期刊文献+
共找到4,056篇文章
< 1 2 203 >
每页显示 20 50 100
Prediction of rock mass classification in tunnel boring machine tunneling using the principal component analysis (PCA)-gated recurrent unit (GRU) neural network
1
作者 Ke Man Liwen Wu +3 位作者 Xiaoli Liu Zhifei Song Kena Li Nawnit Kumar 《Deep Underground Science and Engineering》 2024年第4期413-425,共13页
Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project... Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project of Lanzhou Water Source Construction,this study proposed a neural network called PCA-GRU,which combines principal component analysis(PCA)with gated recurrent unit(GRU)to improve the accuracy of predicting rock mass classification in TBM tunneling.The input variables from the PCA dimension reduction of nine parameters in the sample data set were utilized for establishing the PCA-GRU model.Subsequently,in order to speed up the response time of surrounding rock mass classification predictions,the PCA-GRU model was optimized.Finally,the prediction results obtained by the PCA-GRU model were compared with those of four other models and further examined using random sampling analysis.As indicated by the results,the PCA-GRU model can predict the rock mass classification in TBM tunneling rapidly,requiring about 20 s to run.It performs better than the previous four models in predicting the rock mass classification,with accuracy A,macro precision MP,and macro recall MR being 0.9667,0.963,and 0.9763,respectively.In Class II,III,and IV rock mass prediction,the PCA-GRU model demonstrates better precision P and recall R owing to the dimension reduction technique.The random sampling analysis indicates that the PCA-GRU model shows stronger generalization,making it more appropriate in situations where the distribution of various rock mass classes and lithologies change in percentage. 展开更多
关键词 gated recurrent unit(GRU) prediction of rock mass classification principal component analysis(PCA) TBM tunneling
在线阅读 下载PDF
Mapping Network-Coordinated Stacked Gated Recurrent Units for Turbulence Prediction 被引量:1
2
作者 Zhiming Zhang Shangce Gao +2 位作者 MengChu Zhou Mengtao Yan Shuyang Cao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1331-1341,共11页
Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes i... Accurately predicting fluid forces acting on the sur-face of a structure is crucial in engineering design.However,this task becomes particularly challenging in turbulent flow,due to the complex and irregular changes in the flow field.In this study,we propose a novel deep learning method,named mapping net-work-coordinated stacked gated recurrent units(MSU),for pre-dicting pressure on a circular cylinder from velocity data.Specifi-cally,our coordinated learning strategy is designed to extract the most critical velocity point for prediction,a process that has not been explored before.In our experiments,MSU extracts one point from a velocity field containing 121 points and utilizes this point to accurately predict 100 pressure points on the cylinder.This method significantly reduces the workload of data measure-ment in practical engineering applications.Our experimental results demonstrate that MSU predictions are highly similar to the real turbulent data in both spatio-temporal and individual aspects.Furthermore,the comparison results show that MSU predicts more precise results,even outperforming models that use all velocity field points.Compared with state-of-the-art methods,MSU has an average improvement of more than 45%in various indicators such as root mean square error(RMSE).Through comprehensive and authoritative physical verification,we estab-lished that MSU’s prediction results closely align with pressure field data obtained in real turbulence fields.This confirmation underscores the considerable potential of MSU for practical applications in real engineering scenarios.The code is available at https://github.com/zhangzm0128/MSU. 展开更多
关键词 Convolutional neural network deep learning recurrent neural network turbulence prediction wind load predic-tion.
在线阅读 下载PDF
A new method for the prediction of network security situations based on recurrent neural network with gated recurrent unit 被引量:3
3
作者 Wei Feng Yuqin Wu Yexian Fan 《International Journal of Intelligent Computing and Cybernetics》 EI 2020年第1期25-39,共15页
Purpose-The purpose of this paper is to solve the shortage of the existing methods for the prediction of network security situations(NSS).Because the conventional methods for the prediction of NSS,such as support vect... Purpose-The purpose of this paper is to solve the shortage of the existing methods for the prediction of network security situations(NSS).Because the conventional methods for the prediction of NSS,such as support vector machine,particle swarm optimization,etc.,lack accuracy,robustness and efficiency,in this study,the authors propose a new method for the prediction of NSS based on recurrent neural network(RNN)with gated recurrent unit.Design/methodology/approach-This method extracts internal and external information features from the original time-series network data for the first time.Then,the extracted features are applied to the deep RNN model for training and validation.After iteration and optimization,the accuracy of predictions of NSS will be obtained by the well-trained model,and the model is robust for the unstable network data.Findings-Experiments on bench marked data set show that the proposed method obtains more accurate and robust prediction results than conventional models.Although the deep RNN models need more time consumption for training,they guarantee the accuracy and robustness of prediction in return for validation.Originality/value-In the prediction of NSS time-series data,the proposed internal and external information features are well described the original data,and the employment of deep RNN model will outperform the state-of-the-arts models. 展开更多
关键词 gated recurrent unit Internal and external information features network security situation recurrent neural network Time-series data processing
原文传递
Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm
4
作者 Brij Bhooshan Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computers, Materials & Continua》 SCIE EI 2024年第9期4895-4916,共22页
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec... Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection. 展开更多
关键词 Phishing detection recurrent neural network(RNN) Whale Optimization Algorithm(WOA) CYBERSECURITY machine learning optimization
在线阅读 下载PDF
Real-time analysis and prediction of shield cutterhead torque using optimized gated recurrent unit neural network 被引量:12
5
作者 Song-Shun Lin Shui-Long Shen Annan Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1232-1240,共9页
An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated rec... An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling. 展开更多
关键词 Earth pressure balance(EPB)shield tunneling Cutterhead torque(CHT)prediction Particle swarm optimization(PSO) gated recurrent unit(GRU)neural network
在线阅读 下载PDF
Radar Quantitative Precipitation Estimation Based on the Gated Recurrent Unit Neural Network and Echo-Top Data 被引量:3
6
作者 Haibo ZOU Shanshan WU Miaoxia TIAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第6期1043-1057,共15页
The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). I... The Gated Recurrent Unit(GRU) neural network has great potential in estimating and predicting a variable. In addition to radar reflectivity(Z), radar echo-top height(ET) is also a good indicator of rainfall rate(R). In this study, we propose a new method, GRU_Z-ET, by introducing Z and ET as two independent variables into the GRU neural network to conduct the quantitative single-polarization radar precipitation estimation. The performance of GRU_Z-ET is compared with that of the other three methods in three heavy rainfall cases in China during 2018, namely, the traditional Z-R relationship(Z=300R1.4), the optimal Z-R relationship(Z=79R1.68) and the GRU neural network with only Z as the independent input variable(GRU_Z). The results indicate that the GRU_Z-ET performs the best, while the traditional Z-R relationship performs the worst. The performances of the rest two methods are similar.To further evaluate the performance of the GRU_Z-ET, 200 rainfall events with 21882 total samples during May–July of 2018 are used for statistical analysis. Results demonstrate that the spatial correlation coefficients, threat scores and probability of detection between the observed and estimated precipitation are the largest for the GRU_Z-ET and the smallest for the traditional Z-R relationship, and the root mean square error is just the opposite. In addition, these statistics of GRU_Z are similar to those of optimal Z-R relationship. Thus, it can be concluded that the performance of the GRU_ZET is the best in the four methods for the quantitative precipitation estimation. 展开更多
关键词 quantitative precipitation estimation gated recurrent unit neural network Z-R relationship echo-top height
在线阅读 下载PDF
A gated recurrent unit model to predict Poisson’s ratio using deep learning 被引量:1
7
作者 Fahd Saeed Alakbari Mysara Eissa Mohyaldinn +4 位作者 Mohammed Abdalla Ayoub Ibnelwaleed A.Hussein Ali Samer Muhsan Syahrir Ridha Abdullah Abduljabbar Salih 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期123-135,共13页
Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to spe... Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs. 展开更多
关键词 Static Poisson’s ratio Deep learning gated recurrent unit(GRU) Sand control Trend analysis Geomechanical properties
在线阅读 下载PDF
Effects of data smoothing and recurrent neural network(RNN)algorithms for real-time forecasting of tunnel boring machine(TBM)performance 被引量:1
8
作者 Feng Shan Xuzhen He +1 位作者 Danial Jahed Armaghani Daichao Sheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1538-1551,共14页
Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk... Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering. 展开更多
关键词 Tunnel boring machine(TBM) Penetration rate(PR) Time series forecasting recurrent neural network(RNN)
在线阅读 下载PDF
Exponential stability and existence of periodic solutions for a class of recurrent neural networks with delays 被引量:1
9
作者 戴志娟 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期286-293,共8页
Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ... Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications. 展开更多
关键词 recurrent neural network global exponential stability periodic solution delay HOMEOMORPHISM Lyapunov function
在线阅读 下载PDF
Recurrent neural network decoding of rotated surface codes based on distributed strategy
10
作者 李帆 李熬庆 +1 位作者 甘启迪 马鸿洋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期322-330,共9页
Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error corre... Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder. 展开更多
关键词 quantum error correction rotated surface code recurrent neural network distributed strategy
在线阅读 下载PDF
Secrecy Outage Probability Minimization in Wireless-Powered Communications Using an Improved Biogeography-Based Optimization-Inspired Recurrent Neural Network
11
作者 Mohammad Mehdi Sharifi Nevisi Elnaz Bashir +3 位作者 Diego Martín Seyedkian Rezvanjou Farzaneh Shoushtari Ehsan Ghafourian 《Computers, Materials & Continua》 SCIE EI 2024年第3期3971-3991,共21页
This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The mai... This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs. 展开更多
关键词 Wireless-powered communications secrecy outage probability improved biogeography-based optimization recurrent neural network
在线阅读 下载PDF
Aerial target threat assessment based on gated recurrent unit and self-attention mechanism
12
作者 CHEN Chen QUAN Wei SHAO Zhuang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期361-373,共13页
Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties ... Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning. 展开更多
关键词 target threat assessment gated recurrent unit(GRU) self-attention(SA) fractional Fourier transform(FRFT)
在线阅读 下载PDF
Optimizing the Clinical Decision Support System (CDSS) by Using Recurrent Neural Network (RNN) Language Models for Real-Time Medical Query Processing
13
作者 Israa Ibraheem Al Barazanchi Wahidah Hashim +4 位作者 Reema Thabit Mashary Nawwaf Alrasheedy Abeer Aljohan Jongwoon Park Byoungchol Chang 《Computers, Materials & Continua》 SCIE EI 2024年第12期4787-4832,共46页
This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning techniques.Specifically,we target the challenges of accurate diagno... This research aims to enhance Clinical Decision Support Systems(CDSS)within Wireless Body Area Networks(WBANs)by leveraging advanced machine learning techniques.Specifically,we target the challenges of accurate diagnosis in medical imaging and sequential data analysis using Recurrent Neural Networks(RNNs)with Long Short-Term Memory(LSTM)layers and echo state cells.These models are tailored to improve diagnostic precision,particularly for conditions like rotator cuff tears in osteoporosis patients and gastrointestinal diseases.Traditional diagnostic methods and existing CDSS frameworks often fall short in managing complex,sequential medical data,struggling with long-term dependencies and data imbalances,resulting in suboptimal accuracy and delayed decisions.Our goal is to develop Artificial Intelligence(AI)models that address these shortcomings,offering robust,real-time diagnostic support.We propose a hybrid RNN model that integrates SimpleRNN,LSTM layers,and echo state cells to manage long-term dependencies effectively.Additionally,we introduce CG-Net,a novel Convolutional Neural Network(CNN)framework for gastrointestinal disease classification,which outperforms traditional CNN models.We further enhance model performance through data augmentation and transfer learning,improving generalization and robustness against data scarcity and imbalance.Comprehensive validation,including 5-fold cross-validation and metrics such as accuracy,precision,recall,F1-score,and Area Under the Curve(AUC),confirms the models’reliability.Moreover,SHapley Additive exPlanations(SHAP)and Local Interpretable Model-agnostic Explanations(LIME)are employed to improve model interpretability.Our findings show that the proposed models significantly enhance diagnostic accuracy and efficiency,offering substantial advancements in WBANs and CDSS. 展开更多
关键词 Computer science clinical decision support system(CDSS) medical queries healthcare deep learning recurrent neural network(RNN) long short-term memory(LSTM)
在线阅读 下载PDF
A HybridManufacturing ProcessMonitoringMethod Using Stacked Gated Recurrent Unit and Random Forest
14
作者 Chao-Lung Yang Atinkut Atinafu Yilma +2 位作者 Bereket Haile Woldegiorgis Hendrik Tampubolon Hendri Sutrisno 《Intelligent Automation & Soft Computing》 2024年第2期233-254,共22页
This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart ... This study proposed a new real-time manufacturing process monitoring method to monitor and detect process shifts in manufacturing operations.Since real-time production process monitoring is critical in today’s smart manufacturing.The more robust the monitoring model,the more reliable a process is to be under control.In the past,many researchers have developed real-time monitoring methods to detect process shifts early.However,thesemethods have limitations in detecting process shifts as quickly as possible and handling various data volumes and varieties.In this paper,a robust monitoring model combining Gated Recurrent Unit(GRU)and Random Forest(RF)with Real-Time Contrast(RTC)called GRU-RF-RTC was proposed to detect process shifts rapidly.The effectiveness of the proposed GRU-RF-RTC model is first evaluated using multivariate normal and nonnormal distribution datasets.Then,to prove the applicability of the proposed model in a realmanufacturing setting,the model was evaluated using real-world normal and non-normal problems.The results demonstrate that the proposed GRU-RF-RTC outperforms other methods in detecting process shifts quickly with the lowest average out-of-control run length(ARL1)in all synthesis and real-world problems under normal and non-normal cases.The experiment results on real-world problems highlight the significance of the proposed GRU-RF-RTC model in modern manufacturing process monitoring applications.The result reveals that the proposed method improves the shift detection capability by 42.14%in normal and 43.64%in gamma distribution problems. 展开更多
关键词 Smart manufacturing process monitoring quality control gated recurrent unit neural network random forest
在线阅读 下载PDF
Comparison of Two Recurrent Neural Networks for Rainfall-Runoff Modeling in the Zou River Basin at Atchérigbé (Bénin)
15
作者 Iboukoun Eliézer Biao Oscar Houessou +1 位作者 Pierre Jérôme Zohou Adéchina Eric Alamou 《Journal of Geoscience and Environment Protection》 2024年第9期167-181,共15页
Hydrological models are developed to simulate river flows over a watershed for many practical applications in the field of water resource management. The present paper compares the performance of two recurrent neural ... Hydrological models are developed to simulate river flows over a watershed for many practical applications in the field of water resource management. The present paper compares the performance of two recurrent neural networks for rainfall-runoff modeling in the Zou River basin at Atchérigbé outlet. To this end, we used daily precipitation data over the period 1988-2010 as input of the models, such as the Long Short-Term Memory (LSTM) and Recurrent Gate Networks (GRU) to simulate river discharge in the study area. The investigated models give good results in calibration (R2 = 0.888, NSE = 0.886, and RMSE = 0.42 for LSTM;R2 = 0.9, NSE = 0.9 and RMSE = 0.397 for GRU) and in validation (R2 = 0.865, NSE = 0.851, and RMSE = 0.329 for LSTM;R2 = 0.9, NSE = 0.865 and RMSE = 0.301 for GRU). This good performance of LSTM and GRU models confirms the importance of models based on machine learning in modeling hydrological phenomena for better decision-making. 展开更多
关键词 Supervised Learning Modeling Zou Basin Long and Short-Term Memory gated recurrent unit Hyperparameters Optimization
在线阅读 下载PDF
Study on Ecological Change Remote Sensing Monitoring Method Based on Elman Dynamic Recurrent Neural Network
16
作者 Zhen Chen Yiyang Zheng 《Journal of Geoscience and Environment Protection》 2024年第4期31-44,共14页
In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to t... In this paper, Hailin City of Heilongjiang Province, China is taken as the research area. As an important city in Heilongjiang Province, China, the sustainable development of its ecological environment is related to the opening up, economic prosperity and social stability of Northeast China. In this paper, the remote sensing ecological index (RSEI) of Hailin City in recent 20 years was calculated by using Landsat 5/8/9 series satellite images, and the temporal and spatial changes of the ecological environment in Hailin City were further analyzed and the influencing factors were discussed. From 2003 to 2023, the mean value of RSEI in Hailin City decreased and increased, and the ecological environment decreased slightly as a whole. RSEI declined most significantly from 2003 to 2008, and it increased from 2008 to 2013, decreased from 2013 to 2018, and increased from 2018 to 2023 again, with higher RSEI value in the south and lower RSEI value in the northwest. It is suggested to appropriately increase vegetation coverage in the northwest to improve ecological quality. As a result, the predicted value of Elman dynamic recurrent neural network model is consistent with the change trend of the mean value, and the prediction error converges quickly, which can accurately predict the ecological environment quality in the future study area. 展开更多
关键词 Remote Sensing Ecological Index Long Time Series Space-Time Change Elman Dynamic recurrent neural network
在线阅读 下载PDF
Multi-Scale Convolutional Gated Recurrent Unit Networks for Tool Wear Prediction in Smart Manufacturing 被引量:2
17
作者 Weixin Xu Huihui Miao +3 位作者 Zhibin Zhao Jinxin Liu Chuang Sun Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期130-145,共16页
As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symboli... As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symbolic applications of PHM technology in modern manufacturing systems and industry.In this paper,a multi-scale Convolutional Gated Recurrent Unit network(MCGRU)is proposed to address raw sensory data for tool wear prediction.At the bottom of MCGRU,six parallel and independent branches with different kernel sizes are designed to form a multi-scale convolutional neural network,which augments the adaptability to features of different time scales.These features of different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term dependencies and learn significant representations.At the top of the MCGRU,a fully connected layer and a regression layer are built for cutting tool wear prediction.Two case studies are performed to verify the capability and effectiveness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline models. 展开更多
关键词 Tool wear prediction MULTI-SCALE Convolutional neural networks gated recurrent unit
在线阅读 下载PDF
New Stability Criteria for Recurrent Neural Networks with a Time-varying Delay 被引量:2
18
作者 Hong-Bing Zeng Shen-Ping Xiao Bin Liu 《International Journal of Automation and computing》 EI 2011年第1期128-133,共6页
This paper deals with the stability of static recurrent neural networks (RNNs) with a time-varying delay. An augmented Lyapunov-Krasovskii functional is employed, in which some useful terms are included. Furthermore... This paper deals with the stability of static recurrent neural networks (RNNs) with a time-varying delay. An augmented Lyapunov-Krasovskii functional is employed, in which some useful terms are included. Furthermore, the relationship among the timevarying delay, its upper bound and their difierence, is taken into account, and novel bounding techniques for 1- τ(t) are employed. As a result, without ignoring any useful term in the derivative of the Lyapunov-Krasovskii functional, the resulting delay-dependent criteria show less conservative than the existing ones. Finally, a numerical example is given to demonstrate the effectiveness of the proposed methods. 展开更多
关键词 STABILITY recurrent neural networks (RNNs) time-varying delay DELAY-DEPENDENT augmented Lyapunov-Krasovskii functional.
在线阅读 下载PDF
Robust stability analysis of Takagi-Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays 被引量:1
19
作者 M.Syed Ali 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第8期1-15,共15页
In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stabili... In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs. The proposed stability conditions are demonstrated through numerical examples. Furthermore, the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed. Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature. 展开更多
关键词 recurrent neural networks linear matrix inequality Lyapunov stability time-varyingdelays TS fuzzy model
在线阅读 下载PDF
STOCHASTIC STABILITY OF UNCERTAIN RECURRENT NEURAL NETWORKS WITH MARKOVIAN JUMPING PARAMETERS 被引量:1
20
作者 M.SYED ALI 《Acta Mathematica Scientia》 SCIE CSCD 2015年第5期1122-1136,共15页
In this paper, global robust stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters is considered. A novel Linear matrix inequal- ity(LMI) based stability criterion is obtained... In this paper, global robust stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters is considered. A novel Linear matrix inequal- ity(LMI) based stability criterion is obtained to guarantee the asymptotic stability of uncertain stochastic recurrent neural networks with Markovian jumping parameters. The results are derived by using the Lyapunov functional technique, Lipchitz condition and S-procuture. Finally, numerical examples are given to demonstrate the correctness of the theoretical results. Our results are also compared with results discussed in [31] and [34] to show the effectiveness and conservativeness. 展开更多
关键词 Lyapunov functional linear matrix inequality Markovian jumping parameters recurrent neural networks
在线阅读 下载PDF
上一页 1 2 203 下一页 到第
使用帮助 返回顶部