期刊文献+
共找到70篇文章
< 1 2 4 >
每页显示 20 50 100
Efficient Parameterization for Knowledge Graph Embedding Using Hierarchical Attention Network
1
作者 Zhen-Yu Chen Feng-Chi Liu +2 位作者 Xin Wang Cheng-Hsiung Lee Ching-Sheng Lin 《Computers, Materials & Continua》 2025年第3期4287-4300,共14页
In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with l... In the domain of knowledge graph embedding,conventional approaches typically transform entities and relations into continuous vector spaces.However,parameter efficiency becomes increasingly crucial when dealing with large-scale knowledge graphs that contain vast numbers of entities and relations.In particular,resource-intensive embeddings often lead to increased computational costs,and may limit scalability and adaptability in practical environ-ments,such as in low-resource settings or real-world applications.This paper explores an approach to knowledge graph representation learning that leverages small,reserved entities and relation sets for parameter-efficient embedding.We introduce a hierarchical attention network designed to refine and maximize the representational quality of embeddings by selectively focusing on these reserved sets,thereby reducing model complexity.Empirical assessments validate that our model achieves high performance on the benchmark dataset with fewer parameters and smaller embedding dimensions.The ablation studies further highlight the impact and contribution of each component in the proposed hierarchical attention structure. 展开更多
关键词 Knowledge graph embedding parameter efficiency representation learning reserved entity and relation sets hierarchical attention network
在线阅读 下载PDF
Graph Convolutional Networks Embedding Textual Structure Information for Relation Extraction
2
作者 Chuyuan Wei Jinzhe Li +2 位作者 Zhiyuan Wang Shanshan Wan Maozu Guo 《Computers, Materials & Continua》 SCIE EI 2024年第5期3299-3314,共16页
Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,... Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous. 展开更多
关键词 relation extraction graph convolutional neural networks dependency tree dynamic structure attention
在线阅读 下载PDF
基于权重偏置图注意网络的复杂场景中物体位置关系推理方法
3
作者 左国玉 王子豪 +1 位作者 赵敏 于双悦 《计算机学报》 北大核心 2025年第3期572-585,共14页
在复杂环境中安全抓取目标物体对于机器人技术至关重要,这要求机器人能够准确理解目标物体与周围其他物体之间的空间位置关系。尽管卷积神经网络在关系推理方面展现出一定的潜力,但由于其主要关注像素级信息提取,导致对全局信息的理解不... 在复杂环境中安全抓取目标物体对于机器人技术至关重要,这要求机器人能够准确理解目标物体与周围其他物体之间的空间位置关系。尽管卷积神经网络在关系推理方面展现出一定的潜力,但由于其主要关注像素级信息提取,导致对全局信息的理解不足,并忽略了关键的物体关系,从而限制了推理的准确性。为了解决这一问题,本文提出了一种基于端到端图注意网络的关系推理模型,旨在提升推理物体位置关系的准确性。该模型首先采用EfficientNet-B0与双向特征金字塔网络(BiFPN)进行RGB特征提取。其次,在构建图结构时,通过过滤缺乏上下位置关系的物体对,使图结构更加稀疏,从而降低计算负担。随后,利用带权重偏置的图注意网络来预测物体之间的位置关系。在视觉操纵关系数据集(VMRD)上对所提模型进行了训练和评估。结果显示,该模型在关系推理的图像准确率(IA)指标上达到了71.1%。此外,采用梯度加权类激活映射(Grad-CAM)进行了注意力可视化,进一步验证了模型在多物体无序堆叠场景中推断空间位置关系的有效性,使其适用于真实的机械臂抓取应用。最后,通过在实验室环境中对常见物体进行测试,成功地将模型应用于真实世界的机械臂抓取场景,证明了该模型在实际环境中的通用性和实用性。 展开更多
关键词 复杂场景 关系推理 BiFPN 图注意网络 抓取顺序
在线阅读 下载PDF
Event Temporal Relation Extraction with Attention Mechanism and Graph Neural Network 被引量:2
4
作者 Xiaoliang Xu Tong Gao +1 位作者 Yuxiang Wang Xinle Xuan 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第1期79-90,共12页
Event temporal relation extraction is an important part of natural language processing.Many models are being used in this task with the development of deep learning.However,most of the existing methods cannot accurate... Event temporal relation extraction is an important part of natural language processing.Many models are being used in this task with the development of deep learning.However,most of the existing methods cannot accurately obtain the degree of association between different tokens and events,and event-related information cannot be effectively integrated.In this paper,we propose an event information integration model that integrates event information through multilayer bidirectional long short-term memory(Bi-LSTM)and attention mechanism.Although the above scheme can improve the extraction performance,it can still be further optimized.To further improve the performance of the previous scheme,we propose a novel relational graph attention network that incorporates edge attributes.In this approach,we first build a semantic dependency graph through dependency parsing,model a semantic graph that considers the edges’attributes by using top-k attention mechanisms to learn hidden semantic contextual representations,and finally predict event temporal relations.We evaluate proposed models on the TimeBank-Dense dataset.Compared to previous baselines,the Micro-F1 scores obtained by our models improve by 3.9%and 14.5%,respectively. 展开更多
关键词 temporal relation extraction neural network attention mechanism graph attention network
原文传递
图推理嵌入动态自注意力网络的文档级关系抽取
5
作者 李云洁 王丹阳 +2 位作者 刘海涛 汪华东 汪培庄 《智能系统学报》 北大核心 2025年第1期52-63,共12页
文档级关系抽取是指从文档中抽取所有具有语义关系的实体对并判断其关系类别,与句子级关系抽取不同,这里实体关系的确定需要根据文档中多个句子推理得到。现有方法主要采用自注意力进行文档级关系抽取,但是运用自注意力进行文档级关系... 文档级关系抽取是指从文档中抽取所有具有语义关系的实体对并判断其关系类别,与句子级关系抽取不同,这里实体关系的确定需要根据文档中多个句子推理得到。现有方法主要采用自注意力进行文档级关系抽取,但是运用自注意力进行文档级关系抽取需要面临两个技术挑战:即长文本语义编码存在的高计算复杂度和关系预测需要的复杂推理建模,故提出一种图推理嵌入动态自注意力网络(graph reasoning embedded dynamic self-attention network,GSAN)模型。该模型借助门限词选择机制动态选择重要词计算自注意力实现对长文本语义依赖的高效建模,同时考虑以选择词为全局语义背景与实体候选、文档节点一起构建文档图,将文档图的图推理聚合信息嵌入到动态自注意力模块中,实现模型对复杂推理建模的能力。在公开的文档级关系数据集CDR和DocRED上的实验结果表明,文中提出的模型较其他基线模型有显著提升。 展开更多
关键词 文档级关系抽取 图推理 动态自注意力网络 自注意力机制 门限词选择机制 文档图 图注意力网络 关键词
在线阅读 下载PDF
跨粒度子图对比学习与注意力融合的药物—基因关系预测
6
作者 胡冬冬 彭杨 +1 位作者 谭暑秋 朱小飞 《太原理工大学学报》 北大核心 2025年第1期127-136,共10页
【目的】阐明药物和基因之间的相互联系是药物开发中的一个重要课题。目前,基于随机游走算法的图神经网络方法在解决药物与基因交互关系识别上已经取得了不错的效果,但是当前的方法,单一子图的方法往往容易忽略掉全局图的信息,不能够很... 【目的】阐明药物和基因之间的相互联系是药物开发中的一个重要课题。目前,基于随机游走算法的图神经网络方法在解决药物与基因交互关系识别上已经取得了不错的效果,但是当前的方法,单一子图的方法往往容易忽略掉全局图的信息,不能够很好地聚合节点的信息,同时,药物和基因的节点表示采用简单的融合方式,不能够有效地利用节点表示的信息,用于交互关系的分类。针对上述问题提出了跨粒度对比学习与注意力融合的药物-基因交互关系预测方法。【方法】一方面采用跨粒度的对比学习方法,得到远距离和近距离的节点信息,同时采用对比学习的结构增加对药物和基因节点的区分。另一方面利用注意力融合机制,充分挖掘节点中隐含的信息,将远近距离信息进行注意力融合。【结果】在2个真实数据集上的实验结果表明该模型比基线模型具有更好的分类效果。 展开更多
关键词 对比学习 图表示学习 关系图神经网络 注意力机制 基因-药物关系预测
在线阅读 下载PDF
融合社交关系和知识图谱的双图注意力推荐模型
7
作者 张彬 祖后敏 吴姣 《现代情报》 北大核心 2025年第4期12-22,共11页
[目的/意义]当前基于知识图谱的主流推荐算法主要对项目侧知识进行挖掘利用,较少关注用户侧的辅助信息,存在用户数据稀疏和挖掘深度不够等问题。[方法/过程]针对用户侧和项目侧辅助信息的结构及特征差异,提出了一种融合社交关系和知识... [目的/意义]当前基于知识图谱的主流推荐算法主要对项目侧知识进行挖掘利用,较少关注用户侧的辅助信息,存在用户数据稀疏和挖掘深度不够等问题。[方法/过程]针对用户侧和项目侧辅助信息的结构及特征差异,提出了一种融合社交关系和知识图谱的双图注意力推荐模型。首先,将用户社交网络图和项目知识图谱分别与用户—项目交互图融合,得到用户社交关系协同图和项目协同图。其次,利用双图注意力网络分别处理这两个知识图谱,提取不同的用户和项目特征向量。然后,通过注意力机制融合得到的用户和项目特征向量。最后,利用向量间的内积运算得到用户和物品的交互概率进行推荐。[结果/结论]在Douban和Last-FM数据集上进行的实验表明,该模型在各个数据集上的性能优于其他基准模型。 展开更多
关键词 推荐系统 知识图谱 社交关系 注意力机制 图注意力网络
在线阅读 下载PDF
语义引导的全局-局部图神经网络的关系抽取
8
作者 任楚岚 刘长胜 +1 位作者 邹绍强 井立志 《计算机工程与设计》 北大核心 2025年第3期705-711,共7页
为解决实体间距离过长导致关系抽取性能不佳的问题,提出一种基于上下文语义引导的全局-局部图神经网络的关系抽取方法。通过注意力增强神经网络集中不同时间步的单词的重要性和相关性,获取上下文语义引导的信息;构建全局-局部图神经网... 为解决实体间距离过长导致关系抽取性能不佳的问题,提出一种基于上下文语义引导的全局-局部图神经网络的关系抽取方法。通过注意力增强神经网络集中不同时间步的单词的重要性和相关性,获取上下文语义引导的信息;构建全局-局部图神经网络增强全局结构和局部实体之间的交互,通过改进的APPNP(approximate personalized propagation of neural predications)算法增强全局依赖关系;融合两个模块进行关系抽取。在NYT数据集上的实验结果表明,F1达到83.7%,较目前主流方法更具优势,验证了模型的有效性。 展开更多
关键词 关系抽取 上下文语义 注意力增强神经网络 图神经网络 全局结构 局部实体 长距离
在线阅读 下载PDF
Graph-Segmenter:graph transformer with boundary-aware attention for semantic segmentation
9
作者 Zizhang WU Yuanzhu GAN +1 位作者 Tianhao XU Fan WANG 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第5期97-108,共12页
Thetransformer-based semantic segmentation approaches,which divide the image into different regions by sliding windows and model the relation inside each window,have achieved outstanding success.However,since the rela... Thetransformer-based semantic segmentation approaches,which divide the image into different regions by sliding windows and model the relation inside each window,have achieved outstanding success.However,since the relation modeling between windows was not the primary emphasis of previous work,it was not fully utilized.To address this issue,we propose a Graph-Segmenter,including a graph transformer and a boundary-aware attention module,which is an effective network for simultaneously modeling the more profound relation between windows in a global view and various pixels inside each window as a local one,and for substantial low-cost boundary adjustment.Specifically,we treat every window and pixel inside the window as nodes to construct graphs for both views and devise the graph transformer.The introduced boundary-awareattentionmoduleoptimizes theedge information of the target objects by modeling the relationship between the pixel on the object's edge.Extensive experiments on three widely used semantic segmentation datasets(Cityscapes,ADE-20k and PASCAL Context)demonstrate that our proposed network,a Graph Transformer with Boundary-aware Attention,can achieve state-of-the-art segmentation performance. 展开更多
关键词 graph transformer graph relation network boundary-aware attention semantic segmentation
原文传递
面向方面情感分析的多通道增强图卷积网络 被引量:3
10
作者 韩虎 范雅婷 徐学锋 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第3期1022-1032,共11页
传统的基于单通道的特征提取方式,仅使用单一的依赖关系捕获特征,忽略单词间的语义相似性与依赖关系类型信息。尽管基于图卷积网络进行方面情感分析的方法已经取得一定成效,但始终难以同时聚合节点的语义信息和句法结构特征,在整个迭代... 传统的基于单通道的特征提取方式,仅使用单一的依赖关系捕获特征,忽略单词间的语义相似性与依赖关系类型信息。尽管基于图卷积网络进行方面情感分析的方法已经取得一定成效,但始终难以同时聚合节点的语义信息和句法结构特征,在整个迭代训练过程中最初的语义特征会逐渐遗失,影响句子最终的情感分类效果。由于缺乏先验知识会导致模型对相关情感词的误解,因此需要引入外部知识来丰富文本信息。目前,如何利用图神经网络(GNN)融合句法和语义特征的方式仍值得深入研究。针对上述问题,该文提出一种多通道增强图卷积网络模型。首先,通过对情感知识和依赖类型增强的句法图进行图卷积操作,得到基于语法的两种表示,与经过多头注意力和图卷积学习到的语义表示进行融合,使多通道的特征能够互补学习。实验结果表明,在5个公开数据集上,准确率和宏F1值优于基准模型。由此可见,依赖类型和情感知识均对增强句法图有重要影响,表明融合语义信息与句法结构的有效性。 展开更多
关键词 方面情感分析 图卷积网络 情感知识 依赖关系嵌入 多头注意力
在线阅读 下载PDF
融合词法句法信息的方面级情感分析模型
11
作者 衡红军 杨鼎诚 《计算机工程与设计》 北大核心 2024年第3期837-844,共8页
为解决现有方面级情感分析方法缺乏句法约束和词义信息的问题,将句法依存树和知识图谱融合起来对句子编码,提出一种词法句法相结合的图神经网络模型。利用图神经网络分别提取句法依存树中的句法信息和知识图谱中的词法信息,经过位置编... 为解决现有方面级情感分析方法缺乏句法约束和词义信息的问题,将句法依存树和知识图谱融合起来对句子编码,提出一种词法句法相结合的图神经网络模型。利用图神经网络分别提取句法依存树中的句法信息和知识图谱中的词法信息,经过位置编码模块和掩码加权模块捕捉重要性更高的单词;将两种特征进行结合获得融合句法词法信息的文本表示,进行情感分类。在3个公开数据集上的实验结果验证了该模型的有效性。 展开更多
关键词 方面级情感分析 句法约束 词义信息 句法依存树 知识图谱 关系图注意力网络 图卷积网络
在线阅读 下载PDF
基于BERT和图注意力网络的篇章级事件论元识别
12
作者 王凯 廖涛 《现代计算机》 2024年第6期14-19,64,共7页
事件论元识别是事件抽取的子任务之一,其目的在于识别文本中与事件相关的论元及论元对应的论元角色。研究表明,句子的依存句法关系有助于事件论元任务识别,然而,在构造篇章的依存句法关系时容易引入不相关的论元产生噪声问题,现有方法... 事件论元识别是事件抽取的子任务之一,其目的在于识别文本中与事件相关的论元及论元对应的论元角色。研究表明,句子的依存句法关系有助于事件论元任务识别,然而,在构造篇章的依存句法关系时容易引入不相关的论元产生噪声问题,现有方法对噪声问题处理不佳。针对该问题,提出了一个基于BERT和图注意力网络的篇章级事件论元识别模型。该模型从两个角度去解决噪声问题,一方面,通过获取充分的篇章语义特征作为辅助,去构建更有效的篇章依存句法特征;另一方面,采用图注意力网络对不同的论元节点分配不同的权重,从而去除掉无效的论元。在RAMS语料库上的实验结果表明,该方法有效解决了篇章依存句法关系中存在的噪声问题,取得了较好的篇章级事件论元识别结果。 展开更多
关键词 篇章级事件论元识别 依存句法关系 BERT 图注意力网络
在线阅读 下载PDF
基于RoBERTa和加权图卷积网络的中文地质实体关系抽取 被引量:3
13
作者 张鲁 段友祥 +1 位作者 刘娟 陆誉翕 《计算机科学》 CSCD 北大核心 2024年第8期297-303,共7页
知识是大数据和人工智能的基石,知识图谱的可解释性和可扩展性等优势使其成为智能系统的重要技术。智能决策在各个领域都有迫切的应用需求,为知识图谱提供基于数据分析和推理的决策支持和应用场景,但领域场景复杂、数据多源、知识维度广... 知识是大数据和人工智能的基石,知识图谱的可解释性和可扩展性等优势使其成为智能系统的重要技术。智能决策在各个领域都有迫切的应用需求,为知识图谱提供基于数据分析和推理的决策支持和应用场景,但领域场景复杂、数据多源、知识维度广,因此知识图谱的构建和应用都面临着很多挑战。针对地质领域知识图谱构建过程中领域知识模式完备性差的问题,以及现有实体关系抽取方法在处理非欧氏数据时存在的不足,提出了一种基于图结构的实体关系抽取模型RoGCN-ATT。该模型使用RoBERTa-wwm-ext-large中文预训练模型作为序列编码器,结合BiLSTM获取更丰富的语义信息,使用加权图卷积网络结合注意力机制获取结构依赖信息,以增强模型对关系三元组的抽取性能。在地质数据集上F1值达78.56%,与其他模型的对比实验表明,RoGCN-ATT有效提升了实体关系抽取性能,为地质知识图谱的构建和应用提供了有力的支持。 展开更多
关键词 实体关系抽取 图卷积网络 依存句法分析 注意力机制 地质领域
在线阅读 下载PDF
TRGATLog:基于日志时间图注意力网络的日志异常检测方法 被引量:1
14
作者 陈旭 张硕 +1 位作者 景永俊 王叔洋 《计算机应用研究》 CSCD 北大核心 2024年第4期1034-1040,共7页
为解决现有日志异常检测方法往往只关注定量关系模式或顺序模式的单一特征,忽略了日志时间结构关系和不同特征之间的相互联系,导致较高的异常漏检率和误报率问题,提出基于日志时间图注意力网络的日志异常检测方法。首先,通过设计日志语... 为解决现有日志异常检测方法往往只关注定量关系模式或顺序模式的单一特征,忽略了日志时间结构关系和不同特征之间的相互联系,导致较高的异常漏检率和误报率问题,提出基于日志时间图注意力网络的日志异常检测方法。首先,通过设计日志语义和时间结构联合特征提取模块构建日志时间图,有效整合日志的时间结构关系和语义信息。然后,构造时间关系图注意力网络,利用图结构描述日志间的时间结构关系,自适应学习不同日志之间的重要性,进行异常检测。最后,使用三个公共数据集验证模型的有效性。大量实验结果表明,所提方法能够有效捕获日志时间结构关系,提高异常检测精度。 展开更多
关键词 异常检测 日志分析 图注意力网络 网络安全 日志时间图
在线阅读 下载PDF
基于类型注意力和GCN的远程监督关系抽取 被引量:1
15
作者 张欢 李卫疆 《计算机工程与科学》 CSCD 北大核心 2024年第2期316-324,共9页
远程监督关系抽取通过自动对齐自然语言文本与知识库生成带有标签的训练数据集,解决样本人工标注的问题。目前的远程监督研究大多没有关注到长尾(long-tail)数据,因此远程监督得到的大多数句包中所含句子太少,不能真实全面地反映数据的... 远程监督关系抽取通过自动对齐自然语言文本与知识库生成带有标签的训练数据集,解决样本人工标注的问题。目前的远程监督研究大多没有关注到长尾(long-tail)数据,因此远程监督得到的大多数句包中所含句子太少,不能真实全面地反映数据的情况。因此,提出基于位置-类型注意力机制和图卷积网络的远程监督关系抽取模型PG+PTATT。利用图卷积网络GCN聚合相似句包的隐含高阶特征,并对句包进行优化以此得到句包更丰富全面的特征信息;同时构建位置-类型注意力机制PTATT,以解决远程监督关系抽取中错误标签的问题。PTATT利用实体词与非实体词的位置关系以及类型关系进行建模,减少噪声词带来的影响。提出的模型在New York Times数据集上进行实验验证,实验结果表明提出的模型能够有效解决远程监督关系抽取中存在的问题;同时,能够有效提升关系抽取的正确率。 展开更多
关键词 远程监督 关系抽取 图卷积网络 注意力机制 类型关系 句包
在线阅读 下载PDF
图文数据的多级关系分析与挖掘方法 被引量:1
16
作者 郭瑞萍 王海荣 王栋 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期684-694,共11页
如何高效挖掘多模态数据间隐藏的语义关联是当前多模态知识抽取的重点任务之一,为更细粒度地挖掘图像与文本数据间关系,提出了一种多级关系分析与挖掘(MRAM)方法,引入BERT-Large模型,提取文本特征构建文本连接图,利用Faster-RCNN网络提... 如何高效挖掘多模态数据间隐藏的语义关联是当前多模态知识抽取的重点任务之一,为更细粒度地挖掘图像与文本数据间关系,提出了一种多级关系分析与挖掘(MRAM)方法,引入BERT-Large模型,提取文本特征构建文本连接图,利用Faster-RCNN网络提取图像特征来学习空间位置关系和语义关系并构建图像连接图,进而完成单模态内部语义关系计算,在此基础上,使用节点切分方法和带多头注意力机制的图卷积网络(GCN-MA)进行局部和全局的图文关系融合。此外,为提升关系挖掘效率,采用了基于注意力机制的连边权重剪枝策略,用以增强重要分支表示,减少冗余信息干扰。在公开的Flickr30K、MSCOCO-1K、MSCOCO-5K数据集上进行方法实验,并与11种方法进行实验结果的对比分析,所提方法在Flickr30K上的平均召回率提高了0.97%和0.57%,在MSCOCO-1K上的平均召回率提高了0.93%和0.63%,在MSCOCO-5K上的平均召回率提高了0.37%和0.93%,实验结果验证了所提方法的有效性。 展开更多
关键词 关系挖掘 多级关系 注意力机制 图卷积网络 图文数据
在线阅读 下载PDF
基于词汇融合和依存关系的中文命名实体识别 被引量:1
17
作者 唐卓然 柳毅 《计算机工程》 CAS CSCD 北大核心 2024年第10期145-153,共9页
命名实体识别是自然语言处理领域的重要基础任务,为关系抽取、构建知识图谱等众多下游任务提供有价值的数据支撑。针对中文命名实体识别存在分词错误、实体边界模糊和上下文依赖的难点,以及现有方法不能充分利用词汇信息和有效提取文本... 命名实体识别是自然语言处理领域的重要基础任务,为关系抽取、构建知识图谱等众多下游任务提供有价值的数据支撑。针对中文命名实体识别存在分词错误、实体边界模糊和上下文依赖的难点,以及现有方法不能充分利用词汇信息和有效提取文本内部特征等问题,提出一种基于词汇融合和依存关系的中文命名实体识别模型。首先,获取输入文本中每个字符的自匹配词生成词汇特征向量,并根据字符在它的自匹配词上的位置得到词边界信息,利用双仿射注意力机制将字符向量与词汇特征向量进行融合,将词汇信息和词边界信息融入模型的编码过程,从而使模型获得良好的实体识别能力;然后,根据依存句法建立输入文本的依存图结构,利用图注意力网络(GAT)捕获输入文本内部依存关系特征,增强文本内部的语义依赖信息,同时有利于区分实体边界;最后,使用条件随机场(CRF)计算文本的标签。实验结果表明,该模型在CCKS2017、OntoNote4.0和MSRA数据集上分别获得了92.10%、80.76%和95.66%的F1值,优于对比模型。 展开更多
关键词 注意力机制 依存关系 词汇融合 图注意力网络 中文命名实体识别
在线阅读 下载PDF
基于异构图注意力网络的药物不良反应实体关系联合抽取研究 被引量:1
18
作者 仲雨乐 韩普 许鑫 《现代情报》 CSSCI 北大核心 2024年第9期71-81,共11页
[目的/意义]实体关系联合抽取是药物不良反应监测和知识组织的关键环节。为解决传统流水线抽取方法中误差传递、实体冗余和交互缺失问题,提升药物不良反应重叠三元组抽取效果,提出了一种基于异构图注意力网络的药物不良反应实体关系联... [目的/意义]实体关系联合抽取是药物不良反应监测和知识组织的关键环节。为解决传统流水线抽取方法中误差传递、实体冗余和交互缺失问题,提升药物不良反应重叠三元组抽取效果,提出了一种基于异构图注意力网络的药物不良反应实体关系联合抽取模型MF-HGAT。[方法/过程]首先通过BERT预训练进行外部医学语料资源的知识迁移,实现多语义特征融合;其次将关系信息作为先验知识引入为异构图节点,以避免提取语义无关实体;然后通过迭代融合异构图注意力网络消息传递机制增强字符与关系节点表示;最后在节点表示更新后抽取药物不良反应实体关系。[结果/结论]在自构建药物不良反应数据集上进行实验,发现融入关系信息和外部医疗健康领域知识的MF-HGAT联合抽取F1值达到了92.75%,较主流模型CasRel提升了5.29%。研究结果表明,MF-HGAT模型通过异构图注意力网络融合字符与关系节点语义,可有效解决药物不良反应实体关系重叠问题,对药物不良反应知识发现具有重要意义。 展开更多
关键词 异构图注意力网络 实体关系联合抽取 药物不良反应 关系重叠 知识发现
在线阅读 下载PDF
融合实体语义及结构信息的知识图谱推理
19
作者 王利琴 张特 +2 位作者 许智宏 董永峰 杨国伟 《计算机应用》 CSCD 北大核心 2024年第11期3371-3378,共8页
目前,图注意力网络(GAT)通过引入注意力机制对目标实体的邻域实体赋予不同权重并进行信息聚合,使得它更关注实体的局部邻域,忽略了图结构中实体和关系之间的拓扑结构;而且在多头注意力后将输出嵌入向量简单拼接或平均,导致注意力头之间... 目前,图注意力网络(GAT)通过引入注意力机制对目标实体的邻域实体赋予不同权重并进行信息聚合,使得它更关注实体的局部邻域,忽略了图结构中实体和关系之间的拓扑结构;而且在多头注意力后将输出嵌入向量简单拼接或平均,导致注意力头之间相互独立,未能捕捉不同注意力头的重要语义信息。针对GAT应用于知识图谱(KG)推理任务时未充分挖掘实体结构信息和语义信息的问题,提出融合实体语义及结构信息的知识图谱推理(FESSI)模型。首先,使用TransE将实体和关系表示为同一空间的嵌入向量。其次,提出交互注意力机制,将GAT中多头注意力重新融合成多个混合注意力,增强注意力头之间的交互性,以提取目标实体更丰富的语义信息;同时,利用关系图卷积网络(R-GCN)提取实体的结构信息,并通过权重矩阵学习GAT和R-GCN的输出特征向量。最后,使用ConvKB作为解码器进行评分。在知识图谱数据集Kinship、NELL-995和FB15K-237上的实验结果表明,FESSI模型的效果优于多数对比模型,在3个数据集的平均倒数排名(MRR)指标上的结果分别为0.964、0.565和0.562。 展开更多
关键词 知识图谱 知识图谱推理 关系图卷积网络 图注意力网络 交互注意力机制
在线阅读 下载PDF
基于依存关系图注意力网络的SQL生成方法
20
作者 舒晴 刘喜平 +4 位作者 谭钊 李希 万常选 刘德喜 廖国琼 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第5期908-917,共10页
研究基于自然语言问题的结构化查询语言(SQL)生成问题(Text-to-SQL).提出两阶段框架,旨在解耦模式链接和SQL生成过程,降低SQL生成的难度.第1阶段通过基于关系图注意力网络的模式链接器识别问题中提及的数据库表、列和值,利用问题的语法... 研究基于自然语言问题的结构化查询语言(SQL)生成问题(Text-to-SQL).提出两阶段框架,旨在解耦模式链接和SQL生成过程,降低SQL生成的难度.第1阶段通过基于关系图注意力网络的模式链接器识别问题中提及的数据库表、列和值,利用问题的语法结构和数据库模式项之间的内部关系,指导模型学习问题与数据库的对齐关系.构建问题图时,针对Text-to-SQL任务的特点,在原始句法依存树的基础上,合并与模式链接无关的关系,添加并列结构中的从属词与句中其他成分间的依存关系,帮助模型捕获长距离依赖关系.第2阶段进行SQL生成,将对齐信息注入T5的编码器,对T5进行微调.在Spider、Spider-DK和Spider-Syn数据集上进行实验,实验结果显示,该方法具有良好的性能,尤其是对中等难度以上的Text-to-SQL问题具有良好的表现. 展开更多
关键词 Text-to-SQL 自然语言查询 依存句法分析 关系图注意力网络
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部