The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and ...The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices.展开更多
Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworth...Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.展开更多
BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety d...BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety disorder(GAD).This comorbidity exacerbates breathing difficulties,activity limitations,and social isolation.While previous studies predominantly employed the GAD 7-item scale for screening,this approach is somewhat subjective.The current literature on predictive models for GAD risk in patients with COPD is limited.AIM To construct and validate a GAD risk prediction model to aid healthcare professionals in preventing the onset of GAD.METHODS This retrospective analysis encompassed patients with COPD treated at our institution from July 2021 to February 2024.The patients were categorized into a modeling(MO)group and a validation(VA)group in a 7:3 ratio on the basis of the occurrence of GAD.Univariate and multivariate logistic regression analyses were utilized to construct the risk prediction model,which was visualized using forest plots.The model’s performance was evaluated using Hosmer-Lemeshow(H-L)goodness-of-fit test and receiver operating characteristic(ROC)curve analysis.RESULTS A total of 271 subjects were included,with 190 in the MO group and 81 in the VA group.GAD was identified in 67 patients with COPD,resulting in a prevalence rate of 24.72%(67/271),with 49 cases(18.08%)in the MO group and 18 cases(22.22%)in the VA group.Significant differences were observed between patients with and without GAD in terms of educational level,average household income,smoking history,smoking index,number of exacerbations in the past year,cardiovascular comorbidities,disease knowledge,and personality traits(P<0.05).Multivariate logistic regression analysis revealed that lower education levels,household income<3000 China yuan,smoking history,smoking index≥400 cigarettes/year,≥two exacerbations in the past year,cardiovascular comorbidities,complete lack of disease information,and introverted personality were significant risk factors for GAD in the MO group(P<0.05).ROC analysis indicated that the area under the curve for predicting GAD in the MO and VA groups was 0.978 and 0.960.The H-L test yieldedχ^(2) values of 6.511 and 5.179,with P=0.275 and 0.274.Calibration curves demonstrated good agreement between predicted and actual GAD occurrence risks.CONCLUSION The developed predictive model includes eight independent risk factors:Educational level,household income,smoking history,smoking index,number of exacerbations in the past year,presence of cardiovascular comorbidities,level of disease knowledge,and personality traits.This model effectively predicts the onset of GAD in patients with COPD,enabling early identification of high-risk individuals and providing a basis for early preventive interventions by nursing staff.展开更多
Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the applic...Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the application of LLMs in specific fields.Methods This research constructed a specialized knowledge base using clinical guidelines from the American Academy of Orthopaedic Surgeons(AAOS)and authoritative orthopedic publications.A total of 30 orthopedic-related questions covering aspects such as anatomical knowledge,disease diagnosis,fracture classification,treatment options,and surgical techniques were input into both the knowledge base-optimized and unoptimized versions of the GPT-4,ChatGLM,and Spark LLM,with their generated responses recorded.The overall quality,accuracy,and comprehensiveness of these responses were evaluated by 3 experienced orthopedic surgeons.Results Compared with their unoptimized LLMs,the optimized version of GPT-4 showed improvements of 15.3%in overall quality,12.5%in accuracy,and 12.8%in comprehensiveness;ChatGLM showed improvements of 24.8%,16.1%,and 19.6%,respectively;and Spark LLM showed improvements of 6.5%,14.5%,and 24.7%,respectively.Conclusion The optimization of knowledge bases significantly enhances the quality,accuracy,and comprehensiveness of the responses provided by the 3 models in the orthopedic field.Therefore,knowledge base optimization is an effective method for improving the performance of LLMs in specific fields.展开更多
Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a nove...Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.展开更多
The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite numb...The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite number of cases,this relationship is difficult to be revealed for complex irregular distributions,preventing design of such material structures to meet certain mechanical requirements.The noticeable developments of artificial intelligence(AI)algorithms in material design enables to detect the hidden structure-mechanics correlations which is essential for designing composite of complex structures.It is intriguing how these tools can assist composite design.Here,we focus on the rapid generation of bicontinuous composite structures together with the stress distribution in loading.We find that generative AI,enabled through fine-tuned Low Rank Adaptation models,can be trained with a few inputs to generate both synthetic composite structures and the corresponding von Mises stress distribution.The results show that this technique is convenient in generating massive composites designs with useful mechanical information that dictate stiffness,fracture and robustness of the material with one model,and such has to be done by several different experimental or simulation tests.This research offers valuable insights for the improvement of composite design with the goal of expanding the design space and automatic screening of composite designs for improved mechanical functions.展开更多
In this paper,we propose a novel coverless image steganographic scheme based on a generative model.In our scheme,the secret image is first fed to the generative model database,to generate a meaning-normal and independ...In this paper,we propose a novel coverless image steganographic scheme based on a generative model.In our scheme,the secret image is first fed to the generative model database,to generate a meaning-normal and independent image different from the secret image.The generated image is then transmitted to the receiver and fed to the generative model database to generate another image visually the same as the secret image.Thus,we only need to transmit the meaning-normal image which is not related to the secret image,and we can achieve the same effect as the transmission of the secret image.This is the first time to propose the coverless image information steganographic scheme based on generative model,compared with the traditional image steganography.The transmitted image is not embedded with any information of the secret image in this method,therefore,can effectively resist steganalysis tools.Experimental results show that our scheme has high capacity,security and reliability.展开更多
Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and...Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and decoding models,existing methods still require improvement using advanced machine learning techniques.For example,traditional methods usually build the encoding and decoding models separately,and are prone to overfitting on a small dataset.In fact,effectively unifying the encoding and decoding procedures may allow for more accurate predictions.In this paper,we first review the existing encoding and decoding methods and discuss the potential advantages of a“bidirectional”modeling strategy.Next,we show that there are correspondences between deep neural networks and human visual streams in terms of the architecture and computational rules.Furthermore,deep generative models(e.g.,variational autoencoders(VAEs)and generative adversarial networks(GANs))have produced promising results in studies on brain encoding and decoding.Finally,we propose that the dual learning method,which was originally designed for machine translation tasks,could help to improve the performance of encoding and decoding models by leveraging large-scale unpaired data.展开更多
Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With D...Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.展开更多
Accurate quantification of the uncertainty in the mechanical characteristics of dielectric solids is crucial for advancing their application in high-precision technological domains,necessitating the development of rob...Accurate quantification of the uncertainty in the mechanical characteristics of dielectric solids is crucial for advancing their application in high-precision technological domains,necessitating the development of robust com-putational methods.This paper introduces a Conditional Generation Adversarial Network Isogeometric Analysis(CGAN-IGA)to assess the uncertainty of dielectric solids’mechanical characteristics.IGA is utilized for the precise computation of electric potentials in dielectric,piezoelectric,and flexoelectric materials,leveraging its advantage of integrating seamlessly with Computer-Aided Design(CAD)models to maintain exact geometrical fidelity.The CGAN method is highly efficient in generating models for piezoelectric and flexoelectric materials,specifically adapting to targeted design requirements and constraints.Then,the CGAN-IGA is adopted to calculate the electric potential of optimum models with different parameters to accelerate uncertainty quantification processes.The accuracy and feasibility of this method are verified through numerical experiments presented herein.展开更多
As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and ...As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.展开更多
The applications of machine learning(ML)in the medical domain are often hindered by the limited availability of high-quality data.To address this challenge,we explore the synthetic generation of echocardiography image...The applications of machine learning(ML)in the medical domain are often hindered by the limited availability of high-quality data.To address this challenge,we explore the synthetic generation of echocardiography images(echoCG)using state-of-the-art generative models.We conduct a comprehensive evaluation of three prominent methods:Cycle-consistent generative adversarial network(CycleGAN),Contrastive Unpaired Translation(CUT),and Stable Diffusion 1.5 with Low-Rank Adaptation(LoRA).Our research presents the data generation methodol-ogy,image samples,and evaluation strategy,followed by an extensive user study involving licensed cardiologists and surgeons who assess the perceived quality and medical soundness of the generated images.Our findings indicate that Stable Diffusion outperforms both CycleGAN and CUT in generating images that are nearly indistinguishable from real echoCG images,making it a promising tool for augmenting medical datasets.However,we also identify limitations in the synthetic images generated by CycleGAN and CUT,which are easily distinguishable as non-realistic by medical professionals.This study highlights the potential of diffusion models in medical imaging and their applicability in addressing data scarcity,while also outlining the areas for future improvement.展开更多
For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for...For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.展开更多
Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well a...Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well as recent advances in the field.Materials and Methods:This paper provides an overview of conventional radiography digital radiography panoramic radiography computed tomography and cone-beam computed tomography.Additionally recent advances in radiological imaging are discussed such as imaging diagnosis and modern computer-aided diagnosis systems.Results:This paper details the differences between the imaging techniques the benefits of each and the current advances in the field to aid in the diagnosis of medical conditions.Conclusion:Radiological imaging is an extremely important tool in modern medicine to assist in medical diagnosis.This work provides an overview of the types of imaging techniques used the recent advances made and their potential applications.展开更多
Prompt engineering, the art of crafting effective prompts for artificial intelligence models, has emerged as a pivotal factor in determining the quality and usefulness of AI (Artificial Intelligence)-generated outputs...Prompt engineering, the art of crafting effective prompts for artificial intelligence models, has emerged as a pivotal factor in determining the quality and usefulness of AI (Artificial Intelligence)-generated outputs. This practice involves strategically designing and structuring prompts to guide AI models toward desired outcomes, ensuring that they generate relevant, informative, and accurate responses. The significance of prompt engineering cannot be overstated. Well-crafted prompts can significantly enhance the capabilities of AI models, enabling them to perform tasks that were once thought to be exclusively human domain. By providing clear and concise instructions, prompts can guide AI models to generate creative text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Moreover, prompt engineering can help mitigate biases and ensure that AI models produce outputs that are fair, equitable, and inclusive. However, prompt engineering is not without its challenges. Crafting effective prompts requires a deep understanding of both the AI model’s capabilities and the specific task at hand. Additionally, the quality of the prompts can be influenced by factors such as the model’s training data [1] and the complexity of the task. As AI models continue to evolve, prompt engineering will likely become even more critical in unlocking their full potential.展开更多
In recent years,an increasing number of studies about quantum machine learning not only provide powerful tools for quantum chemistry and quantum physics but also improve the classical learning algorithm.The hybrid qua...In recent years,an increasing number of studies about quantum machine learning not only provide powerful tools for quantum chemistry and quantum physics but also improve the classical learning algorithm.The hybrid quantum-classical framework,which is constructed by a variational quantum circuit(VQC)and an optimizer,plays a key role in the latest quantum machine learning studies.Nevertheless,in these hybrid-framework-based quantum machine learning models,the VQC is mainly constructed with a fixed structure and this structure causes inflexibility problems.There are also few studies focused on comparing the performance of quantum generative models with different loss functions.In this study,we address the inflexibility problem by adopting the variable-depth VQC model to automatically change the structure of the quantum circuit according to the qBAS score.The basic idea behind the variable-depth VQC is to consider the depth of the quantum circuit as a parameter during the training.Meanwhile,we compared the performance of the variable-depth VQC model based on four widely used statistical distances set as the loss functions,including Kullback-Leibler divergence(KL-divergence),Jensen-Shannon divergence(JS-divergence),total variation distance,and maximum mean discrepancy.Our numerical experiment shows a promising result that the variable-depth VQC model works better than the original VQC in the generative learning tasks.展开更多
Generative AI is rapidly employed by software developers to generate code or other software artifacts.However,the analysis and assessment of generative AI with respect to requirements analysis and modeling tasks,espec...Generative AI is rapidly employed by software developers to generate code or other software artifacts.However,the analysis and assessment of generative AI with respect to requirements analysis and modeling tasks,especially with UML,has received little attention.This paper investigates the capabilities of generative AI to aid in the creation of three types of UML models:UML use case models,class diagrams,and sequence diagrams.For this purpose,we designed an AI-aided UML modeling task in our course on software requirements modeling.50 undergraduates who majored in Software Engineering at Wuhan University completed the modeling task and the corresponding online survey.Our findings show that generative AI can help create these three types of UML models,but its performance is limited to identifying essential modeling elements of these UML models.展开更多
The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is great...The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is greater than that under creep conditions,indicating that the dynamic stress field significantly influences the rheological behaviours of sandstone.Following the rheological tests,the number of small pores in the sandstone decreased,while the number of medium-sized pores increased,forming new seepage channels.The high initial rheological stress accelerated fracture compression and the closure of seepage channels,resulting in reduction in the permeability of sandstone.Based on the principles of generalized rheology and the experimental findings,a novel rock rheological constitutive model incorporating both the dynamic stress field and seepage properties has been developed.Numerical simulations of surrounding rock deformation in geotechnical engineering were carried out using a secondary development version of this model,which confirmed the applicability of the generalized rheological numerical simulation method.These results provide theoretical support for the long-term stability evaluation of engineering rock masses and for predicting the deformation of surrounding rock.展开更多
We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numeri...We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numerical solution using a recently proposed L1 predictor–corrector method.The given method is based on the L1-type discretization algorithm and the spline interpolation scheme.We perform the error and stability analyses for the given method.We perform graphical simulations demonstrating that the proposed FHN neuron model generates rich electrical activities of periodic spiking patterns,chaotic patterns,and quasi-periodic patterns.The motivation behind proposing a fractional-order improved FHN neuron model is that such a system can provide a more nuanced description of the process with better understanding and simulation of the neuronal responses by incorporating memory effects and non-local dynamics,which are inherent to many biological systems.展开更多
文摘The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.42141019 and 42261144687)the Second Tibetan Plateau Scientific Expedition and Research(STEP)program(Grant No.2019QZKK0102)+4 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB42010404)the National Natural Science Foundation of China(Grant No.42175049)the Guangdong Meteorological Service Science and Technology Research Project(Grant No.GRMC2021M01)the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(EarthLab)for computational support and Prof.Shiming XIANG for many useful discussionsNiklas BOERS acknowledges funding from the Volkswagen foundation.
文摘Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes.
基金Supported by the Henan Provincial Health Commission,No.232102310145.
文摘BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety disorder(GAD).This comorbidity exacerbates breathing difficulties,activity limitations,and social isolation.While previous studies predominantly employed the GAD 7-item scale for screening,this approach is somewhat subjective.The current literature on predictive models for GAD risk in patients with COPD is limited.AIM To construct and validate a GAD risk prediction model to aid healthcare professionals in preventing the onset of GAD.METHODS This retrospective analysis encompassed patients with COPD treated at our institution from July 2021 to February 2024.The patients were categorized into a modeling(MO)group and a validation(VA)group in a 7:3 ratio on the basis of the occurrence of GAD.Univariate and multivariate logistic regression analyses were utilized to construct the risk prediction model,which was visualized using forest plots.The model’s performance was evaluated using Hosmer-Lemeshow(H-L)goodness-of-fit test and receiver operating characteristic(ROC)curve analysis.RESULTS A total of 271 subjects were included,with 190 in the MO group and 81 in the VA group.GAD was identified in 67 patients with COPD,resulting in a prevalence rate of 24.72%(67/271),with 49 cases(18.08%)in the MO group and 18 cases(22.22%)in the VA group.Significant differences were observed between patients with and without GAD in terms of educational level,average household income,smoking history,smoking index,number of exacerbations in the past year,cardiovascular comorbidities,disease knowledge,and personality traits(P<0.05).Multivariate logistic regression analysis revealed that lower education levels,household income<3000 China yuan,smoking history,smoking index≥400 cigarettes/year,≥two exacerbations in the past year,cardiovascular comorbidities,complete lack of disease information,and introverted personality were significant risk factors for GAD in the MO group(P<0.05).ROC analysis indicated that the area under the curve for predicting GAD in the MO and VA groups was 0.978 and 0.960.The H-L test yieldedχ^(2) values of 6.511 and 5.179,with P=0.275 and 0.274.Calibration curves demonstrated good agreement between predicted and actual GAD occurrence risks.CONCLUSION The developed predictive model includes eight independent risk factors:Educational level,household income,smoking history,smoking index,number of exacerbations in the past year,presence of cardiovascular comorbidities,level of disease knowledge,and personality traits.This model effectively predicts the onset of GAD in patients with COPD,enabling early identification of high-risk individuals and providing a basis for early preventive interventions by nursing staff.
基金supported by the National Natural Science Foundation of China(Grant No.81974355 and No.82172524).
文摘Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the application of LLMs in specific fields.Methods This research constructed a specialized knowledge base using clinical guidelines from the American Academy of Orthopaedic Surgeons(AAOS)and authoritative orthopedic publications.A total of 30 orthopedic-related questions covering aspects such as anatomical knowledge,disease diagnosis,fracture classification,treatment options,and surgical techniques were input into both the knowledge base-optimized and unoptimized versions of the GPT-4,ChatGLM,and Spark LLM,with their generated responses recorded.The overall quality,accuracy,and comprehensiveness of these responses were evaluated by 3 experienced orthopedic surgeons.Results Compared with their unoptimized LLMs,the optimized version of GPT-4 showed improvements of 15.3%in overall quality,12.5%in accuracy,and 12.8%in comprehensiveness;ChatGLM showed improvements of 24.8%,16.1%,and 19.6%,respectively;and Spark LLM showed improvements of 6.5%,14.5%,and 24.7%,respectively.Conclusion The optimization of knowledge bases significantly enhances the quality,accuracy,and comprehensiveness of the responses provided by the 3 models in the orthopedic field.Therefore,knowledge base optimization is an effective method for improving the performance of LLMs in specific fields.
基金the National Key Research and Development Program of China(2021YFF0900800)the National Natural Science Foundation of China(61972276,62206116,62032016)+2 种基金the New Liberal Arts Reform and Practice Project of National Ministry of Education(2021170002)the Open Research Fund of the State Key Laboratory for Management and Control of Complex Systems(20210101)Tianjin University Talent Innovation Reward Program for Literature and Science Graduate Student(C1-2022-010)。
文摘Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”.
基金supported by the National Science Foundation CA-REER Grant(Grant No.2145392)the startup funding at Syracuse Uni-versity for supporting the research work.
文摘The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite number of cases,this relationship is difficult to be revealed for complex irregular distributions,preventing design of such material structures to meet certain mechanical requirements.The noticeable developments of artificial intelligence(AI)algorithms in material design enables to detect the hidden structure-mechanics correlations which is essential for designing composite of complex structures.It is intriguing how these tools can assist composite design.Here,we focus on the rapid generation of bicontinuous composite structures together with the stress distribution in loading.We find that generative AI,enabled through fine-tuned Low Rank Adaptation models,can be trained with a few inputs to generate both synthetic composite structures and the corresponding von Mises stress distribution.The results show that this technique is convenient in generating massive composites designs with useful mechanical information that dictate stiffness,fracture and robustness of the material with one model,and such has to be done by several different experimental or simulation tests.This research offers valuable insights for the improvement of composite design with the goal of expanding the design space and automatic screening of composite designs for improved mechanical functions.
基金This paper was supported by the National Natural Science Foundation of China(No.U1204606)the Key Programs for Science and Technology Development of Henan Province(No.172102210335)Key Scientific Research Projects in Henan Universities(No.16A520058).
文摘In this paper,we propose a novel coverless image steganographic scheme based on a generative model.In our scheme,the secret image is first fed to the generative model database,to generate a meaning-normal and independent image different from the secret image.The generated image is then transmitted to the receiver and fed to the generative model database to generate another image visually the same as the secret image.Thus,we only need to transmit the meaning-normal image which is not related to the secret image,and we can achieve the same effect as the transmission of the secret image.This is the first time to propose the coverless image information steganographic scheme based on generative model,compared with the traditional image steganography.The transmitted image is not embedded with any information of the secret image in this method,therefore,can effectively resist steganalysis tools.Experimental results show that our scheme has high capacity,security and reliability.
基金This work was supported by the National Key Research and Development Program of China(2018YFC2001302)National Natural Science Foundation of China(91520202)+2 种基金Chinese Academy of Sciences Scientific Equipment Development Project(YJKYYQ20170050)Beijing Municipal Science and Technology Commission(Z181100008918010)Youth Innovation Promotion Association of Chinese Academy of Sciences,and Strategic Priority Research Program of Chinese Academy of Sciences(XDB32040200).
文摘Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and decoding models,existing methods still require improvement using advanced machine learning techniques.For example,traditional methods usually build the encoding and decoding models separately,and are prone to overfitting on a small dataset.In fact,effectively unifying the encoding and decoding procedures may allow for more accurate predictions.In this paper,we first review the existing encoding and decoding methods and discuss the potential advantages of a“bidirectional”modeling strategy.Next,we show that there are correspondences between deep neural networks and human visual streams in terms of the architecture and computational rules.Furthermore,deep generative models(e.g.,variational autoencoders(VAEs)and generative adversarial networks(GANs))have produced promising results in studies on brain encoding and decoding.Finally,we propose that the dual learning method,which was originally designed for machine translation tasks,could help to improve the performance of encoding and decoding models by leveraging large-scale unpaired data.
基金supported by National Key R&D Program of China under Grant 2021YFB3901302 and 2021YFB2900301the National Natural Science Foundation of China under Grant 62271037,62001519,62221001,and U21A20445+1 种基金the State Key Laboratory of Advanced Rail Autonomous Operation under Grant RCS2022ZZ004the Fundamental Research Funds for the Central Universities under Grant 2022JBQY004.
文摘Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.
文摘Accurate quantification of the uncertainty in the mechanical characteristics of dielectric solids is crucial for advancing their application in high-precision technological domains,necessitating the development of robust com-putational methods.This paper introduces a Conditional Generation Adversarial Network Isogeometric Analysis(CGAN-IGA)to assess the uncertainty of dielectric solids’mechanical characteristics.IGA is utilized for the precise computation of electric potentials in dielectric,piezoelectric,and flexoelectric materials,leveraging its advantage of integrating seamlessly with Computer-Aided Design(CAD)models to maintain exact geometrical fidelity.The CGAN method is highly efficient in generating models for piezoelectric and flexoelectric materials,specifically adapting to targeted design requirements and constraints.Then,the CGAN-IGA is adopted to calculate the electric potential of optimum models with different parameters to accelerate uncertainty quantification processes.The accuracy and feasibility of this method are verified through numerical experiments presented herein.
文摘As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP13068032-Development of Methods and Algorithms for Machine Learning for Predicting Pathologies of the Cardiovascular System Based on Echocardiography and Electrocardiography).
文摘The applications of machine learning(ML)in the medical domain are often hindered by the limited availability of high-quality data.To address this challenge,we explore the synthetic generation of echocardiography images(echoCG)using state-of-the-art generative models.We conduct a comprehensive evaluation of three prominent methods:Cycle-consistent generative adversarial network(CycleGAN),Contrastive Unpaired Translation(CUT),and Stable Diffusion 1.5 with Low-Rank Adaptation(LoRA).Our research presents the data generation methodol-ogy,image samples,and evaluation strategy,followed by an extensive user study involving licensed cardiologists and surgeons who assess the perceived quality and medical soundness of the generated images.Our findings indicate that Stable Diffusion outperforms both CycleGAN and CUT in generating images that are nearly indistinguishable from real echoCG images,making it a promising tool for augmenting medical datasets.However,we also identify limitations in the synthetic images generated by CycleGAN and CUT,which are easily distinguishable as non-realistic by medical professionals.This study highlights the potential of diffusion models in medical imaging and their applicability in addressing data scarcity,while also outlining the areas for future improvement.
基金supported by the National Natural Science Foundation of China under Grant 51722406,52074340,and 51874335the Shandong Provincial Natural Science Foundation under Grant JQ201808+5 种基金The Fundamental Research Funds for the Central Universities under Grant 18CX02097Athe Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008the Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002the National Research Council of Science and Technology Major Project of China under Grant 2016ZX05025001-006111 Project under Grant B08028Sinopec Science and Technology Project under Grant P20050-1
文摘For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching.
文摘Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well as recent advances in the field.Materials and Methods:This paper provides an overview of conventional radiography digital radiography panoramic radiography computed tomography and cone-beam computed tomography.Additionally recent advances in radiological imaging are discussed such as imaging diagnosis and modern computer-aided diagnosis systems.Results:This paper details the differences between the imaging techniques the benefits of each and the current advances in the field to aid in the diagnosis of medical conditions.Conclusion:Radiological imaging is an extremely important tool in modern medicine to assist in medical diagnosis.This work provides an overview of the types of imaging techniques used the recent advances made and their potential applications.
文摘Prompt engineering, the art of crafting effective prompts for artificial intelligence models, has emerged as a pivotal factor in determining the quality and usefulness of AI (Artificial Intelligence)-generated outputs. This practice involves strategically designing and structuring prompts to guide AI models toward desired outcomes, ensuring that they generate relevant, informative, and accurate responses. The significance of prompt engineering cannot be overstated. Well-crafted prompts can significantly enhance the capabilities of AI models, enabling them to perform tasks that were once thought to be exclusively human domain. By providing clear and concise instructions, prompts can guide AI models to generate creative text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Moreover, prompt engineering can help mitigate biases and ensure that AI models produce outputs that are fair, equitable, and inclusive. However, prompt engineering is not without its challenges. Crafting effective prompts requires a deep understanding of both the AI model’s capabilities and the specific task at hand. Additionally, the quality of the prompts can be influenced by factors such as the model’s training data [1] and the complexity of the task. As AI models continue to evolve, prompt engineering will likely become even more critical in unlocking their full potential.
基金This work has received support from the National Key Research&Development Plan of China under Grant No.2018YFA0306703.
文摘In recent years,an increasing number of studies about quantum machine learning not only provide powerful tools for quantum chemistry and quantum physics but also improve the classical learning algorithm.The hybrid quantum-classical framework,which is constructed by a variational quantum circuit(VQC)and an optimizer,plays a key role in the latest quantum machine learning studies.Nevertheless,in these hybrid-framework-based quantum machine learning models,the VQC is mainly constructed with a fixed structure and this structure causes inflexibility problems.There are also few studies focused on comparing the performance of quantum generative models with different loss functions.In this study,we address the inflexibility problem by adopting the variable-depth VQC model to automatically change the structure of the quantum circuit according to the qBAS score.The basic idea behind the variable-depth VQC is to consider the depth of the quantum circuit as a parameter during the training.Meanwhile,we compared the performance of the variable-depth VQC model based on four widely used statistical distances set as the loss functions,including Kullback-Leibler divergence(KL-divergence),Jensen-Shannon divergence(JS-divergence),total variation distance,and maximum mean discrepancy.Our numerical experiment shows a promising result that the variable-depth VQC model works better than the original VQC in the generative learning tasks.
文摘Generative AI is rapidly employed by software developers to generate code or other software artifacts.However,the analysis and assessment of generative AI with respect to requirements analysis and modeling tasks,especially with UML,has received little attention.This paper investigates the capabilities of generative AI to aid in the creation of three types of UML models:UML use case models,class diagrams,and sequence diagrams.For this purpose,we designed an AI-aided UML modeling task in our course on software requirements modeling.50 undergraduates who majored in Software Engineering at Wuhan University completed the modeling task and the corresponding online survey.Our findings show that generative AI can help create these three types of UML models,but its performance is limited to identifying essential modeling elements of these UML models.
基金supported and financed by Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology (No.2024yjrc96)Anhui Provincial University Excellent Research and Innovation Team Support Project (No.2022AH010053)+2 种基金National Key Research and Development Program of China (Nos.2023YFC2907602 and 2022YFF1303302)Anhui Provincial Major Science and Technology Project (No.202203a07020011)Open Foundation of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining (No.EC2023020)。
文摘The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is greater than that under creep conditions,indicating that the dynamic stress field significantly influences the rheological behaviours of sandstone.Following the rheological tests,the number of small pores in the sandstone decreased,while the number of medium-sized pores increased,forming new seepage channels.The high initial rheological stress accelerated fracture compression and the closure of seepage channels,resulting in reduction in the permeability of sandstone.Based on the principles of generalized rheology and the experimental findings,a novel rock rheological constitutive model incorporating both the dynamic stress field and seepage properties has been developed.Numerical simulations of surrounding rock deformation in geotechnical engineering were carried out using a secondary development version of this model,which confirmed the applicability of the generalized rheological numerical simulation method.These results provide theoretical support for the long-term stability evaluation of engineering rock masses and for predicting the deformation of surrounding rock.
文摘We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numerical solution using a recently proposed L1 predictor–corrector method.The given method is based on the L1-type discretization algorithm and the spline interpolation scheme.We perform the error and stability analyses for the given method.We perform graphical simulations demonstrating that the proposed FHN neuron model generates rich electrical activities of periodic spiking patterns,chaotic patterns,and quasi-periodic patterns.The motivation behind proposing a fractional-order improved FHN neuron model is that such a system can provide a more nuanced description of the process with better understanding and simulation of the neuronal responses by incorporating memory effects and non-local dynamics,which are inherent to many biological systems.