Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various doma...Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.展开更多
In recent years,convolutional neural networks(CNN)and Transformer architectures have made significant progress in the field of remote sensing(RS)change detection(CD).Most of the existing methods directly stack multipl...In recent years,convolutional neural networks(CNN)and Transformer architectures have made significant progress in the field of remote sensing(RS)change detection(CD).Most of the existing methods directly stack multiple layers of Transformer blocks,which achieves considerable improvement in capturing variations,but at a rather high computational cost.We propose a channel-Efficient Change Detection Network(CE-CDNet)to address the problems of high computational cost and imbalanced detection accuracy in remote sensing building change detection.The adaptive multi-scale feature fusion module(CAMSF)and lightweight Transformer decoder(LTD)are introduced to improve the change detection effect.The CAMSF module can adaptively fuse multi-scale features to improve the model’s ability to detect building changes in complex scenes.In addition,the LTD module reduces computational costs and maintains high detection accuracy through an optimized self-attention mechanism and dimensionality reduction operation.Experimental test results on three commonly used remote sensing building change detection data sets show that CE-CDNet can reduce a certain amount of computational overhead while maintaining detection accuracy comparable to existing mainstream models,showing good performance advantages.展开更多
Recent years have seen a surge in interest in object detection on remote sensing images for applications such as surveillance andmanagement.However,challenges like small object detection,scale variation,and the presen...Recent years have seen a surge in interest in object detection on remote sensing images for applications such as surveillance andmanagement.However,challenges like small object detection,scale variation,and the presence of closely packed objects in these images hinder accurate detection.Additionally,the motion blur effect further complicates the identification of such objects.To address these issues,we propose enhanced YOLOv9 with a transformer head(YOLOv9-TH).The model introduces an additional prediction head for detecting objects of varying sizes and swaps the original prediction heads for transformer heads to leverage self-attention mechanisms.We further improve YOLOv9-TH using several strategies,including data augmentation,multi-scale testing,multi-model integration,and the introduction of an additional classifier.The cross-stage partial(CSP)method and the ghost convolution hierarchical graph(GCHG)are combined to improve detection accuracy by better utilizing feature maps,widening the receptive field,and precisely extracting multi-scale objects.Additionally,we incorporate the E-SimAM attention mechanism to address low-resolution feature loss.Extensive experiments on the VisDrone2021 and DIOR datasets demonstrate the effectiveness of YOLOv9-TH,showing good improvement in mAP compared to the best existing methods.The YOLOv9-TH-e achieved 54.2% of mAP50 on the VisDrone2021 dataset and 92.3% of mAP on the DIOR dataset.The results confirmthemodel’s robustness and suitability for real-world applications,particularly for small object detection in remote sensing images.展开更多
Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often...Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often lack of capability in separating the foreground and background.This paper proposes an anchor-free method named probability-enhanced anchor-free detector(ProEnDet)for remote sensing object detection.First,a weighted bidirectional feature pyramid is used for feature extraction.Second,we introduce probability enhancement to strengthen the classification of the object’s foreground and background.The detector uses the logarithm likelihood as the final score to improve the classification of the foreground and background of the object.ProEnDet is verified using the DIOR and NWPU-VHR-10 datasets.The experiment achieved mean average precisions of 61.4 and 69.0 on the DIOR dataset and NWPU-VHR-10 dataset,respectively.ProEnDet achieves a speed of 32.4 FPS on the DIOR dataset,which satisfies the real-time requirements for remote-sensing object detection.展开更多
In the field of remote sensing,the rapid and accurate acquisition of the category and location of airplanes has emerged as a prominent research.However,remote sensing fuzzy imaging and complex environmental interferen...In the field of remote sensing,the rapid and accurate acquisition of the category and location of airplanes has emerged as a prominent research.However,remote sensing fuzzy imaging and complex environmental interference affect airplane detection.Besides,the inconsistency in the size of remote sensing images and the low accuracy of small target detection are crucial challenges that need to be addressed.To tackle these issues,we propose a novel network SDaDCS(SAHI-data augmentation-dilation-channel and spatial attention)based on YOLOX model and the slicing aided hyper inference(SAHI)framework,a new data augmentation technique and dilation-channel and spatial(DCS)attention mechanism.Initially,we create a remote sensing dataset for airplane targets and introduce a new data augmentation technique based on the Rotate-Mixup and mixed data augmentation to enhance data diversity.The DCS attention mechanism,which comprises the dilated convolution block,channel attention and spatial attention,is designed to bolster the feature extraction and discrimination of the network.To address the challenges arised by the difficulties of detecting small targets,we integrate the YOLOX model with the SAHI framework.Experiment results show that,when compared to the original YOLOX model,the proposed SDaDCS remote sensing target detection algorithm enhances overall accuracy by 13.6%.The experimental results validate the effectiveness of the proposed algorithm.展开更多
Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away fr...Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away from the borehole. Remote acoustic logging uses phase-controlled array-transmitting and long sound probes that increase the depth of investigation. The interpretation of logging data with respect to fractures is typically guided by practical experience rather than theory and is often ambiguous. We use remote acoustic reflection logging data and high-order finite-difference approximations in the forward modeling and prestack reverse-time migration to image fractures. First, we perform forward modeling of the fracture responses as a function of the fracture-borehole wall distance, aperture, and dip angle. Second, we extract the energy intensity within the imaging area to determine whether the fracture can be identified as the formation velocity is varied. Finally, we evaluate the effect of the fracture-borehole distance, fracture aperture, and dip angle on fracture identification.展开更多
The rapid economic development that the Hotan Oasis in Xinjiang Uygur Autonomous Region,China has undergone in recent years may face some challenges in its ecological environment.Therefore,an analysis of the spatiotem...The rapid economic development that the Hotan Oasis in Xinjiang Uygur Autonomous Region,China has undergone in recent years may face some challenges in its ecological environment.Therefore,an analysis of the spatiotemporal changes in ecological environment of the Hotan Oasis is important for its sustainable development.First,we constructed an improved remote sensing-based ecological index(RSEI)in 1990,1995,2000,2005,2010,2015 and 2020 on the Google Earth Engine(GEE)platform and implemented change detection for their spatial distribution.Second,we performed a spatial autocorrelation analysis on RSEI distribution map and used land-use and land-cover change(LUCC)data to analyze the reasons of RSEI changes.Finally,we investigated the applicability of improved RSEI to arid area.The results showed that mean of RSEI rose from 0.41 to 0.50,showing a slight upward trend.During the 30-a period,2.66% of the regions improved significantly,10.74% improved moderately and 32.21% improved slightly,respectively.The global Moran's I were 0.891,0.889,0.847 and 0.777 for 1990,2000,2010 and 2020,respectively,and the local indicators of spatial autocorrelation(LISA)distribution map showed that the high-high cluster was mainly distributed in the central part of the Hotan Oasis,and the low-low cluster was mainly distributed in the outer edge of the oasis.RSEI at the periphery of the oasis changes from low to high with time,with the fragmentation of RSEI distribution within the oasis increasing.Its distribution and changes are predominantly driven by anthropologic factors,including the expansion of artificial oasis into the desert,the replacement of desert ecosystems by farmland ecosystems,and the increase in the distribution of impervious surfaces.The improved RSEI can reflect the eco-environmental quality effectively of the oasis in arid area with relatively high applicability.The high efficiency exhibited with this approach makes it convenient for rapid,high frequency and macroscopic monitoring of eco-environmental quality in study area.展开更多
Maize tassel detection is essential for future agronomic management in maize planting and breeding,with application in yield estimation,growth monitoring,intelligent picking,and disease detection.However,detecting mai...Maize tassel detection is essential for future agronomic management in maize planting and breeding,with application in yield estimation,growth monitoring,intelligent picking,and disease detection.However,detecting maize tassels in the field poses prominent challenges as they are often obscured by widespread occlusions and differ in size and morphological color at different growth stages.This study proposes the SEYOLOX-tiny Model that more accurately and robustly detects maize tassels in the field.Firstly,the data acquisition method ensures the balance between the image quality and image acquisition efficiency and obtains maize tassel images from different periods to enrich the dataset by unmanned aerial vehicle(UAV).Moreover,the robust detection network extends YOLOX by embedding an attention mechanism to realize the extraction of critical features and suppressing the noise caused by adverse factors(e.g.,occlusions and overlaps),which could be more suitable and robust for operation in complex natural environments.Experimental results verify the research hypothesis and show a mean average precision(mAP_(@0.5)) of 95.0%.The mAP_(@0.5),mAP_(@0.5-0.95),mAP_(@0.5-0.95(area=small)),and mAP_(@0.5-0.95(area=medium)) average values increased by 1.5,1.8,5.3,and 1.7%,respectively,compared to the original model.The proposed method can effectively meet the precision and robustness requirements of the vision system in maize tassel detection.展开更多
The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resoluti...The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.展开更多
There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge ...There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %展开更多
Remote sensing techniques are proven methods for quantifying chlorophyll-a levels by inference algal concentrations in reservoirs. One traditional method is to use Landsat imagery and field data from a limited time pe...Remote sensing techniques are proven methods for quantifying chlorophyll-a levels by inference algal concentrations in reservoirs. One traditional method is to use Landsat imagery and field data from a limited time period to develop a model for a reservoir which relates reflectance in various bands to measured algal (or chlorophyll-a) concentrations and use that model and associated imagery to determine spatial algal concentrations in the reservoir. In this work, we extend these techniques to use historical Landsat data over long time periods to develop seasonal models that will more accurately describe the conditions throughout the growing season. Previous work at Deer Creek included the development of a chlorophyll-a model using data from the months of August to September. This model did not account for seasonal variation and algal succession, which affects the relationship between measured reflectance and algal concentration. Early summer algal blooms are dominated by diatoms (yellow-brown), while the algae vary from chlorophyta (green) in the mid-summer to cyanobacteria (blue-green) in late summer months. This study presents and explores the development and use of seasonal algorithms based on reflective characteristics of various algal communities to create a more accurate model for the reservoir. This study uses water quality data collected over a 20-year period during non-ice conditions along with associated Landsat data. As the field measurements were not taken to support remote sensing measurements, this study evaluates the use of historical data to support remote sensing analysis. It is assumed that reservoir conditions do not change rapidly, the field data can be used to develop correlations with satellite imagery taken within a day of the field measurements, and the seasonal algal communities have different reflective properties (or colors). We present statistical analysis that shows the seasonal algorithms better fit the data than the non-seasonal model and the traditional model calibrated with late-season data. We recommend the use of sub-seasonal algorithms to more accurately model and predict water quality throughout the growing season.展开更多
In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usual...In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usually havelarge size and various spatial resolutions. Thus, detecting objects in remote sensing images is very complicated. In this paper, we develop a model to detectobjects in remote sensing images based on the combination of picture fuzzy clustering and MapReduce method (denoted as MPFC). Firstly, picture fuzzy clustering is applied to segment the input images. Then, MapReduce is used to reducethe runtime with the guarantee of quality. To convert data for MapReduce processing, two new procedures are introduced, including Map_PFC and Reduce_PFC.The formal representation and details of two these procedures are presented in thispaper. The experiments on satellite image and remote sensing image datasets aregiven to evaluate proposed model. Validity indices and time consuming are usedto compare proposed model to picture fuzzy clustering model. The values ofvalidity indices show that picture fuzzy clustering integrated to MapReduce getsbetter quality of segmentation than using picture fuzzy clustering only. Moreover,on two selected image datasets, the run time of MPFC model is much less thanthat of picture fuzzy clustering.展开更多
alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the ...alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the physical properties of the observed objects, which leads to great potential to perform salient object detection for remote sensing images. Conventional salient object detection methods often employ handcrafted features to predict saliency by evaluating the pixel-wise or superpixel-wise contrast. With the recent use of deep learning framework, in particular, fully convolutional neural networks, there has been profound progress in visual saliency detection. However, this success has not been extended to multispectral remote sensing images, and existing multispectral salient object detection methods are still mainly based on handcrafted features, essentially due to the difficulties in image acquisition and labeling. In this paper, we propose a novel deep residual network based on a top-down model, which is trained in an end-to-end manner to tackle the above issues in multispectral salient object detection. Our model effectively exploits the saliency cues at different levels of the deep residual network. To overcome the limited availability of remote sensing images in training of our deep residual network, we also introduce a new spectral image reconstruction model that can generate multispectral images from RGB images. Our extensive experimental results using both multispectral and RGB salient object detection datasets demonstrate a significant performance improvement of more than 10% improvement compared with the state-of-the-art methods.展开更多
Algae blooms pose a threat to water quality by depleting oxygen during decomposition and also cause other issues with water quality and water use. Algae biomass is traditional monitored through field samples analyzed ...Algae blooms pose a threat to water quality by depleting oxygen during decomposition and also cause other issues with water quality and water use. Algae biomass is traditional monitored through field samples analyzed for chlorophyll-a, a pigment present in all algae. Field sampling can be time- and cost-intensive, especially in areas that are difficult to access and provides only limited spatial coverage. Estimations of algal biomass based on remote sensing data have been explored over the past two decades as a supplement to information obtained from limited field samples. We use Landsat data to develop and demonstrate seasonal remote sensing models, a relatively recent method, to evaluate spatial and temporal algae distributions for the Jordanelle Reservoir, located in north-central Utah. Remote sensing of chlorophyll as a monitoring and analysis method can provide a more spatially complete representation of algae distribution and biomass;information that is difficult to obtain using point samples.展开更多
In the edge detection of Remote Sensing (RS) image, the useful detail losing and the spurious edge often appear. To solve the problem, the authors uses the dyadic wavelet to detect the edge of surface features by comb...In the edge detection of Remote Sensing (RS) image, the useful detail losing and the spurious edge often appear. To solve the problem, the authors uses the dyadic wavelet to detect the edge of surface features by combining the edge detecting with the multi-resolution analyzing of the wavelet transform. Via the dyadic wavelet decomposing, the RS image of a certain appropriate scale is obtained, and the edge data of the plane and the upright directions are respectively figured out, then the gradient vector module of the surface features is worked out. By tracing them, the authors get the edge data of the object, therefore build the RS image which obtains the checked edge. This method can depress the effect of noise and examine exactly the edge data of the object by rule and line. With an experiment of an RS image which obtains an airport, the authors certificate the feasibility of the application of dyadic wavelet in the object edge detection.展开更多
A new edge detector based on the nonlinear intensity of curved surface was proposed. The edge detector describes the largest curvature and the smallest curvature of curved surface, therefore it can reflect the real la...A new edge detector based on the nonlinear intensity of curved surface was proposed. The edge detector describes the largest curvature and the smallest curvature of curved surface, therefore it can reflect the real largest direction of image edge jump. By the new edge detector, it is convenient to calculate the curvature in any direction of the curved surface and the curvature can be used in the identification of edge direction and the feature extraction of objects on remote sensing image.展开更多
Most known mineral deposits were discovered by accident using expensive,time-consuming,and knowledgebased methods such as stream sediment geochemical data,diamond drilling,reconnaissance geochemical and geophysical su...Most known mineral deposits were discovered by accident using expensive,time-consuming,and knowledgebased methods such as stream sediment geochemical data,diamond drilling,reconnaissance geochemical and geophysical surveys,and/or remote sensing.Recent years have seen a decrease in the number of newly discovered mineral deposits and a rise in demand for critical raw materials,prompting exploration geologists to seek more efficient and inventive ways for processing various data types at different phases of mineral exploration.Remote sensing is one of the most sought-after tools for early-phase mineral prospecting because of its broad coverage and low cost.Remote sensing images from satellites are publicly available and can be utilised for lithological mapping and mineral exploitation.In this study,we extend an artificial intelligence-based,unsupervised anomaly detection method to identify iron deposit occurrence using Landsat-8 Operational Land Imager(OLI)satellite imagery and machine learning.The novelty in our method includes:(1)knowledge-guided and unsupervised anomaly detection that does not assume any specific anomaly signatures;(2)detection of anomalies occurs only in the variable domain;and(3)a choice of a range of machine learning algorithms to balance between explain-ability and performance.Our new unsupervised method detects anomalies through three successive stages,namely(a)stage Ⅰ–acquisition of satellite imagery,data processing and selection of bands,(b)stage Ⅱ–predictive modelling and anomaly detection,and(c)stage Ⅲ–construction of anomaly maps and analysis.In this study,the new method was tested over the Assen iron deposit in the Transvaal Supergroup(South Africa).It detected both the known areas of the Assen iron deposit and additional deposit occurrence features around the Assen iron mine that were not known.To summarise the anomalies in the area,principal component analysis was used on the reconstruction errors across all modelled bands.Our method enhanced the Assen deposit as an anomaly and attenuated the background,including anthropogenic structural anomalies,which resulted in substantially improved visual contrast and delineation of the iron deposit relative to the background.The results demonstrate the robustness of the proposed unsupervised anomaly detection method,and it could be useful for the delineation of mineral exploration targets.In particular,the method will be useful in areas where no data labels exist regarding the existence or specific spectral signatures of anomalies,such as mineral deposits under greenfield exploration.展开更多
Object detection(OD)in remote sensing images(RSI)acts as a vital part in numerous civilian and military application areas,like urban planning,geographic information system(GIS),and search and rescue functions.Vehicle ...Object detection(OD)in remote sensing images(RSI)acts as a vital part in numerous civilian and military application areas,like urban planning,geographic information system(GIS),and search and rescue functions.Vehicle recognition from RSIs remained a challenging process because of the difficulty of background data and the redundancy of recognition regions.The latest advancements in deep learning(DL)approaches permit the design of effectual OD approaches.This study develops an Artificial Ecosystem Optimizer with Deep Convolutional Neural Network for Vehicle Detection(AEODCNN-VD)model on Remote Sensing Images.The proposed AEODCNN-VD model focuses on the identification of vehicles accurately and rapidly.To detect vehicles,the presented AEODCNN-VD model employs single shot detector(SSD)with Inception network as a baseline model.In addition,Multiway Feature Pyramid Network(MFPN)is used for handling objects of varying sizes in RSIs.The features from the Inception model are passed into theMFPNformultiway andmultiscale feature fusion.Finally,the fused features are passed into bounding box and class prediction networks.For enhancing the detection efficiency of the AEODCNN-VD approach,AEO based hyperparameter optimizer is used,which is stimulated by the energy transfer strategies such as production,consumption,and decomposition in an ecosystem.The performance validation of the presentedmethod on benchmark datasets showed promising performance over recent DL models.展开更多
To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model...To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements.展开更多
cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d]imidazole(BCHMX)is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current ...cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d]imidazole(BCHMX)is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current literature for this material,we performed hyper-spectral imaging and laser induced fluorescence(LIF)to a BCHMX sample under low laser fluence for determining the optimum laser wavelength used in any future BCHMX-LIF based remote detection systems.For this purpose,an experimental setup consisted of a sun spectrum lamp and hyper-spectral camera was built to illuminate and image white powder samples of BCHMX in comparison with the traditional explosives,HMX(1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane),RDX(1,3,5-trinitro-1,3,5-triazacyclohexane),PETN(2,2-Bis[(nitroxy)methyl]propane-1,3-diyldinitrate).The imaging reveals strong BCHMX sample absorption contrast among other samples at wavelength ranging from 400 to 410 nm.When light source was replaced by a 405 nm laser diode illuminator,a strong BCHMX sample LIF at the spectral range from 425 to 700 nm was observed under low laser fluence condition of 0.1 mJ/cm^(2).Finally,we demonstrated successfully the ability of the 405 nm LIF and the hyperspectral imaging technique to detect finger print traces of BCHMX on white cellulose fabric from a distance of 15 m and a detection limit of 1 mg/cm^(2).展开更多
文摘Cloud detection is a critical preprocessing step in remote sensing image processing, as the presence of clouds significantly affects the accuracy of remote sensing data and limits its applicability across various domains. This study presents an enhanced cloud detection method based on the U-Net architecture, designed to address the challenges of multi-scale cloud features and long-range dependencies inherent in remote sensing imagery. A Multi-Scale Dilated Attention (MSDA) module is introduced to effectively integrate multi-scale information and model long-range dependencies across different scales, enhancing the model’s ability to detect clouds of varying sizes. Additionally, a Multi-Head Self-Attention (MHSA) mechanism is incorporated to improve the model’s capacity for capturing finer details, particularly in distinguishing thin clouds from surface features. A multi-path supervision mechanism is also devised to ensure the model learns cloud features at multiple scales, further boosting the accuracy and robustness of cloud mask generation. Experimental results demonstrate that the enhanced model achieves superior performance compared to other benchmarked methods in complex scenarios. It significantly improves cloud detection accuracy, highlighting its strong potential for practical applications in cloud detection tasks.
基金supported by Henan Province Key R&D Project(241111210400)Henan Provincial Science and Technology Research Project(242102211007 and 242102211020)+1 种基金Jiangsu Science and Technology Programme-General Programme(BK20221260)Science and Technology Innovation Project of Zhengzhou University of Light Industry(23XNKJTD0205).
文摘In recent years,convolutional neural networks(CNN)and Transformer architectures have made significant progress in the field of remote sensing(RS)change detection(CD).Most of the existing methods directly stack multiple layers of Transformer blocks,which achieves considerable improvement in capturing variations,but at a rather high computational cost.We propose a channel-Efficient Change Detection Network(CE-CDNet)to address the problems of high computational cost and imbalanced detection accuracy in remote sensing building change detection.The adaptive multi-scale feature fusion module(CAMSF)and lightweight Transformer decoder(LTD)are introduced to improve the change detection effect.The CAMSF module can adaptively fuse multi-scale features to improve the model’s ability to detect building changes in complex scenes.In addition,the LTD module reduces computational costs and maintains high detection accuracy through an optimized self-attention mechanism and dimensionality reduction operation.Experimental test results on three commonly used remote sensing building change detection data sets show that CE-CDNet can reduce a certain amount of computational overhead while maintaining detection accuracy comparable to existing mainstream models,showing good performance advantages.
文摘Recent years have seen a surge in interest in object detection on remote sensing images for applications such as surveillance andmanagement.However,challenges like small object detection,scale variation,and the presence of closely packed objects in these images hinder accurate detection.Additionally,the motion blur effect further complicates the identification of such objects.To address these issues,we propose enhanced YOLOv9 with a transformer head(YOLOv9-TH).The model introduces an additional prediction head for detecting objects of varying sizes and swaps the original prediction heads for transformer heads to leverage self-attention mechanisms.We further improve YOLOv9-TH using several strategies,including data augmentation,multi-scale testing,multi-model integration,and the introduction of an additional classifier.The cross-stage partial(CSP)method and the ghost convolution hierarchical graph(GCHG)are combined to improve detection accuracy by better utilizing feature maps,widening the receptive field,and precisely extracting multi-scale objects.Additionally,we incorporate the E-SimAM attention mechanism to address low-resolution feature loss.Extensive experiments on the VisDrone2021 and DIOR datasets demonstrate the effectiveness of YOLOv9-TH,showing good improvement in mAP compared to the best existing methods.The YOLOv9-TH-e achieved 54.2% of mAP50 on the VisDrone2021 dataset and 92.3% of mAP on the DIOR dataset.The results confirmthemodel’s robustness and suitability for real-world applications,particularly for small object detection in remote sensing images.
基金supported in part by the National Natural Science Foundation of China(42001408).
文摘Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often lack of capability in separating the foreground and background.This paper proposes an anchor-free method named probability-enhanced anchor-free detector(ProEnDet)for remote sensing object detection.First,a weighted bidirectional feature pyramid is used for feature extraction.Second,we introduce probability enhancement to strengthen the classification of the object’s foreground and background.The detector uses the logarithm likelihood as the final score to improve the classification of the foreground and background of the object.ProEnDet is verified using the DIOR and NWPU-VHR-10 datasets.The experiment achieved mean average precisions of 61.4 and 69.0 on the DIOR dataset and NWPU-VHR-10 dataset,respectively.ProEnDet achieves a speed of 32.4 FPS on the DIOR dataset,which satisfies the real-time requirements for remote-sensing object detection.
基金supported in part by National Natural Science Foundation of China(No.62471034)Hebei Natural Science Foundation(No.F2023105001)。
文摘In the field of remote sensing,the rapid and accurate acquisition of the category and location of airplanes has emerged as a prominent research.However,remote sensing fuzzy imaging and complex environmental interference affect airplane detection.Besides,the inconsistency in the size of remote sensing images and the low accuracy of small target detection are crucial challenges that need to be addressed.To tackle these issues,we propose a novel network SDaDCS(SAHI-data augmentation-dilation-channel and spatial attention)based on YOLOX model and the slicing aided hyper inference(SAHI)framework,a new data augmentation technique and dilation-channel and spatial(DCS)attention mechanism.Initially,we create a remote sensing dataset for airplane targets and introduce a new data augmentation technique based on the Rotate-Mixup and mixed data augmentation to enhance data diversity.The DCS attention mechanism,which comprises the dilated convolution block,channel attention and spatial attention,is designed to bolster the feature extraction and discrimination of the network.To address the challenges arised by the difficulties of detecting small targets,we integrate the YOLOX model with the SAHI framework.Experiment results show that,when compared to the original YOLOX model,the proposed SDaDCS remote sensing target detection algorithm enhances overall accuracy by 13.6%.The experimental results validate the effectiveness of the proposed algorithm.
基金supported by National Petroleum Major Project(Grant No.2011ZX05020-008)
文摘Fracture identification is important for the evaluation of carbonate reservoirs. However, conventional logging equipment has small depth of investigation and cannot detect rock fractures more than three meters away from the borehole. Remote acoustic logging uses phase-controlled array-transmitting and long sound probes that increase the depth of investigation. The interpretation of logging data with respect to fractures is typically guided by practical experience rather than theory and is often ambiguous. We use remote acoustic reflection logging data and high-order finite-difference approximations in the forward modeling and prestack reverse-time migration to image fractures. First, we perform forward modeling of the fracture responses as a function of the fracture-borehole wall distance, aperture, and dip angle. Second, we extract the energy intensity within the imaging area to determine whether the fracture can be identified as the formation velocity is varied. Finally, we evaluate the effect of the fracture-borehole distance, fracture aperture, and dip angle on fracture identification.
基金funded by the National Natural Science Foundation of China(42161049,41761019,41061052).
文摘The rapid economic development that the Hotan Oasis in Xinjiang Uygur Autonomous Region,China has undergone in recent years may face some challenges in its ecological environment.Therefore,an analysis of the spatiotemporal changes in ecological environment of the Hotan Oasis is important for its sustainable development.First,we constructed an improved remote sensing-based ecological index(RSEI)in 1990,1995,2000,2005,2010,2015 and 2020 on the Google Earth Engine(GEE)platform and implemented change detection for their spatial distribution.Second,we performed a spatial autocorrelation analysis on RSEI distribution map and used land-use and land-cover change(LUCC)data to analyze the reasons of RSEI changes.Finally,we investigated the applicability of improved RSEI to arid area.The results showed that mean of RSEI rose from 0.41 to 0.50,showing a slight upward trend.During the 30-a period,2.66% of the regions improved significantly,10.74% improved moderately and 32.21% improved slightly,respectively.The global Moran's I were 0.891,0.889,0.847 and 0.777 for 1990,2000,2010 and 2020,respectively,and the local indicators of spatial autocorrelation(LISA)distribution map showed that the high-high cluster was mainly distributed in the central part of the Hotan Oasis,and the low-low cluster was mainly distributed in the outer edge of the oasis.RSEI at the periphery of the oasis changes from low to high with time,with the fragmentation of RSEI distribution within the oasis increasing.Its distribution and changes are predominantly driven by anthropologic factors,including the expansion of artificial oasis into the desert,the replacement of desert ecosystems by farmland ecosystems,and the increase in the distribution of impervious surfaces.The improved RSEI can reflect the eco-environmental quality effectively of the oasis in arid area with relatively high applicability.The high efficiency exhibited with this approach makes it convenient for rapid,high frequency and macroscopic monitoring of eco-environmental quality in study area.
基金supported by the Chinese Universities Scientific Fund (2022TC169)。
文摘Maize tassel detection is essential for future agronomic management in maize planting and breeding,with application in yield estimation,growth monitoring,intelligent picking,and disease detection.However,detecting maize tassels in the field poses prominent challenges as they are often obscured by widespread occlusions and differ in size and morphological color at different growth stages.This study proposes the SEYOLOX-tiny Model that more accurately and robustly detects maize tassels in the field.Firstly,the data acquisition method ensures the balance between the image quality and image acquisition efficiency and obtains maize tassel images from different periods to enrich the dataset by unmanned aerial vehicle(UAV).Moreover,the robust detection network extends YOLOX by embedding an attention mechanism to realize the extraction of critical features and suppressing the noise caused by adverse factors(e.g.,occlusions and overlaps),which could be more suitable and robust for operation in complex natural environments.Experimental results verify the research hypothesis and show a mean average precision(mAP_(@0.5)) of 95.0%.The mAP_(@0.5),mAP_(@0.5-0.95),mAP_(@0.5-0.95(area=small)),and mAP_(@0.5-0.95(area=medium)) average values increased by 1.5,1.8,5.3,and 1.7%,respectively,compared to the original model.The proposed method can effectively meet the precision and robustness requirements of the vision system in maize tassel detection.
基金National Natural Science Foundation of China(No.41871305)National Key Research and Development Program of China(No.2017YFC0602204)+2 种基金Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUGQY1945)Open Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education and the Fundamental Research Funds for the Central Universities(No.GLAB2019ZR02)Open Fund of Laboratory of Urban Land Resources Monitoring and Simulation,Ministry of Natural Resources,China(No.KF-2020-05-068)。
文摘The exploration of building detection plays an important role in urban planning,smart city and military.Aiming at the problem of high overlapping ratio of detection frames for dense building detection in high resolution remote sensing images,we present an effective YOLOv3 framework,corner regression-based YOLOv3(Correg-YOLOv3),to localize dense building accurately.This improved YOLOv3 algorithm establishes a vertex regression mechanism and an additional loss item about building vertex offsets relative to the center point of bounding box.By extending output dimensions,the trained model is able to output the rectangular bounding boxes and the building vertices meanwhile.Finally,we evaluate the performance of the Correg-YOLOv3 on our self-produced data set and provide a comparative analysis qualitatively and quantitatively.The experimental results achieve high performance in precision(96.45%),recall rate(95.75%),F1 score(96.10%)and average precision(98.05%),which were 2.73%,5.4%,4.1%and 4.73%higher than that of YOLOv3.Therefore,our proposed algorithm effectively tackles the problem of dense building detection in high resolution images.
基金National Natural Science Foundation of China(No.61761027)Postgraduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)
文摘There are problems such as incomplete edges and poor noise suppression when a single fixed morphological structuring element is used to detect the edges in remote sensing images. For this reason, a morphological edge detection method for remote sensing image based on variable structuring element is proposed. Firstly, the structuring elements with different scales and multiple directions are constructed according to the diversity of remote sensing imagery targets. In order to suppress the noise of the target background and highlight the edge of the image target in the remote sensing image by adaptive Top hat and Bottom hat transform, the corresponding adaptive morphological operations are constructed based on variable structuring elements; Secondly, adaptive morphological edge detection is used to obtain multiple images with different scales and directional edge features; Finally, the image edges are obtained by weighted summation of each direction edge, and then the least square is used to fit the edges for accurate location of the edge contour of the target. The experimental results show that the proposed method not only can detect the complete edge of remote sensing image, but also has high edge detection accuracy and superior anti-noise performance. Compared with classical edge detection and the morphological edge detection with a fixed single structuring element, the proposed method performs better in edge detection effect, and the accuracy of detection can reach 95 %
文摘Remote sensing techniques are proven methods for quantifying chlorophyll-a levels by inference algal concentrations in reservoirs. One traditional method is to use Landsat imagery and field data from a limited time period to develop a model for a reservoir which relates reflectance in various bands to measured algal (or chlorophyll-a) concentrations and use that model and associated imagery to determine spatial algal concentrations in the reservoir. In this work, we extend these techniques to use historical Landsat data over long time periods to develop seasonal models that will more accurately describe the conditions throughout the growing season. Previous work at Deer Creek included the development of a chlorophyll-a model using data from the months of August to September. This model did not account for seasonal variation and algal succession, which affects the relationship between measured reflectance and algal concentration. Early summer algal blooms are dominated by diatoms (yellow-brown), while the algae vary from chlorophyta (green) in the mid-summer to cyanobacteria (blue-green) in late summer months. This study presents and explores the development and use of seasonal algorithms based on reflective characteristics of various algal communities to create a more accurate model for the reservoir. This study uses water quality data collected over a 20-year period during non-ice conditions along with associated Landsat data. As the field measurements were not taken to support remote sensing measurements, this study evaluates the use of historical data to support remote sensing analysis. It is assumed that reservoir conditions do not change rapidly, the field data can be used to develop correlations with satellite imagery taken within a day of the field measurements, and the seasonal algal communities have different reflective properties (or colors). We present statistical analysis that shows the seasonal algorithms better fit the data than the non-seasonal model and the traditional model calibrated with late-season data. We recommend the use of sub-seasonal algorithms to more accurately model and predict water quality throughout the growing season.
基金funded by Thuyloi University Foundation for Science and Technologyunder Grant Number TLU.STF.19-02.
文摘In image processing, one of the most important steps is image segmentation. The objects in remote sensing images often have to be detected in order toperform next steps in image processing. Remote sensing images usually havelarge size and various spatial resolutions. Thus, detecting objects in remote sensing images is very complicated. In this paper, we develop a model to detectobjects in remote sensing images based on the combination of picture fuzzy clustering and MapReduce method (denoted as MPFC). Firstly, picture fuzzy clustering is applied to segment the input images. Then, MapReduce is used to reducethe runtime with the guarantee of quality. To convert data for MapReduce processing, two new procedures are introduced, including Map_PFC and Reduce_PFC.The formal representation and details of two these procedures are presented in thispaper. The experiments on satellite image and remote sensing image datasets aregiven to evaluate proposed model. Validity indices and time consuming are usedto compare proposed model to picture fuzzy clustering model. The values ofvalidity indices show that picture fuzzy clustering integrated to MapReduce getsbetter quality of segmentation than using picture fuzzy clustering only. Moreover,on two selected image datasets, the run time of MPFC model is much less thanthat of picture fuzzy clustering.
基金National 1000 Young Talents Plan of ChinaNational Natural Science Foundation of China(61420106007,61671387,61871325)DECRA of Australica Resenrch Council (DE140100180).
文摘alient object detection aims at identifying the visually interesting object regions that are consistent with human perception. Multispectral remote sensing images provide rich radiometric information in revealing the physical properties of the observed objects, which leads to great potential to perform salient object detection for remote sensing images. Conventional salient object detection methods often employ handcrafted features to predict saliency by evaluating the pixel-wise or superpixel-wise contrast. With the recent use of deep learning framework, in particular, fully convolutional neural networks, there has been profound progress in visual saliency detection. However, this success has not been extended to multispectral remote sensing images, and existing multispectral salient object detection methods are still mainly based on handcrafted features, essentially due to the difficulties in image acquisition and labeling. In this paper, we propose a novel deep residual network based on a top-down model, which is trained in an end-to-end manner to tackle the above issues in multispectral salient object detection. Our model effectively exploits the saliency cues at different levels of the deep residual network. To overcome the limited availability of remote sensing images in training of our deep residual network, we also introduce a new spectral image reconstruction model that can generate multispectral images from RGB images. Our extensive experimental results using both multispectral and RGB salient object detection datasets demonstrate a significant performance improvement of more than 10% improvement compared with the state-of-the-art methods.
文摘Algae blooms pose a threat to water quality by depleting oxygen during decomposition and also cause other issues with water quality and water use. Algae biomass is traditional monitored through field samples analyzed for chlorophyll-a, a pigment present in all algae. Field sampling can be time- and cost-intensive, especially in areas that are difficult to access and provides only limited spatial coverage. Estimations of algal biomass based on remote sensing data have been explored over the past two decades as a supplement to information obtained from limited field samples. We use Landsat data to develop and demonstrate seasonal remote sensing models, a relatively recent method, to evaluate spatial and temporal algae distributions for the Jordanelle Reservoir, located in north-central Utah. Remote sensing of chlorophyll as a monitoring and analysis method can provide a more spatially complete representation of algae distribution and biomass;information that is difficult to obtain using point samples.
基金Supported by the National Natural Science Foundation of China (No.40071061).
文摘In the edge detection of Remote Sensing (RS) image, the useful detail losing and the spurious edge often appear. To solve the problem, the authors uses the dyadic wavelet to detect the edge of surface features by combining the edge detecting with the multi-resolution analyzing of the wavelet transform. Via the dyadic wavelet decomposing, the RS image of a certain appropriate scale is obtained, and the edge data of the plane and the upright directions are respectively figured out, then the gradient vector module of the surface features is worked out. By tracing them, the authors get the edge data of the object, therefore build the RS image which obtains the checked edge. This method can depress the effect of noise and examine exactly the edge data of the object by rule and line. With an experiment of an RS image which obtains an airport, the authors certificate the feasibility of the application of dyadic wavelet in the object edge detection.
文摘A new edge detector based on the nonlinear intensity of curved surface was proposed. The edge detector describes the largest curvature and the smallest curvature of curved surface, therefore it can reflect the real largest direction of image edge jump. By the new edge detector, it is convenient to calculate the curvature in any direction of the curved surface and the curvature can be used in the identification of edge direction and the feature extraction of objects on remote sensing image.
基金Supported by a Department of Science and Innovation(DSI)-National Research Foundation(NRF)Thuthuka Grant(Grant UID:121973)and DSI-NRF CIMERA.
文摘Most known mineral deposits were discovered by accident using expensive,time-consuming,and knowledgebased methods such as stream sediment geochemical data,diamond drilling,reconnaissance geochemical and geophysical surveys,and/or remote sensing.Recent years have seen a decrease in the number of newly discovered mineral deposits and a rise in demand for critical raw materials,prompting exploration geologists to seek more efficient and inventive ways for processing various data types at different phases of mineral exploration.Remote sensing is one of the most sought-after tools for early-phase mineral prospecting because of its broad coverage and low cost.Remote sensing images from satellites are publicly available and can be utilised for lithological mapping and mineral exploitation.In this study,we extend an artificial intelligence-based,unsupervised anomaly detection method to identify iron deposit occurrence using Landsat-8 Operational Land Imager(OLI)satellite imagery and machine learning.The novelty in our method includes:(1)knowledge-guided and unsupervised anomaly detection that does not assume any specific anomaly signatures;(2)detection of anomalies occurs only in the variable domain;and(3)a choice of a range of machine learning algorithms to balance between explain-ability and performance.Our new unsupervised method detects anomalies through three successive stages,namely(a)stage Ⅰ–acquisition of satellite imagery,data processing and selection of bands,(b)stage Ⅱ–predictive modelling and anomaly detection,and(c)stage Ⅲ–construction of anomaly maps and analysis.In this study,the new method was tested over the Assen iron deposit in the Transvaal Supergroup(South Africa).It detected both the known areas of the Assen iron deposit and additional deposit occurrence features around the Assen iron mine that were not known.To summarise the anomalies in the area,principal component analysis was used on the reconstruction errors across all modelled bands.Our method enhanced the Assen deposit as an anomaly and attenuated the background,including anthropogenic structural anomalies,which resulted in substantially improved visual contrast and delineation of the iron deposit relative to the background.The results demonstrate the robustness of the proposed unsupervised anomaly detection method,and it could be useful for the delineation of mineral exploration targets.In particular,the method will be useful in areas where no data labels exist regarding the existence or specific spectral signatures of anomalies,such as mineral deposits under greenfield exploration.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R136)PrincessNourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4210118DSR28).
文摘Object detection(OD)in remote sensing images(RSI)acts as a vital part in numerous civilian and military application areas,like urban planning,geographic information system(GIS),and search and rescue functions.Vehicle recognition from RSIs remained a challenging process because of the difficulty of background data and the redundancy of recognition regions.The latest advancements in deep learning(DL)approaches permit the design of effectual OD approaches.This study develops an Artificial Ecosystem Optimizer with Deep Convolutional Neural Network for Vehicle Detection(AEODCNN-VD)model on Remote Sensing Images.The proposed AEODCNN-VD model focuses on the identification of vehicles accurately and rapidly.To detect vehicles,the presented AEODCNN-VD model employs single shot detector(SSD)with Inception network as a baseline model.In addition,Multiway Feature Pyramid Network(MFPN)is used for handling objects of varying sizes in RSIs.The features from the Inception model are passed into theMFPNformultiway andmultiscale feature fusion.Finally,the fused features are passed into bounding box and class prediction networks.For enhancing the detection efficiency of the AEODCNN-VD approach,AEO based hyperparameter optimizer is used,which is stimulated by the energy transfer strategies such as production,consumption,and decomposition in an ecosystem.The performance validation of the presentedmethod on benchmark datasets showed promising performance over recent DL models.
基金Funding for this research was provided by 511 Shaanxi Province’s Key Research and Development Plan(No.2022NY-087).
文摘To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements.
文摘cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5 d]imidazole(BCHMX)is an advanced energetic compound that expected to spread worldwide in the near future.Since,no approved remote detection methods were reported in current literature for this material,we performed hyper-spectral imaging and laser induced fluorescence(LIF)to a BCHMX sample under low laser fluence for determining the optimum laser wavelength used in any future BCHMX-LIF based remote detection systems.For this purpose,an experimental setup consisted of a sun spectrum lamp and hyper-spectral camera was built to illuminate and image white powder samples of BCHMX in comparison with the traditional explosives,HMX(1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane),RDX(1,3,5-trinitro-1,3,5-triazacyclohexane),PETN(2,2-Bis[(nitroxy)methyl]propane-1,3-diyldinitrate).The imaging reveals strong BCHMX sample absorption contrast among other samples at wavelength ranging from 400 to 410 nm.When light source was replaced by a 405 nm laser diode illuminator,a strong BCHMX sample LIF at the spectral range from 425 to 700 nm was observed under low laser fluence condition of 0.1 mJ/cm^(2).Finally,we demonstrated successfully the ability of the 405 nm LIF and the hyperspectral imaging technique to detect finger print traces of BCHMX on white cellulose fabric from a distance of 15 m and a detection limit of 1 mg/cm^(2).