期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
A Deformable Network with Attention Mechanism for Retinal Vessel Segmentation
1
作者 Xiaolong Zhu Wenjian Li +2 位作者 Weihang Zhang Dongwei Li Huiqi Li 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期186-193,共8页
The intensive application of deep learning in medical image processing has facilitated the advancement of automatic retinal vessel segmentation research.To overcome the limitation that traditional U-shaped vessel segm... The intensive application of deep learning in medical image processing has facilitated the advancement of automatic retinal vessel segmentation research.To overcome the limitation that traditional U-shaped vessel segmentation networks fail to extract features in fundus image sufficiently,we propose a novel network(DSeU-net)based on deformable convolution and squeeze excitation residual module.The deformable convolution is utilized to dynamically adjust the receptive field for the feature extraction of retinal vessel.And the squeeze excitation residual module is used to scale the weights of the low-level features so that the network learns the complex relationships of the different feature layers efficiently.We validate the DSeU-net on three public retinal vessel segmentation datasets including DRIVE,CHASEDB1,and STARE,and the experimental results demonstrate the satisfactory segmentation performance of the network. 展开更多
关键词 retinal vessel segmentation deformable convolution attention mechanism deep learning
在线阅读 下载PDF
MF~2ResU-Net:a multi-feature fusion deep learning architecture for retinal blood vessel segmentation
2
作者 CUI Zhenchao SONG Shujie QI Jing 《Digital Chinese Medicine》 2022年第4期406-418,共13页
Objective For computer-aided Chinese medical diagnosis and aiming at the problem of insufficient segmentation,a novel multi-level method based on the multi-scale fusion residual neural network(MF2ResU-Net)model is pro... Objective For computer-aided Chinese medical diagnosis and aiming at the problem of insufficient segmentation,a novel multi-level method based on the multi-scale fusion residual neural network(MF2ResU-Net)model is proposed.Methods To obtain refined features of retinal blood vessels,three cascade connected UNet networks are employed.To deal with the problem of difference between the parts of encoder and decoder,in MF2ResU-Net,shortcut connections are used to combine the encoder and decoder layers in the blocks.To refine the feature of segmentation,atrous spatial pyramid pooling(ASPP)is embedded to achieve multi-scale features for the final segmentation networks.Results The MF2ResU-Net was superior to the existing methods on the criteria of sensitivity(Sen),specificity(Spe),accuracy(ACC),and area under curve(AUC),the values of which are 0.8013 and 0.8102,0.9842 and 0.9809,0.9700 and 0.9776,and 0.9797 and 0.9837,respectively for DRIVE and CHASE DB1.The results of experiments demonstrated the effectiveness and robustness of the model in the segmentation of complex curvature and small blood vessels.Conclusion Based on residual connections and multi-feature fusion,the proposed method can obtain accurate segmentation of retinal blood vessels by refining the segmentation features,which can provide another diagnosis method for computer-aided Chinese medical diagnosis. 展开更多
关键词 Medical image processing Atrous space pyramid pooling(ASPP) Residual neural network Multi-level model retinal vessels segmentation
在线阅读 下载PDF
MIA-UNet:Multi-Scale Iterative Aggregation U-Network for Retinal Vessel Segmentation 被引量:2
3
作者 Linfang Yu Zhen Qin +1 位作者 Yi Ding Zhiguang Qin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期805-828,共24页
As an important part of the new generation of information technology,the Internet of Things(IoT)has been widely concerned and regarded as an enabling technology of the next generation of health care system.The fundus ... As an important part of the new generation of information technology,the Internet of Things(IoT)has been widely concerned and regarded as an enabling technology of the next generation of health care system.The fundus photography equipment is connected to the cloud platform through the IoT,so as to realize the realtime uploading of fundus images and the rapid issuance of diagnostic suggestions by artificial intelligence.At the same time,important security and privacy issues have emerged.The data uploaded to the cloud platform involves more personal attributes,health status and medical application data of patients.Once leaked,abused or improperly disclosed,personal information security will be violated.Therefore,it is important to address the security and privacy issues of massive medical and healthcare equipment connecting to the infrastructure of IoT healthcare and health systems.To meet this challenge,we propose MIA-UNet,a multi-scale iterative aggregation U-network,which aims to achieve accurate and efficient retinal vessel segmentation for ophthalmic auxiliary diagnosis while ensuring that the network has low computational complexity to adapt to mobile terminals.In this way,users do not need to upload the data to the cloud platform,and can analyze and process the fundus images on their own mobile terminals,thus eliminating the leakage of personal information.Specifically,the interconnection between encoder and decoder,as well as the internal connection between decoder subnetworks in classic U-Net are redefined and redesigned.Furthermore,we propose a hybrid loss function to smooth the gradient and deal with the imbalance between foreground and background.Compared with the UNet,the segmentation performance of the proposed network is significantly improved on the premise that the number of parameters is only increased by 2%.When applied to three publicly available datasets:DRIVE,STARE and CHASE DB1,the proposed network achieves the accuracy/F1-score of 96.33%/84.34%,97.12%/83.17%and 97.06%/84.10%,respectively.The experimental results show that the MIA-UNet is superior to the state-of-the-art methods. 展开更多
关键词 retinal vessel segmentation security and privacy redesigned skip connection feature maps aggregation hybrid loss function
在线阅读 下载PDF
SepFE:Separable Fusion Enhanced Network for Retinal Vessel Segmentation 被引量:2
4
作者 Yun Wu Ge Jiao Jiahao Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2465-2485,共21页
The accurate and automatic segmentation of retinal vessels fromfundus images is critical for the early diagnosis and prevention ofmany eye diseases,such as diabetic retinopathy(DR).Existing retinal vessel segmentation... The accurate and automatic segmentation of retinal vessels fromfundus images is critical for the early diagnosis and prevention ofmany eye diseases,such as diabetic retinopathy(DR).Existing retinal vessel segmentation approaches based on convolutional neural networks(CNNs)have achieved remarkable effectiveness.Here,we extend a retinal vessel segmentation model with low complexity and high performance based on U-Net,which is one of the most popular architectures.In view of the excellent work of depth-wise separable convolution,we introduce it to replace the standard convolutional layer.The complexity of the proposed model is reduced by decreasing the number of parameters and calculations required for themodel.To ensure performance while lowering redundant parameters,we integrate the pre-trained MobileNet V2 into the encoder.Then,a feature fusion residual module(FFRM)is designed to facilitate complementary strengths by enhancing the effective fusion between adjacent levels,which alleviates extraneous clutter introduced by direct fusion.Finally,we provide detailed comparisons between the proposed SepFE and U-Net in three retinal image mainstream datasets(DRIVE,STARE,and CHASEDB1).The results show that the number of SepFE parameters is only 3%of U-Net,the Flops are only 8%of U-Net,and better segmentation performance is obtained.The superiority of SepFE is further demonstrated through comparisons with other advanced methods. 展开更多
关键词 retinal vessel segmentation U-Net depth-wise separable convolution feature fusion
在线阅读 下载PDF
DT-Net:Joint Dual-Input Transformer and CNN for Retinal Vessel Segmentation
5
作者 Wenran Jia Simin Ma +1 位作者 Peng Geng Yan Sun 《Computers, Materials & Continua》 SCIE EI 2023年第9期3393-3411,共19页
Retinal vessel segmentation in fundus images plays an essential role in the screening,diagnosis,and treatment of many diseases.The acquired fundus images generally have the following problems:uneven illumination,high ... Retinal vessel segmentation in fundus images plays an essential role in the screening,diagnosis,and treatment of many diseases.The acquired fundus images generally have the following problems:uneven illumination,high noise,and complex structure.It makes vessel segmentation very challenging.Previous methods of retinal vascular segmentation mainly use convolutional neural networks on U Network(U-Net)models,and they have many limitations and shortcomings,such as the loss of microvascular details at the end of the vessels.We address the limitations of convolution by introducing the transformer into retinal vessel segmentation.Therefore,we propose a hybrid method for retinal vessel segmentation based on modulated deformable convolution and the transformer,named DT-Net.Firstly,multi-scale image features are extracted by deformable convolution and multi-head selfattention(MHSA).Secondly,image information is recovered,and vessel morphology is refined by the proposed transformer decoder block.Finally,the local prediction results are obtained by the side output layer.The accuracy of the vessel segmentation is improved by the hybrid loss function.Experimental results show that our method obtains good segmentation performance on Specificity(SP),Sensitivity(SE),Accuracy(ACC),Curve(AUC),and F1-score on three publicly available fundus datasets such as DRIVE,STARE,and CHASE_DB1. 展开更多
关键词 retinal vessel segmentation deformable convolution MULTI-SCALE TRANSFORMER hybrid loss function
在线阅读 下载PDF
Dual-Branch-UNet: A Dual-Branch Convolutional Neural Network for Medical Image Segmentation 被引量:2
6
作者 Muwei Jian Ronghua Wu +2 位作者 Hongyu Chen Lanqi Fu Chengdong Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期705-716,共12页
In intelligent perception and diagnosis of medical equipment,the visual and morphological changes in retinal vessels are closely related to the severity of cardiovascular diseases(e.g.,diabetes and hypertension).Intel... In intelligent perception and diagnosis of medical equipment,the visual and morphological changes in retinal vessels are closely related to the severity of cardiovascular diseases(e.g.,diabetes and hypertension).Intelligent auxiliary diagnosis of these diseases depends on the accuracy of the retinal vascular segmentation results.To address this challenge,we design a Dual-Branch-UNet framework,which comprises a Dual-Branch encoder structure for feature extraction based on the traditional U-Net model for medical image segmentation.To be more explicit,we utilize a novel parallel encoder made up of various convolutional modules to enhance the encoder portion of the original U-Net.Then,image features are combined at each layer to produce richer semantic data and the model’s capacity is adjusted to various input images.Meanwhile,in the lower sampling section,we give up pooling and conduct the lower sampling by convolution operation to control step size for information fusion.We also employ an attentionmodule in the decoder stage to filter the image noises so as to lessen the response of irrelevant features.Experiments are verified and compared on the DRIVE and ARIA datasets for retinal vessels segmentation.The proposed Dual-Branch-UNet has proved to be superior to other five typical state-of-the-art methods. 展开更多
关键词 Convolutional neural network medical image processing retinal vessel segmentation
在线阅读 下载PDF
Modified Anam-Net Based Lightweight Deep Learning Model for Retinal Vessel Segmentation
7
作者 Syed Irtaza Haider Khursheed Aurangzeb Musaed Alhussein 《Computers, Materials & Continua》 SCIE EI 2022年第10期1501-1526,共26页
The accurate segmentation of retinal vessels is a challenging taskdue to the presence of various pathologies as well as the low-contrast ofthin vessels and non-uniform illumination. In recent years, encoder-decodernet... The accurate segmentation of retinal vessels is a challenging taskdue to the presence of various pathologies as well as the low-contrast ofthin vessels and non-uniform illumination. In recent years, encoder-decodernetworks have achieved outstanding performance in retinal vessel segmentation at the cost of high computational complexity. To address the aforementioned challenges and to reduce the computational complexity, we proposea lightweight convolutional neural network (CNN)-based encoder-decoderdeep learning model for accurate retinal vessels segmentation. The proposeddeep learning model consists of encoder-decoder architecture along withbottleneck layers that consist of depth-wise squeezing, followed by fullconvolution, and finally depth-wise stretching. The inspiration for the proposed model is taken from the recently developed Anam-Net model, whichwas tested on CT images for COVID-19 identification. For our lightweightmodel, we used a stack of two 3 × 3 convolution layers (without spatialpooling in between) instead of a single 3 × 3 convolution layer as proposedin Anam-Net to increase the receptive field and to reduce the trainableparameters. The proposed method includes fewer filters in all convolutionallayers than the original Anam-Net and does not have an increasing numberof filters for decreasing resolution. These modifications do not compromiseon the segmentation accuracy, but they do make the architecture significantlylighter in terms of the number of trainable parameters and computation time.The proposed architecture has comparatively fewer parameters (1.01M) thanAnam-Net (4.47M), U-Net (31.05M), SegNet (29.50M), and most of the otherrecent works. The proposed model does not require any problem-specificpre- or post-processing, nor does it rely on handcrafted features. In addition,the attribute of being efficient in terms of segmentation accuracy as well aslightweight makes the proposed method a suitable candidate to be used in thescreening platforms at the point of care. We evaluated our proposed modelon open-access datasets namely, DRIVE, STARE, and CHASE_DB. Theexperimental results show that the proposed model outperforms several stateof-the-art methods, such as U-Net and its variants, fully convolutional network (FCN), SegNet, CCNet, ResWNet, residual connection-based encoderdecoder network (RCED-Net), and scale-space approx. network (SSANet) in terms of {dice coefficient, sensitivity (SN), accuracy (ACC), and the areaunder the ROC curve (AUC)} with the scores of {0.8184, 0.8561, 0.9669, and0.9868} on the DRIVE dataset, the scores of {0.8233, 0.8581, 0.9726, and0.9901} on the STARE dataset, and the scores of {0.8138, 0.8604, 0.9752,and 0.9906} on the CHASE_DB dataset. Additionally, we perform crosstraining experiments on the DRIVE and STARE datasets. The result of thisexperiment indicates the generalization ability and robustness of the proposedmodel. 展开更多
关键词 Anam-Net convolutional neural network cross-database training data augmentation deep learning fundus images retinal vessel segmentation semantic segmentation
在线阅读 下载PDF
Analysis of normal human retinal vascular network architecture using multifractal geometry 被引量:1
8
作者 Stefan Talu Sebastian Stach +2 位作者 Dan Mihai Calugaru Carmen Alina Lupascu Simona Delia Nicoara 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第3期434-438,共5页
AIM:To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina.METHODS:Fifty volunteers were enrolled in ... AIM:To apply the multifractal analysis method as a quantitative approach to a comprehensive description of the microvascular network architecture of the normal human retina.METHODS:Fifty volunteers were enrolled in this study in the Ophthalmological Clinic of Cluj-Napoca,Romania,between January 2012 and January 2014. A set of 100 segmented and skeletonised human retinal images,corresponding to normal states of the retina were studied. An automatic unsupervised method for retinal vessel segmentation was applied before multifractal analysis. The multifractal analysis of digital retinal images was made with computer algorithms,applying the standard boxcounting method. Statistical analyses were performed using the Graph Pad In Stat software.RESULTS:The architecture of normal human retinal microvascular network was able to be described using the multifractal geometry. The average of generalized dimensions(D_q)for q=0,1,2,the width of the multifractal spectrum(Δα=α_(max)-α_(min))and the spectrum arms' heights difference(│Δf│)of the normal images were expressed as mean±standard deviation(SD):for segmented versions,D_0=1.7014±0.0057; D_1=1.6507±0.0058; D_2=1.5772±0.0059; Δα=0.92441±0.0085; │Δf│= 0.1453±0.0051; for skeletonised versions,D_0=1.6303±0.0051; D_1=1.6012±0.0059; D_2=1.5531± 0.0058; Δα=0.65032±0.0162; │Δf│= 0.0238±0.0161. The average of generalized dimensions(D_q)for q=0,1,2,the width of the multifractal spectrum(Δα)and the spectrum arms' heights difference(│Δf│)of the segmented versions was slightly greater than the skeletonised versions.CONCLUSION:The multifractal analysis of fundus photographs may be used as a quantitative parameter for the evaluation of the complex three-dimensional structure of the retinal microvasculature as a potential marker for early detection of topological changes associated with retinal diseases. 展开更多
关键词 generalized dimensions multifractal retinal vessel segmentation retinal image analysis retinal microvasculature standard box-counting method
在线阅读 下载PDF
A saliency and Gaussian net model for retinal vessel segmentation 被引量:2
9
作者 Lan-yan XUE Jia-wen LIN +2 位作者 Xin-rong CAO Shao-hua ZHENG Lun YU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第8期1075-1087,共13页
Retinal vessel segmentation is a significant problem in the analysis of fundus images.A novel deep learning structure called the Gaussian net(GNET)model combined with a saliency model is proposed for retinal vessel se... Retinal vessel segmentation is a significant problem in the analysis of fundus images.A novel deep learning structure called the Gaussian net(GNET)model combined with a saliency model is proposed for retinal vessel segmentation.A saliency image is used as the input of the GNET model replacing the original image.The GNET model adopts a bilaterally symmetrical structure.In the left structure,the first layer is upsampling and the other layers are max-pooling.In the right structure,the final layer is max-pooling and the other layers are upsampling.The proposed approach is evaluated using the DRIVE database.Experimental results indicate that the GNET model can obtain more precise features and subtle details than the UNET models.The proposed algorithm performs well in extracting vessel networks,and is more accurate than other deep learning methods.Retinal vessel segmentation can help extract vessel change characteristics and provide a basis for screening the cerebrovascular diseases. 展开更多
关键词 retinal vessel segmentation Saliency model Gaussian net(GNET) Feature learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部