Dual-frequency multi-constellation(DFMC) satellitebased augmentation system(SBAS) does not broadcast fast correction, which is important in reducing range error in L1-only SBAS.Meanwhile, the integrity bound of a sate...Dual-frequency multi-constellation(DFMC) satellitebased augmentation system(SBAS) does not broadcast fast correction, which is important in reducing range error in L1-only SBAS.Meanwhile, the integrity bound of a satellite at low elevation is so loose that the service availability is decreased near the boundary of the service area. Therefore, the computation of satellite clockephemeris(SCE) augmentation parameters needs improvement.We propose a method introducing SCE prediction to eliminate most of the SCE error resulting from global navigation satellite system GNSS broadcast message. Compared with the signal-inspace(SIS) after applying augmentation parameters broadcast by the wide area augmentation system(WAAS), SIS accuracy after applying augmentation parameters computed by the proposed algorithm is improved and SIS integrity is ensured. With global positioning system(GPS) only, the availability of category-I(CAT-I)with a vertical alert level of 15 m in continental United States is about 90%, while the availability in the other part of the WAAS service area is markedly improved. With measurements made by the stations from the crustal movement observation network of China,users in some part of China can obtain CAT-I(vertical alert limit is 15 m) service with GPS and global navigation satellite system(GLONASS).展开更多
Satellite integrity monitoring is vital to satellite-based augmentation systems,and can provide the confdence of the diferential corrections for each monitored satellite satisfying the stringent safety-of-life require...Satellite integrity monitoring is vital to satellite-based augmentation systems,and can provide the confdence of the diferential corrections for each monitored satellite satisfying the stringent safety-of-life requirements.Satellite integrity information includes the user diferential range error and the clock-ephemeris covariance which are used to deduce integrity probability.However,the existing direct statistic methods sufer from a low integrity bounding percentage.To address this problem,we develop an improved covariance-based method to determine satellite integrity information and evaluate its performance in the range domain and position domain.Compared with the direct statistic method,the integrity bounding percentage is improved by 24.91%and the availability by 5.63%.Compared with the covariance-based method,the convergence rate for the user diferential range error is improved by 8.04%.The proposed method is useful for the satellite integrity monitoring of a satellite-based augmentation system.展开更多
Cassava is the most widely distributed food crop in Central Africa. Chikwangue, also known as kwanga in the Republic of Congo, is a starchy fermented cassava product that is a staple food in the country. This work aim...Cassava is the most widely distributed food crop in Central Africa. Chikwangue, also known as kwanga in the Republic of Congo, is a starchy fermented cassava product that is a staple food in the country. This work aims to determine the composition of bioactive compounds in chikwangue, including biosurfactant-like molecules and proteins content. Antibacterial activities were investigated through the preliminary emulsification index of chikwangue and fermented paste. Antibacterial assay, 16S rRNA, cytK, hblD, nheB and entFM PCR amplifications, DNA sequence analysis, NCBI homology analysis, and phylogenic tree were performed using NGPhylogeny. fr and iTOL (interactive of live). Fermented cassava paste and chikwangue contain biosurfactants with an emulsification index of 50%. The total protein concentration in fermented cassava paste was 4 g/ml and the chikwangue was 2.5 g/mL Further sequence analysis showed that isolates shared a homology of up to 99.9% with Bacillus cereus PQ432941.1, B. licheniformis PQ432758.1, B. altitudinis PQ432754.1, B. subtilis PQ432759.1, B. mojavensis PQ432755.1, B. tequilensis MT994788.1, B. subtilis MT994789.1, Paenibacillus polymyxa PQ452544.1, B. velezensis PQ452545.1, B. thuringiensis PQ432763.1, B. pumilus PQ432762.1, B. subtilis MT994787.1, B. mycoides PQ432890.1, B. thuringiensis PQ432766.1, B. subtilis PQ432757.1 and B. amyloliquefaciens PQ432756.1. Importantly, the emulsification index (E24) ranged from 60 to 100% and the crude biosurfactant for the Bacillus strains mentioned above could easily inhibit the growth for pathogen Gram-negative bacteria (S. enterica, S. flexneri, E. coli, Klebsiella sp. and P. aeruginosa) with diameters ranging from 2.3 ± 0.1 cm to 5.5 ± 0.4 cm. On the other hand, the diameters of Gram-positive pathogenic bacteria (B. cereus and S. aureus) varied between 1.5 ± 0.5 cm and 4.0 ± 0.2 cm. These findings involve the promise purpose of Bacillus isolated from retted cassava, and this study systematically uncovered the biodiversity and distribution characteristics of retted paste cassava and chikwangue.展开更多
Objective:Although bariatric surgeries are widely performed around the world,patients frequently experience the recurrence of pre-existing gastroesophageal reflux disease(GERD)symptoms or develop new symptoms,some of ...Objective:Although bariatric surgeries are widely performed around the world,patients frequently experience the recurrence of pre-existing gastroesophageal reflux disease(GERD)symptoms or develop new symptoms,some of which are resistant to medical treatment.This study investigates the effect and outcome of magnetic sphincter augmentation(MSA),a minimally invasive treatment for GERD,in this population.Methods:A thorough search of the PubMed,Cochrane,Scopus,Web of Science,and Google Scholar databases from inception until June 6,2024 was performed to retrieve relevant studies that evaluated the effects of MSA on the GERD health-related quality of life(GERD-HRQL)score and the reduction in proton pump inhibitor(PPI)use in patients who underwent bariatric surgery.The“meta”package in RStudio version 2023.12.0 t 369 was used.Results:A total of eight studies were included in the systematic review and seven studies were included in the meta-analysis.MSA significantly reduced the GERD-HRQL score(MD?27.55[95%CI:30.99 to24.11],p<0.01)and PPI use(RR?0.23[95%CI:0.16 to 0.33],p<0.01).Conclusion:MSA is a viable treatment option for patients with GERD symptoms who undergo bariatric surgery.This approach showed promising results in terms of reducing the GERD-HRQL score and reducing the use of PPI.展开更多
Breast augmentation with implants is a popular cosmetic surgery that enhances breast volume and contour through various placement planes.In this review,we examine the impact of subglandular,subpectoral,and subfascial ...Breast augmentation with implants is a popular cosmetic surgery that enhances breast volume and contour through various placement planes.In this review,we examine the impact of subglandular,subpectoral,and subfascial implant planes on postoperative outcomes and complication rates.Subglandular placement offers simplicity but is associated with higher risks of capsular contracture,hematoma,and rippling in patients with low tissue coverage.The subpectoral plane,widely adopted for its natural appearance and reduced capsular contracture risk,may cause dynamic deformity due to muscle contraction.Although technically challenging,the subfascial plane combines the benefits of soft tissue support and reduced implant displacement.We highlight the importance of choosing an optimal implant plane tailored to each patient’s anatomical and aesthetic needs to enhance surgical outcomes and minimize complications.Further research is needed to validate long-term efficacy,particularly for subfascial placement.展开更多
The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to ...The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to be thoroughly investigated,primarily due to the complexity of considering mixed ground conditions and the imbalance in the number of instances between the two types of wear.This study developed a prediction model for abnormal TBM disc cutter wear,considering mixed ground conditions,by employing interpretable machine learning with data augmentation.An equivalent elastic modulus was used to consider the characteristics of mixed ground conditions,and wear data was obtained from 65 cutterhead intervention(CHI)reports covering both mixed ground and hard rock sections.With a balanced training dataset obtained by data augmentation,an extreme gradient boosting(XGB)model delivered acceptable results with an accuracy of 0.94,an F1-score of 0.808,and a recall of 0.8.In addition,the accuracy for each individual disc cutter exhibited low variability.When employing data augmentation,a significant improvement in recall was observed compared to when it was not used,although the difference in accuracy and F1-score was marginal.The subsequent model interpretation revealed the chamber pressure,cutter installation radius,and torque as significant contributors.Specifically,a threshold in chamber pressure was observed,which could induce abnormal wear.The study also explored how elevated values of these influential contributors correlate with abnormal wear.The proposed model offers a valuable tool for planning the replacement of abnormally worn disc cutters,enhancing the safety and efficiency of TBM operations.展开更多
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist...The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.展开更多
Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary w...Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary with a deformation condition.This study proposes a novel approach for accurately predicting an anisotropic deformation behavior of wrought Mg alloys using machine learning(ML)with data augmentation.The developed model combines four key strategies from data science:learning the entire flow curves,generative adversarial networks(GAN),algorithm-driven hyperparameter tuning,and gated recurrent unit(GRU)architecture.The proposed model,namely GAN-aided GRU,was extensively evaluated for various predictive scenarios,such as interpolation,extrapolation,and a limited dataset size.The model exhibited significant predictability and improved generalizability for estimating the anisotropic compressive behavior of ZK60 Mg alloys under 11 annealing conditions and for three loading directions.The GAN-aided GRU results were superior to those of previous ML models and constitutive equations.The superior performance was attributed to hyperparameter optimization,GAN-based data augmentation,and the inherent predictivity of the GRU for extrapolation.As a first attempt to employ ML techniques other than artificial neural networks,this study proposes a novel perspective on predicting the anisotropic deformation behaviors of wrought Mg alloys.展开更多
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende...Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.展开更多
Depth estimation is an important task in computer vision.Collecting data at scale for monocular depth estimation is challenging,as this task requires simultaneously capturing RGB images and depth information.Therefore...Depth estimation is an important task in computer vision.Collecting data at scale for monocular depth estimation is challenging,as this task requires simultaneously capturing RGB images and depth information.Therefore,data augmentation is crucial for this task.Existing data augmentationmethods often employ pixel-wise transformations,whichmay inadvertently disrupt edge features.In this paper,we propose a data augmentationmethod formonocular depth estimation,which we refer to as the Perpendicular-Cutdepth method.This method involves cutting realworld depth maps along perpendicular directions and pasting them onto input images,thereby diversifying the data without compromising edge features.To validate the effectiveness of the algorithm,we compared it with existing convolutional neural network(CNN)against the current mainstream data augmentation algorithms.Additionally,to verify the algorithm’s applicability to Transformer networks,we designed an encoder-decoder network structure based on Transformer to assess the generalization of our proposed algorithm.Experimental results demonstrate that,in the field of monocular depth estimation,our proposed method,Perpendicular-Cutdepth,outperforms traditional data augmentationmethods.On the indoor dataset NYU,our method increases accuracy from0.900 to 0.907 and reduces the error rate from0.357 to 0.351.On the outdoor dataset KITTI,our method improves accuracy from 0.9638 to 0.9642 and decreases the error rate from 0.060 to 0.0598.展开更多
Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have b...Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices.展开更多
Damage to parcels reduces customer satisfactionwith delivery services and increases return-logistics costs.This can be prevented by detecting and addressing the damage before the parcels reach the customer.Consequentl...Damage to parcels reduces customer satisfactionwith delivery services and increases return-logistics costs.This can be prevented by detecting and addressing the damage before the parcels reach the customer.Consequently,various studies have been conducted on deep learning techniques related to the detection of parcel damage.This study proposes a deep learning-based damage detectionmethod for various types of parcels.Themethod is intended to be part of a parcel information-recognition systemthat identifies the volume and shipping information of parcels,and determines whether they are damaged;this method is intended for use in the actual parcel-transportation process.For this purpose,1)the study acquired image data in an environment simulating the actual parcel-transportation process,and 2)the training dataset was expanded based on StyleGAN3 with adaptive discriminator augmentation.Additionally,3)a preliminary distinction was made between the appearance of parcels and their damage status to enhance the performance of the parcel damage detection model and analyze the causes of parcel damage.Finally,using the dataset constructed based on the proposed method,a damage type detection model was trained,and its mean average precision was confirmed.This model can improve customer satisfaction and reduce return costs for parcel delivery companies.展开更多
The performance of deep learning models is heavily reliant on the quality and quantity of train-ing data.Insufficient training data will lead to overfitting.However,in the task of alert-situation text classification,i...The performance of deep learning models is heavily reliant on the quality and quantity of train-ing data.Insufficient training data will lead to overfitting.However,in the task of alert-situation text classification,it is usually difficult to obtain a large amount of training data.This paper proposes a text data augmentation method based on masked language model(MLM),aiming to enhance the generalization capability of deep learning models by expanding the training data.The method em-ploys a Mask strategy to randomly conceal words in the text,effectively leveraging contextual infor-mation to predict and replace masked words based on MLM,thereby generating new training data.Three Mask strategies of character level,word level and N-gram are designed,and the performance of each Mask strategy under different Mask ratios is analyzed and studied.The experimental results show that the performance of the word-level Mask strategy is better than the traditional data augmen-tation method.展开更多
BACKGROUND There is an increasingly strong demand for appearance and physical beauty in social life,marriage,and other aspects with the development of society and the improvement of material living standards.An increa...BACKGROUND There is an increasingly strong demand for appearance and physical beauty in social life,marriage,and other aspects with the development of society and the improvement of material living standards.An increasing number of people have improved their appearance and physical shape through aesthetic plastic surgery.The female breast plays a significant role in physical beauty,and droopy or atrophied breasts can frequently lead to psychological inferiority and lack of confidence in women.This,in turn,can affect their mental health and quality of life.AIM To analyze preoperative and postoperative self-image pressure-level changes of autologous fat breast augmentation patients and their impact on social adaptability.METHODS We selected 160 patients who underwent autologous fat breast augmentation at the First Affiliated Hospital of Xinxiang Medical University from January 2020 to December 2022 using random sampling method.The general information,selfimage pressure level,and social adaptability of the patients were investigated using a basic information survey,body image self-assessment scale,and social adaptability scale.The self-image pressure-level changes and their effects on the social adaptability of patients before and after autologous fat breast augmentation were analyzed.RESULTS We collected 142 valid questionnaires.The single-factor analysis results showed no statistically significant difference in the self-image pressure level and social adaptability score of patients with different ages,marital status,and monthly income.However,there were significant differences in social adaptability among patients with different education levels and employment statuses.The correlation analysis results revealed a significant correlation between the self-image pressure level and social adaptability score before and after surgery.Multiple factors analysis results showed that the degree of concern caused by appearance in selfimage pressure,the degree of possible behavioral intervention,the related distress caused by body image,and the influence of body image on social life influenced the social adaptability of autologous fat breast augmentation patients.CONCLUSION The self-image pressure on autologous fat breast augmentation patients is inversely proportional to their social adaptability.展开更多
BACKGROUND Transcranial direct current stimulation(tDCS)is proven to be safe in treating various neurological conditions in children and adolescents.It is also an effective method in the treatment of OCD in adults.AIM...BACKGROUND Transcranial direct current stimulation(tDCS)is proven to be safe in treating various neurological conditions in children and adolescents.It is also an effective method in the treatment of OCD in adults.AIM To assess the safety and efficacy of tDCS as an add-on therapy in drug-naive adolescents with OCD.METHODS We studied drug-naïve adolescents with OCD,using a Children’s Yale-Brown obsessive-compulsive scale(CY-BOCS)scale to assess their condition.Both active and sham groups were given fluoxetine,and we applied cathode and anode over the supplementary motor area and deltoid for 20 min in 10 sessions.Reassessment occurred at 2,6,and 12 wk using CY-BOCS.RESULTS Eighteen adolescents completed the study(10-active,8-sham group).CY-BOCS scores from baseline to 12 wk reduced significantly in both groups but change at baseline to 2 wk was significant in the active group only.The mean change at 2 wk was more in the active group(11.8±7.77 vs 5.25±2.22,P=0.056).Adverse effects between the groups were comparable.CONCLUSION tDCS is safe and well tolerated for the treatment of OCD in adolescents.However,there is a need for further studies with a larger sample population to confirm the effectiveness of tDCS as early augmentation in OCD in this population.展开更多
Coal-rock interface identification technology was pivotal in automatically adjusting the shearer's cutting drum during coal mining.However,it also served as a technical bottleneck hindering the advancement of inte...Coal-rock interface identification technology was pivotal in automatically adjusting the shearer's cutting drum during coal mining.However,it also served as a technical bottleneck hindering the advancement of intelligent coal mining.This study aimed to address the poor accuracy of current coal-rock identification technology on comprehensive working faces,coupled with the limited availability of coal-rock datasets.The loss function of the SegFormer model was enhanced,the model's hyperparameters and learning rate were adjusted,and an automatic recognition method was proposed for coal-rock interfaces based on FL-SegFormer.Additionally,an experimental platform was constructed to simulate the dusty environment during coal-rock cutting by the shearer,enabling the collection of coal-rock test image datasets.The morphology-based algorithms were employed to expand the coal-rock image datasets through image rotation,color dithering,and Gaussian noise injection so as to augment the diversity and applicability of the datasets.As a result,a coal-rock image dataset comprising 8424 samples was generated.The findings demonstrated that the FL-SegFormer model achieved a Mean Intersection over Union(MIoU)and mean pixel accuracy(MPA)of 97.72%and 98.83%,respectively.The FLSegFormer model outperformed other models in terms of recognition accuracy,as evidenced by an MloU exceeding 95.70% of the original image.Furthermore,the FL-SegFormer model using original coal-rock images was validated from No.15205 working face of the Yulin test mine in northern Shaanxi.The calculated average error was only 1.77%,and the model operated at a rate of 46.96 frames per second,meeting the practical application and deployment requirements in underground settings.These results provided a theoretical foundation for achieving automatic and efficient mining with coal mining machines and the intelligent development of coal mines.展开更多
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)t...Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset.展开更多
The limited amount of data in the healthcare domain and the necessity of training samples for increased performance of deep learning models is a recurrent challenge,especially in medical imaging.Newborn Solutions aims...The limited amount of data in the healthcare domain and the necessity of training samples for increased performance of deep learning models is a recurrent challenge,especially in medical imaging.Newborn Solutions aims to enhance its non-invasive white blood cell counting device,Neosonics,by creating synthetic in vitro ultrasound images to facilitate a more efficient image generation process.This study addresses the data scarcity issue by designing and evaluating a continuous scalar conditional Generative Adversarial Network(GAN)to augment in vitro peritoneal dialysis ultrasound images,increasing both the volume and variability of training samples.The developed GAN architecture incorporates novel design features:varying kernel sizes in the generator’s transposed convolutional layers and a latent intermediate space,projecting noise and condition values for enhanced image resolution and specificity.The experimental results show that the GAN successfully generated diverse images of high visual quality,closely resembling real ultrasound samples.While visual results were promising,the use of GAN-based data augmentation did not consistently improve the performance of an image regressor in distinguishing features specific to varied white blood cell concentrations.Ultimately,while this continuous scalar conditional GAN model made strides in generating realistic images,further work is needed to achieve consistent gains in regression tasks,aiming for robust model generalization.展开更多
Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in ed...Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector.展开更多
Photonic platforms are gradually emerging as a promising option to encounter the ever-growing demand for artificial intelligence,among which photonic time-delay reservoir computing(TDRC)is widely anticipated.While suc...Photonic platforms are gradually emerging as a promising option to encounter the ever-growing demand for artificial intelligence,among which photonic time-delay reservoir computing(TDRC)is widely anticipated.While such a computing paradigm can only employ a single photonic device as the nonlinear node for data processing,the performance highly relies on the fading memory provided by the delay feedback loop(FL),which sets a restriction on the extensibility of physical implementation,especially for highly integrated chips.Here,we present a simplified photonic scheme for more flexible parameter configurations leveraging the designed quasi-convolution coding(QC),which completely gets rid of the dependence on FL.Unlike delay-based TDRC,encoded data in QC-based RC(QRC)enables temporal feature extraction,facilitating augmented memory capabilities.Thus,our proposed QRC is enabled to deal with time-related tasks or sequential data without the implementation of FL.Furthermore,we can implement this hardware with a low-power,easily integrable vertical-cavity surface-emitting laser for high-performance parallel processing.We illustrate the concept validation through simulation and experimental comparison of QRC and TDRC,wherein the simpler-structured QRC outperforms across various benchmark tasks.Our results may underscore an auspicious solution for the hardware implementation of deep neural networks.展开更多
文摘Dual-frequency multi-constellation(DFMC) satellitebased augmentation system(SBAS) does not broadcast fast correction, which is important in reducing range error in L1-only SBAS.Meanwhile, the integrity bound of a satellite at low elevation is so loose that the service availability is decreased near the boundary of the service area. Therefore, the computation of satellite clockephemeris(SCE) augmentation parameters needs improvement.We propose a method introducing SCE prediction to eliminate most of the SCE error resulting from global navigation satellite system GNSS broadcast message. Compared with the signal-inspace(SIS) after applying augmentation parameters broadcast by the wide area augmentation system(WAAS), SIS accuracy after applying augmentation parameters computed by the proposed algorithm is improved and SIS integrity is ensured. With global positioning system(GPS) only, the availability of category-I(CAT-I)with a vertical alert level of 15 m in continental United States is about 90%, while the availability in the other part of the WAAS service area is markedly improved. With measurements made by the stations from the crustal movement observation network of China,users in some part of China can obtain CAT-I(vertical alert limit is 15 m) service with GPS and global navigation satellite system(GLONASS).
基金supported by the Research Startup Funds from Tianjin University of Technology under Grant 01002101.
文摘Satellite integrity monitoring is vital to satellite-based augmentation systems,and can provide the confdence of the diferential corrections for each monitored satellite satisfying the stringent safety-of-life requirements.Satellite integrity information includes the user diferential range error and the clock-ephemeris covariance which are used to deduce integrity probability.However,the existing direct statistic methods sufer from a low integrity bounding percentage.To address this problem,we develop an improved covariance-based method to determine satellite integrity information and evaluate its performance in the range domain and position domain.Compared with the direct statistic method,the integrity bounding percentage is improved by 24.91%and the availability by 5.63%.Compared with the covariance-based method,the convergence rate for the user diferential range error is improved by 8.04%.The proposed method is useful for the satellite integrity monitoring of a satellite-based augmentation system.
文摘Cassava is the most widely distributed food crop in Central Africa. Chikwangue, also known as kwanga in the Republic of Congo, is a starchy fermented cassava product that is a staple food in the country. This work aims to determine the composition of bioactive compounds in chikwangue, including biosurfactant-like molecules and proteins content. Antibacterial activities were investigated through the preliminary emulsification index of chikwangue and fermented paste. Antibacterial assay, 16S rRNA, cytK, hblD, nheB and entFM PCR amplifications, DNA sequence analysis, NCBI homology analysis, and phylogenic tree were performed using NGPhylogeny. fr and iTOL (interactive of live). Fermented cassava paste and chikwangue contain biosurfactants with an emulsification index of 50%. The total protein concentration in fermented cassava paste was 4 g/ml and the chikwangue was 2.5 g/mL Further sequence analysis showed that isolates shared a homology of up to 99.9% with Bacillus cereus PQ432941.1, B. licheniformis PQ432758.1, B. altitudinis PQ432754.1, B. subtilis PQ432759.1, B. mojavensis PQ432755.1, B. tequilensis MT994788.1, B. subtilis MT994789.1, Paenibacillus polymyxa PQ452544.1, B. velezensis PQ452545.1, B. thuringiensis PQ432763.1, B. pumilus PQ432762.1, B. subtilis MT994787.1, B. mycoides PQ432890.1, B. thuringiensis PQ432766.1, B. subtilis PQ432757.1 and B. amyloliquefaciens PQ432756.1. Importantly, the emulsification index (E24) ranged from 60 to 100% and the crude biosurfactant for the Bacillus strains mentioned above could easily inhibit the growth for pathogen Gram-negative bacteria (S. enterica, S. flexneri, E. coli, Klebsiella sp. and P. aeruginosa) with diameters ranging from 2.3 ± 0.1 cm to 5.5 ± 0.4 cm. On the other hand, the diameters of Gram-positive pathogenic bacteria (B. cereus and S. aureus) varied between 1.5 ± 0.5 cm and 4.0 ± 0.2 cm. These findings involve the promise purpose of Bacillus isolated from retted cassava, and this study systematically uncovered the biodiversity and distribution characteristics of retted paste cassava and chikwangue.
文摘Objective:Although bariatric surgeries are widely performed around the world,patients frequently experience the recurrence of pre-existing gastroesophageal reflux disease(GERD)symptoms or develop new symptoms,some of which are resistant to medical treatment.This study investigates the effect and outcome of magnetic sphincter augmentation(MSA),a minimally invasive treatment for GERD,in this population.Methods:A thorough search of the PubMed,Cochrane,Scopus,Web of Science,and Google Scholar databases from inception until June 6,2024 was performed to retrieve relevant studies that evaluated the effects of MSA on the GERD health-related quality of life(GERD-HRQL)score and the reduction in proton pump inhibitor(PPI)use in patients who underwent bariatric surgery.The“meta”package in RStudio version 2023.12.0 t 369 was used.Results:A total of eight studies were included in the systematic review and seven studies were included in the meta-analysis.MSA significantly reduced the GERD-HRQL score(MD?27.55[95%CI:30.99 to24.11],p<0.01)and PPI use(RR?0.23[95%CI:0.16 to 0.33],p<0.01).Conclusion:MSA is a viable treatment option for patients with GERD symptoms who undergo bariatric surgery.This approach showed promising results in terms of reducing the GERD-HRQL score and reducing the use of PPI.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(grant no.LQ22H150005).
文摘Breast augmentation with implants is a popular cosmetic surgery that enhances breast volume and contour through various placement planes.In this review,we examine the impact of subglandular,subpectoral,and subfascial implant planes on postoperative outcomes and complication rates.Subglandular placement offers simplicity but is associated with higher risks of capsular contracture,hematoma,and rippling in patients with low tissue coverage.The subpectoral plane,widely adopted for its natural appearance and reduced capsular contracture risk,may cause dynamic deformity due to muscle contraction.Although technically challenging,the subfascial plane combines the benefits of soft tissue support and reduced implant displacement.We highlight the importance of choosing an optimal implant plane tailored to each patient’s anatomical and aesthetic needs to enhance surgical outcomes and minimize complications.Further research is needed to validate long-term efficacy,particularly for subfascial placement.
基金support of the“National R&D Project for Smart Construction Technology (Grant No.RS-2020-KA157074)”funded by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land,Infrastructure and Transport,and managed by the Korea Expressway Corporation.
文摘The widespread adoption of tunnel boring machines(TBMs)has led to an increased focus on disc cutter wear,including both normal and abnormal types,for efficient and safe TBM excavation.However,abnormal wear has yet to be thoroughly investigated,primarily due to the complexity of considering mixed ground conditions and the imbalance in the number of instances between the two types of wear.This study developed a prediction model for abnormal TBM disc cutter wear,considering mixed ground conditions,by employing interpretable machine learning with data augmentation.An equivalent elastic modulus was used to consider the characteristics of mixed ground conditions,and wear data was obtained from 65 cutterhead intervention(CHI)reports covering both mixed ground and hard rock sections.With a balanced training dataset obtained by data augmentation,an extreme gradient boosting(XGB)model delivered acceptable results with an accuracy of 0.94,an F1-score of 0.808,and a recall of 0.8.In addition,the accuracy for each individual disc cutter exhibited low variability.When employing data augmentation,a significant improvement in recall was observed compared to when it was not used,although the difference in accuracy and F1-score was marginal.The subsequent model interpretation revealed the chamber pressure,cutter installation radius,and torque as significant contributors.Specifically,a threshold in chamber pressure was observed,which could induce abnormal wear.The study also explored how elevated values of these influential contributors correlate with abnormal wear.The proposed model offers a valuable tool for planning the replacement of abnormally worn disc cutters,enhancing the safety and efficiency of TBM operations.
文摘The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications.
基金Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(Grant No.20214000000140,Graduate School of Convergence for Clean Energy Integrated Power Generation)Korea Basic Science Institute(National Research Facilities and Equipment Center)grant funded by the Ministry of Education(2021R1A6C101A449)the National Research Foundation of Korea grant funded by the Ministry of Science and ICT(2021R1A2C1095139),Republic of Korea。
文摘Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary with a deformation condition.This study proposes a novel approach for accurately predicting an anisotropic deformation behavior of wrought Mg alloys using machine learning(ML)with data augmentation.The developed model combines four key strategies from data science:learning the entire flow curves,generative adversarial networks(GAN),algorithm-driven hyperparameter tuning,and gated recurrent unit(GRU)architecture.The proposed model,namely GAN-aided GRU,was extensively evaluated for various predictive scenarios,such as interpolation,extrapolation,and a limited dataset size.The model exhibited significant predictability and improved generalizability for estimating the anisotropic compressive behavior of ZK60 Mg alloys under 11 annealing conditions and for three loading directions.The GAN-aided GRU results were superior to those of previous ML models and constitutive equations.The superior performance was attributed to hyperparameter optimization,GAN-based data augmentation,and the inherent predictivity of the GRU for extrapolation.As a first attempt to employ ML techniques other than artificial neural networks,this study proposes a novel perspective on predicting the anisotropic deformation behaviors of wrought Mg alloys.
基金This research was financially supported by the Ministry of Trade,Industry,and Energy(MOTIE),Korea,under the“Project for Research and Development with Middle Markets Enterprises and DNA(Data,Network,AI)Universities”(AI-based Safety Assessment and Management System for Concrete Structures)(ReferenceNumber P0024559)supervised by theKorea Institute for Advancement of Technology(KIAT).
文摘Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight.
基金the Grant of Program for Scientific ResearchInnovation Team in Colleges and Universities of Anhui Province(2022AH010095)The Grant ofScientific Research and Talent Development Foundation of the Hefei University(No.21-22RC15)+2 种基金The Key Research Plan of Anhui Province(No.2022k07020011)The Grant of Anhui Provincial940 CMC,2024,vol.79,no.1Natural Science Foundation,No.2308085MF213The Open Fund of Information Materials andIntelligent Sensing Laboratory of Anhui Province IMIS202205,as well as the AI General ComputingPlatform of Hefei University.
文摘Depth estimation is an important task in computer vision.Collecting data at scale for monocular depth estimation is challenging,as this task requires simultaneously capturing RGB images and depth information.Therefore,data augmentation is crucial for this task.Existing data augmentationmethods often employ pixel-wise transformations,whichmay inadvertently disrupt edge features.In this paper,we propose a data augmentationmethod formonocular depth estimation,which we refer to as the Perpendicular-Cutdepth method.This method involves cutting realworld depth maps along perpendicular directions and pasting them onto input images,thereby diversifying the data without compromising edge features.To validate the effectiveness of the algorithm,we compared it with existing convolutional neural network(CNN)against the current mainstream data augmentation algorithms.Additionally,to verify the algorithm’s applicability to Transformer networks,we designed an encoder-decoder network structure based on Transformer to assess the generalization of our proposed algorithm.Experimental results demonstrate that,in the field of monocular depth estimation,our proposed method,Perpendicular-Cutdepth,outperforms traditional data augmentationmethods.On the indoor dataset NYU,our method increases accuracy from0.900 to 0.907 and reduces the error rate from0.357 to 0.351.On the outdoor dataset KITTI,our method improves accuracy from 0.9638 to 0.9642 and decreases the error rate from 0.060 to 0.0598.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB2803900)the National Natural Science Foundation of China(Grant Nos.61974075 and 61704121)+2 种基金the Natural Science Foundation of Tianjin Municipality(Grant Nos.22JCZDJC00460 and 19JCQNJC00700)Tianjin Municipal Education Commission(Grant No.2019KJ028)Fundamental Research Funds for the Central Universities(Grant No.22JCZDJC00460).
文摘Mechanically cleaved two-dimensional materials are random in size and thickness.Recognizing atomically thin flakes by human experts is inefficient and unsuitable for scalable production.Deep learning algorithms have been adopted as an alternative,nevertheless a major challenge is a lack of sufficient actual training images.Here we report the generation of synthetic two-dimensional materials images using StyleGAN3 to complement the dataset.DeepLabv3Plus network is trained with the synthetic images which reduces overfitting and improves recognition accuracy to over 90%.A semi-supervisory technique for labeling images is introduced to reduce manual efforts.The sharper edges recognized by this method facilitate material stacking with precise edge alignment,which benefits exploring novel properties of layered-material devices that crucially depend on the interlayer twist-angle.This feasible and efficient method allows for the rapid and high-quality manufacturing of atomically thin materials and devices.
基金supported by a Korea Agency for Infrastructure Technology Advancement(KAIA)grant funded by the Ministry of Land,Infrastructure,and Transport(Grant 1615013176)(https://www.kaia.re.kr/eng/main.do,accessed on 01/06/2024)supported by a Korea Evaluation Institute of Industrial Technology(KEIT)grant funded by the Korean Government(MOTIE)(141518499)(https://www.keit.re.kr/index.es?sid=a2,accessed on 01/06/2024).
文摘Damage to parcels reduces customer satisfactionwith delivery services and increases return-logistics costs.This can be prevented by detecting and addressing the damage before the parcels reach the customer.Consequently,various studies have been conducted on deep learning techniques related to the detection of parcel damage.This study proposes a deep learning-based damage detectionmethod for various types of parcels.Themethod is intended to be part of a parcel information-recognition systemthat identifies the volume and shipping information of parcels,and determines whether they are damaged;this method is intended for use in the actual parcel-transportation process.For this purpose,1)the study acquired image data in an environment simulating the actual parcel-transportation process,and 2)the training dataset was expanded based on StyleGAN3 with adaptive discriminator augmentation.Additionally,3)a preliminary distinction was made between the appearance of parcels and their damage status to enhance the performance of the parcel damage detection model and analyze the causes of parcel damage.Finally,using the dataset constructed based on the proposed method,a damage type detection model was trained,and its mean average precision was confirmed.This model can improve customer satisfaction and reduce return costs for parcel delivery companies.
基金Supported by the Humanities and Social Sciences Research Project of the Ministry of Education(No.22YJA840004).
文摘The performance of deep learning models is heavily reliant on the quality and quantity of train-ing data.Insufficient training data will lead to overfitting.However,in the task of alert-situation text classification,it is usually difficult to obtain a large amount of training data.This paper proposes a text data augmentation method based on masked language model(MLM),aiming to enhance the generalization capability of deep learning models by expanding the training data.The method em-ploys a Mask strategy to randomly conceal words in the text,effectively leveraging contextual infor-mation to predict and replace masked words based on MLM,thereby generating new training data.Three Mask strategies of character level,word level and N-gram are designed,and the performance of each Mask strategy under different Mask ratios is analyzed and studied.The experimental results show that the performance of the word-level Mask strategy is better than the traditional data augmen-tation method.
文摘BACKGROUND There is an increasingly strong demand for appearance and physical beauty in social life,marriage,and other aspects with the development of society and the improvement of material living standards.An increasing number of people have improved their appearance and physical shape through aesthetic plastic surgery.The female breast plays a significant role in physical beauty,and droopy or atrophied breasts can frequently lead to psychological inferiority and lack of confidence in women.This,in turn,can affect their mental health and quality of life.AIM To analyze preoperative and postoperative self-image pressure-level changes of autologous fat breast augmentation patients and their impact on social adaptability.METHODS We selected 160 patients who underwent autologous fat breast augmentation at the First Affiliated Hospital of Xinxiang Medical University from January 2020 to December 2022 using random sampling method.The general information,selfimage pressure level,and social adaptability of the patients were investigated using a basic information survey,body image self-assessment scale,and social adaptability scale.The self-image pressure-level changes and their effects on the social adaptability of patients before and after autologous fat breast augmentation were analyzed.RESULTS We collected 142 valid questionnaires.The single-factor analysis results showed no statistically significant difference in the self-image pressure level and social adaptability score of patients with different ages,marital status,and monthly income.However,there were significant differences in social adaptability among patients with different education levels and employment statuses.The correlation analysis results revealed a significant correlation between the self-image pressure level and social adaptability score before and after surgery.Multiple factors analysis results showed that the degree of concern caused by appearance in selfimage pressure,the degree of possible behavioral intervention,the related distress caused by body image,and the influence of body image on social life influenced the social adaptability of autologous fat breast augmentation patients.CONCLUSION The self-image pressure on autologous fat breast augmentation patients is inversely proportional to their social adaptability.
文摘BACKGROUND Transcranial direct current stimulation(tDCS)is proven to be safe in treating various neurological conditions in children and adolescents.It is also an effective method in the treatment of OCD in adults.AIM To assess the safety and efficacy of tDCS as an add-on therapy in drug-naive adolescents with OCD.METHODS We studied drug-naïve adolescents with OCD,using a Children’s Yale-Brown obsessive-compulsive scale(CY-BOCS)scale to assess their condition.Both active and sham groups were given fluoxetine,and we applied cathode and anode over the supplementary motor area and deltoid for 20 min in 10 sessions.Reassessment occurred at 2,6,and 12 wk using CY-BOCS.RESULTS Eighteen adolescents completed the study(10-active,8-sham group).CY-BOCS scores from baseline to 12 wk reduced significantly in both groups but change at baseline to 2 wk was significant in the active group only.The mean change at 2 wk was more in the active group(11.8±7.77 vs 5.25±2.22,P=0.056).Adverse effects between the groups were comparable.CONCLUSION tDCS is safe and well tolerated for the treatment of OCD in adolescents.However,there is a need for further studies with a larger sample population to confirm the effectiveness of tDCS as early augmentation in OCD in this population.
基金funded by the National Natural Science Foundation of China(52004201,52274143,52204153)China Postdoctoral Science Foundation(2021T140551).
文摘Coal-rock interface identification technology was pivotal in automatically adjusting the shearer's cutting drum during coal mining.However,it also served as a technical bottleneck hindering the advancement of intelligent coal mining.This study aimed to address the poor accuracy of current coal-rock identification technology on comprehensive working faces,coupled with the limited availability of coal-rock datasets.The loss function of the SegFormer model was enhanced,the model's hyperparameters and learning rate were adjusted,and an automatic recognition method was proposed for coal-rock interfaces based on FL-SegFormer.Additionally,an experimental platform was constructed to simulate the dusty environment during coal-rock cutting by the shearer,enabling the collection of coal-rock test image datasets.The morphology-based algorithms were employed to expand the coal-rock image datasets through image rotation,color dithering,and Gaussian noise injection so as to augment the diversity and applicability of the datasets.As a result,a coal-rock image dataset comprising 8424 samples was generated.The findings demonstrated that the FL-SegFormer model achieved a Mean Intersection over Union(MIoU)and mean pixel accuracy(MPA)of 97.72%and 98.83%,respectively.The FLSegFormer model outperformed other models in terms of recognition accuracy,as evidenced by an MloU exceeding 95.70% of the original image.Furthermore,the FL-SegFormer model using original coal-rock images was validated from No.15205 working face of the Yulin test mine in northern Shaanxi.The calculated average error was only 1.77%,and the model operated at a rate of 46.96 frames per second,meeting the practical application and deployment requirements in underground settings.These results provided a theoretical foundation for achieving automatic and efficient mining with coal mining machines and the intelligent development of coal mines.
基金supported by the Natural Science Foundation of China(No.41804112,author:Chengyun Song).
文摘Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset.
文摘The limited amount of data in the healthcare domain and the necessity of training samples for increased performance of deep learning models is a recurrent challenge,especially in medical imaging.Newborn Solutions aims to enhance its non-invasive white blood cell counting device,Neosonics,by creating synthetic in vitro ultrasound images to facilitate a more efficient image generation process.This study addresses the data scarcity issue by designing and evaluating a continuous scalar conditional Generative Adversarial Network(GAN)to augment in vitro peritoneal dialysis ultrasound images,increasing both the volume and variability of training samples.The developed GAN architecture incorporates novel design features:varying kernel sizes in the generator’s transposed convolutional layers and a latent intermediate space,projecting noise and condition values for enhanced image resolution and specificity.The experimental results show that the GAN successfully generated diverse images of high visual quality,closely resembling real ultrasound samples.While visual results were promising,the use of GAN-based data augmentation did not consistently improve the performance of an image regressor in distinguishing features specific to varied white blood cell concentrations.Ultimately,while this continuous scalar conditional GAN model made strides in generating realistic images,further work is needed to achieve consistent gains in regression tasks,aiming for robust model generalization.
文摘Augmented reality(AR)is an emerging dynamic technology that effectively supports education across different levels.The increased use of mobile devices has an even greater impact.As the demand for AR applications in education continues to increase,educators actively seek innovative and immersive methods to engage students in learning.However,exploring these possibilities also entails identifying and overcoming existing barriers to optimal educational integration.Concurrently,this surge in demand has prompted the identification of specific barriers,one of which is three-dimensional(3D)modeling.Creating 3D objects for augmented reality education applications can be challenging and time-consuming for the educators.To address this,we have developed a pipeline that creates realistic 3D objects from the two-dimensional(2D)photograph.Applications for augmented and virtual reality can then utilize these created 3D objects.We evaluated the proposed pipeline based on the usability of the 3D object and performance metrics.Quantitatively,with 117 respondents,the co-creation team was surveyed with openended questions to evaluate the precision of the 3D object created by the proposed photogrammetry pipeline.We analyzed the survey data using descriptive-analytical methods and found that the proposed pipeline produces 3D models that are positively accurate when compared to real-world objects,with an average mean score above 8.This study adds new knowledge in creating 3D objects for augmented reality applications by using the photogrammetry technique;finally,it discusses potential problems and future research directions for 3D objects in the education sector.
基金National Natural Science Foundation of China(62171305,62405206,62004135,62001317,62111530301)Natural Science Foundation of Jiangsu Province(BK20240778,BK20241917)+3 种基金State Key Laboratory of Advanced Optical Communication Systems and Networks,China(2023GZKF08)China Postdoctoral Science Foundation(2024M752314)Postdoctoral Fellowship Program of CPSF(GZC20231883)Innovative and Entrepreneurial Talent Program of Jiangsu Province(JSSCRC2021527).
文摘Photonic platforms are gradually emerging as a promising option to encounter the ever-growing demand for artificial intelligence,among which photonic time-delay reservoir computing(TDRC)is widely anticipated.While such a computing paradigm can only employ a single photonic device as the nonlinear node for data processing,the performance highly relies on the fading memory provided by the delay feedback loop(FL),which sets a restriction on the extensibility of physical implementation,especially for highly integrated chips.Here,we present a simplified photonic scheme for more flexible parameter configurations leveraging the designed quasi-convolution coding(QC),which completely gets rid of the dependence on FL.Unlike delay-based TDRC,encoded data in QC-based RC(QRC)enables temporal feature extraction,facilitating augmented memory capabilities.Thus,our proposed QRC is enabled to deal with time-related tasks or sequential data without the implementation of FL.Furthermore,we can implement this hardware with a low-power,easily integrable vertical-cavity surface-emitting laser for high-performance parallel processing.We illustrate the concept validation through simulation and experimental comparison of QRC and TDRC,wherein the simpler-structured QRC outperforms across various benchmark tasks.Our results may underscore an auspicious solution for the hardware implementation of deep neural networks.