used for the localization of retrieved peaks.Optimum cost values that achieve the best fitness values are demonstrated.Thus,the optimum positions of the detected peak heights are achieved.Evaluation metrics of the optimized algorithms and their influences on the retrieved peaks parameters are established.Comparisons among such algorithms are investigated,and the algorithms are inspected in terms of their computational time and average error.The peak seek algorithm achieves the lowest average computational error for pulse parameters(amplitude and position).However,the fast array algorithm introduces the largest average error for pulse parameters.In addition,the peak seek algorithm coupled with an ALO or PSO algorithm is observed to realize a better performance in terms of the optimum cost and computational time.By contrast,the performance of the peak seek recovery algorithm is improved using the PSO.Furthermore,the computational time of the peak optimization using the PSO is much better than that of the ALO algorithm.As a final conclusion,the accuracy of the peaks detected by the PSO surpasses that for the peaks detected by the ALO.The implemented peak retrieval algorithms are validated through a comparison with experimental results from previous studies.The proposed algorithms achieve a notable precision for compensation of the SOP peaks within the alpha ray spectroscopy at a high counting rate.
基金supported by National High Technology R&D project of China(2008AA02Z422)The Instrument Developing Project of The Chinese Academy of Sciences,Institute of Optics and Electronic,Chinese Academy of Sciences.
文摘The signal processing speed of spectral domain optical coherence tomography(SD-OCT)has become a bottleneck in a lot of medical applications.Recently,a time-domain interpolation method was proposed.This method can get better signal-to-noise ratio(SNR)but much-reduced signal processing time in SD-OCT data processing as compared with the commonly used zeropadding interpolation method.Additionally,the resampled data can be obtained by a few data and coefficients in the cutoff window.Thus,a lot of interpolations can be performed simultaneously.So,this interpolation method is suitable for parallel computing.By using graphics processing unit(GPU)and the compute unified device architecture(CUDA)program model,time-domain interpolation can be accelerated significantly.The computing capability can be achieved more than 250,000 A-lines,200,000 A-lines,and 160,000 A-lines in a second for 2,048 pixel OCT when the cutoff length is L=11,L=21,and L=31,respectively.A frame SD-OCT data(400A-lines×2,048 pixel per line)is acquired and processed on GPU in real time.The results show that signal processing time of SD-OCT can befinished in 6.223 ms when the cutoff length L=21,which is much faster than that on central processing unit(CPU).Real-time signal processing of acquired data can be realized.
文摘Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to realize the automation of computer-aided seam tracking. A PAW (plasma arc welding) seam tracking system was developed, which senses the molten pool and the seam in one frame by a vision sensor, and then detects the seam deviation to adjust the work piece motion adaptively to the seam position sensed by vision sensor. A novel molten pool area image-processing algorithm based on machine vision was proposed. The algorithm processes each image at the speed of 20 frames/second in real-time to extract three feature variables to get the seam deviation. It is proved experimentally that the algorithm is very fast and effective. Issues related to the algorithm are also discussed.
文摘Parkinson’s disease(PD),one of whose symptoms is dysphonia,is a prevalent neurodegenerative disease.The use of outdated diagnosis techniques,which yield inaccurate and unreliable results,continues to represent an obstacle in early-stage detection and diagnosis for clinical professionals in the medical field.To solve this issue,the study proposes using machine learning and deep learning models to analyze processed speech signals of patients’voice recordings.Datasets of these processed speech signals were obtained and experimented on by random forest and logistic regression classifiers.Results were highly successful,with 90%accuracy produced by the random forest classifier and 81.5%by the logistic regression classifier.Furthermore,a deep neural network was implemented to investigate if such variation in method could add to the findings.It proved to be effective,as the neural network yielded an accuracy of nearly 92%.Such results suggest that it is possible to accurately diagnose early-stage PD through merely testing patients’voices.This research calls for a revolutionary diagnostic approach in decision support systems,and is the first step in a market-wide implementation of healthcare software dedicated to the aid of clinicians in early diagnosis of PD.
文摘Three-dimensional (3-D) matched filtering has been suggested as a powerful processing technique for detecting weak, moving IR point target immersed in a noisy field. Based on the theory of the 3-D matched filtering and the optimal linear processing, the optimal point target detector is being analyzed in this paper. The performance of the detector is introduced in detail. The results provide a standard reference to evaluate the performance of any other point target detection algorithms.
文摘Order-recursive least-squares(ORLS)algorithms are applied to the prob-lems of estimation and identification of FIR or ARMA system parameters where a fixedset of input signal samples is available and the desired order of the underlying model isunknown.On the basis of several universal formulae for updating nonsymmetric projec-tion operators,this paper presents three kinds of LS algorithms,called nonsymmetric,symmetric and square root normalized fast ORLS algorithms,respectively.As to the au-thors’ knowledge,the first and the third have not been so far provided,and the second isone of those which have the lowest computational requirement.Several simplified versionsof the algorithms are also considered.
文摘This paper gives a MUSIC signal DOA estimation algorithm based on the modified high-order cumulant matrix which is constructed by the recieved data and their conjugate rearrangements. When the snapshot number is limited, this algorithm can improve the signal DOA estimation performances obviously, and its computational complexity scarcely increases. Finally, some simulation results to verify the theoretical analyses are presented.
基金Supported by the National Natural Science Foundation of China(10772029)
文摘The real-time measurement principle of high rotational projectile's angular velocity based on 2-axis acceleration sensor and the axial acceleration measurement error caused by the installation error are discussed.The 2-axis acceleration sensor is applied to measure the high rotational projectile's angular velocity and the measurement value of axial acceleration,the axial acceleration of the high rotational projectile equals the measurement value of axial acceleration subtracting the centrifugal acceleration component,so that the high-accuracy real-time measurement of axial acceleration is realized.The memory test has confirmed the strike tally of the theoretical analysis and the test result.The measurement technique can satisfy the high-accuracy measurement of the high rotational projectile axial acceleration in the self-determination course correction fuze projectile.
基金This work was supported by the National Natural Science Foundation of China(Grants Nos.41972287 and 42090023)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904).
文摘Block-in-matrix-soils(bimsoils)are geological mixtures that have distinct structures consisting of relatively strong rock blocks and weak matrix soils.It is still a challenge to evaluate the mechanical behaviors of bimsoils because of the heterogeneity,chaotic structure,and lithological variability.As a result,only very limited laboratory studies have been reported on the evolution of their internal deformation.In this study,the deformation evolution of bimsoils under uniaxial loading is investigated using real-time X-ray computed tomography(CT)and image correlation algorithm(with a rock block percentage(RBP)of 40%).Three parameters,i.e.heterogeneity coefficient(K),correlation coefficient(CC),and standard deviation(STD)of displacement fields,are proposed to quantify the heterogeneity of the motion of the rock blocks and the progressive deformation of the bimsoils.Experimental results show that the rock blocks in bimsoils are prone to forming clusters with increasing loading,and the sliding surface goes around only one side of a cluster.Based on the movement of the rock blocks recorded by STD and CC,the progressive deformation of the bimsoils is quantitatively divided into three stages:initialization of the rotation of rock blocks,formation of rock block clusters,and formation of a shear band by rock blocks with significant rotation.Moreover,the experimental results demonstrate that the meso-motion of rock blocks controls the macroscopic mechanical properties of the samples.
文摘Automatic maqam estimation is considered significant toward improving multimedia live music performances and automatic accompaniment. This contribution proposed a real-time maqam estimation model developed in the visual programming language MAX/MSP and configured for the nāydukah. The model’s design stood on basic formulas of Arab music maqamat as explained in theory and applied in practice. The model consisted of different layers of competition;the first was for the identification of the instant tonic of the melodic figure, and the second was for the recognition of its identifying E (E, E half-flat and E flat). Those two competitions were used to estimate the maqam in real-time. Then, accumulated estimation results were used to estimate the maqam in longer durations;five-second and full duration. The model was evaluated using professionally performed nāy improvisations. Results reflected a success in estimating all the studied maqamat when the full improvisation was considered. In addition, results were very good for real-time and five-second estimation where average estimation confidence was 75.98% and 80.04%, respectively.
基金supported by Nanchong Southwest Petroleum University Science and Technology Strategic Cooperation Project(Nos.23XNSYSX0022,23XNSYSX0026)Provincial Science and Technology Plan Project(No.2023ZHCG0020)Southwest Petroleum University Natural Science“Sailing Plan”Project(No.2023QHZ003)。
文摘In the acoustic detection process of buried non-metallic pipelines,the echo signal is often interfered by a large amount of noise,which makes it extremely difficult to effectively extract useful signals.An denoising algorithm based on empirical mode decomposition(EMD)and wavelet thresholding was proposed.This method fully considered the nonlinear and non-stationary characteristics of the echo signal,making the denoising effect more significant.Its feasibility and effectiveness were verified through numerical simulation.When the input SNR(SNRin)is between-10 dB and 10 dB,the output SNR(SNRout)of the combined denoising algorithm increases by 12.0%-34.1%compared to the wavelet thresholding method and by 19.60%-56.8%compared to the EMD denoising method.Additionally,the RMSE of the combined denoising algorithm decreases by 18.1%-48.0%compared to the wavelet thresholding method and by 22.1%-48.8%compared to the EMD denoising method.These results indicated that this joint denoising algorithm could not only effectively reduce noise interference,but also significantly improve the positioning accuracy of acoustic detection.The research results could provide technical support for denoising the echo signals of buried non-metallic pipelines,which was conducive to improving the acoustic detection and positioning accuracy of underground non-metallic pipelines.