期刊文献+
共找到16,325篇文章
< 1 2 250 >
每页显示 20 50 100
Device Activity Detection and Channel Estimation Using Score-Based Generative Models in Massive MIMO
1
作者 TANG Chenyue LI Zeshen +1 位作者 CHEN Zihan Howard H.YANG 《ZTE Communications》 2025年第1期53-62,共10页
The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and ... The growing demand for wireless connectivity has made massive multiple-input multiple-output(MIMO)a cornerstone of modern communication systems.To optimize network performance and resource allocation,an efficient and robust approach is joint device activity detection and channel estimation.In this paper,we present an approach utilizing score-based generative models to address the underdetermined nature of channel estimation,which is data-driven and well-suited for the complex and dynamic environment of massive MIMO systems.Our experimental results,based on a comprehensive dataset generated through Monte-Carlo sampling,demonstrate the high precision of our channel estimation approach,with errors reduced to as low as-45 d B,and exceptional accuracy in detecting active devices. 展开更多
关键词 activity detection channel estimation inverse problem score-based generative model massive MIMO
在线阅读 下载PDF
Correcting Climate Model Sea Surface Temperature Simulations with Generative Adversarial Networks:Climatology,Interannual Variability,and Extremes 被引量:2
2
作者 Ya WANG Gang HUANG +6 位作者 Baoxiang PAN Pengfei LIN Niklas BOERS Weichen TAO Yutong CHEN BO LIU Haijie LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1299-1312,共14页
Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworth... Climate models are vital for understanding and projecting global climate change and its associated impacts.However,these models suffer from biases that limit their accuracy in historical simulations and the trustworthiness of future projections.Addressing these challenges requires addressing internal variability,hindering the direct alignment between model simulations and observations,and thwarting conventional supervised learning methods.Here,we employ an unsupervised Cycle-consistent Generative Adversarial Network(CycleGAN),to correct daily Sea Surface Temperature(SST)simulations from the Community Earth System Model 2(CESM2).Our results reveal that the CycleGAN not only corrects climatological biases but also improves the simulation of major dynamic modes including the El Niño-Southern Oscillation(ENSO)and the Indian Ocean Dipole mode,as well as SST extremes.Notably,it substantially corrects climatological SST biases,decreasing the globally averaged Root-Mean-Square Error(RMSE)by 58%.Intriguingly,the CycleGAN effectively addresses the well-known excessive westward bias in ENSO SST anomalies,a common issue in climate models that traditional methods,like quantile mapping,struggle to rectify.Additionally,it substantially improves the simulation of SST extremes,raising the pattern correlation coefficient(PCC)from 0.56 to 0.88 and lowering the RMSE from 0.5 to 0.32.This enhancement is attributed to better representations of interannual,intraseasonal,and synoptic scales variabilities.Our study offers a novel approach to correct global SST simulations and underscores its effectiveness across different time scales and primary dynamical modes. 展开更多
关键词 generative adversarial networks model bias deep learning El Niño-Southern Oscillation marine heatwaves
在线阅读 下载PDF
Determinants of generalized anxiety and construction of a predictive model in patients with chronic obstructive pulmonary disease
3
作者 Yi-Pu Zhao Wei-Hua Liu Qun-Cheng Zhang 《World Journal of Psychiatry》 2025年第2期48-58,共11页
BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety d... BACKGROUND Patients with chronic obstructive pulmonary disease(COPD)frequently experience exacerbations requiring multiple hospitalizations over prolonged disease courses,which predispose them to generalized anxiety disorder(GAD).This comorbidity exacerbates breathing difficulties,activity limitations,and social isolation.While previous studies predominantly employed the GAD 7-item scale for screening,this approach is somewhat subjective.The current literature on predictive models for GAD risk in patients with COPD is limited.AIM To construct and validate a GAD risk prediction model to aid healthcare professionals in preventing the onset of GAD.METHODS This retrospective analysis encompassed patients with COPD treated at our institution from July 2021 to February 2024.The patients were categorized into a modeling(MO)group and a validation(VA)group in a 7:3 ratio on the basis of the occurrence of GAD.Univariate and multivariate logistic regression analyses were utilized to construct the risk prediction model,which was visualized using forest plots.The model’s performance was evaluated using Hosmer-Lemeshow(H-L)goodness-of-fit test and receiver operating characteristic(ROC)curve analysis.RESULTS A total of 271 subjects were included,with 190 in the MO group and 81 in the VA group.GAD was identified in 67 patients with COPD,resulting in a prevalence rate of 24.72%(67/271),with 49 cases(18.08%)in the MO group and 18 cases(22.22%)in the VA group.Significant differences were observed between patients with and without GAD in terms of educational level,average household income,smoking history,smoking index,number of exacerbations in the past year,cardiovascular comorbidities,disease knowledge,and personality traits(P<0.05).Multivariate logistic regression analysis revealed that lower education levels,household income<3000 China yuan,smoking history,smoking index≥400 cigarettes/year,≥two exacerbations in the past year,cardiovascular comorbidities,complete lack of disease information,and introverted personality were significant risk factors for GAD in the MO group(P<0.05).ROC analysis indicated that the area under the curve for predicting GAD in the MO and VA groups was 0.978 and 0.960.The H-L test yieldedχ^(2) values of 6.511 and 5.179,with P=0.275 and 0.274.Calibration curves demonstrated good agreement between predicted and actual GAD occurrence risks.CONCLUSION The developed predictive model includes eight independent risk factors:Educational level,household income,smoking history,smoking index,number of exacerbations in the past year,presence of cardiovascular comorbidities,level of disease knowledge,and personality traits.This model effectively predicts the onset of GAD in patients with COPD,enabling early identification of high-risk individuals and providing a basis for early preventive interventions by nursing staff. 展开更多
关键词 Chronic obstructive pulmonary disease generalized anxiety disorder Predictive model Determinants analysis Forest plot
在线阅读 下载PDF
Enhancing Orthopedic Knowledge Assessments:The Performance of Specialized Generative Language Model Optimization
4
作者 Hong ZHOU Hong-lin WANG +11 位作者 Yu-yu DUAN Zi-neng YAN Rui LUO Xiang-xin LV Yi XIE Jia-yao ZHANG Jia-ming YANG Ming-di XUE Ying FANG Lin LU Peng-ran LIU Zhe-wei YE 《Current Medical Science》 SCIE CAS 2024年第5期1001-1005,共5页
Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the applic... Objective This study aimed to evaluate and compare the effectiveness of knowledge base-optimized and unoptimized large language models(LLMs)in the field of orthopedics to explore optimization strategies for the application of LLMs in specific fields.Methods This research constructed a specialized knowledge base using clinical guidelines from the American Academy of Orthopaedic Surgeons(AAOS)and authoritative orthopedic publications.A total of 30 orthopedic-related questions covering aspects such as anatomical knowledge,disease diagnosis,fracture classification,treatment options,and surgical techniques were input into both the knowledge base-optimized and unoptimized versions of the GPT-4,ChatGLM,and Spark LLM,with their generated responses recorded.The overall quality,accuracy,and comprehensiveness of these responses were evaluated by 3 experienced orthopedic surgeons.Results Compared with their unoptimized LLMs,the optimized version of GPT-4 showed improvements of 15.3%in overall quality,12.5%in accuracy,and 12.8%in comprehensiveness;ChatGLM showed improvements of 24.8%,16.1%,and 19.6%,respectively;and Spark LLM showed improvements of 6.5%,14.5%,and 24.7%,respectively.Conclusion The optimization of knowledge bases significantly enhances the quality,accuracy,and comprehensiveness of the responses provided by the 3 models in the orthopedic field.Therefore,knowledge base optimization is an effective method for improving the performance of LLMs in specific fields. 展开更多
关键词 artificial intelligence large language models generative articial intelligence ORTHOPEDICS
在线阅读 下载PDF
Computational Experiments for Complex Social Systems:Experiment Design and Generative Explanation 被引量:2
5
作者 Xiao Xue Deyu Zhou +5 位作者 Xiangning Yu Gang Wang Juanjuan Li Xia Xie Lizhen Cui Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1022-1038,共17页
Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a nove... Powered by advanced information technology,more and more complex systems are exhibiting characteristics of the cyber-physical-social systems(CPSS).In this context,computational experiments method has emerged as a novel approach for the design,analysis,management,control,and integration of CPSS,which can realize the causal analysis of complex systems by means of“algorithmization”of“counterfactuals”.However,because CPSS involve human and social factors(e.g.,autonomy,initiative,and sociality),it is difficult for traditional design of experiment(DOE)methods to achieve the generative explanation of system emergence.To address this challenge,this paper proposes an integrated approach to the design of computational experiments,incorporating three key modules:1)Descriptive module:Determining the influencing factors and response variables of the system by means of the modeling of an artificial society;2)Interpretative module:Selecting factorial experimental design solution to identify the relationship between influencing factors and macro phenomena;3)Predictive module:Building a meta-model that is equivalent to artificial society to explore its operating laws.Finally,a case study of crowd-sourcing platforms is presented to illustrate the application process and effectiveness of the proposed approach,which can reveal the social impact of algorithmic behavior on“rider race”. 展开更多
关键词 Agent-based modeling computational experiments cyber-physical-social systems(CPSS) generative deduction generative experiments meta model
在线阅读 下载PDF
Towards data-efficient mechanical design of bicontinuous composites usinggenerative AI 被引量:1
6
作者 Milad Masrouri Zhao Qin 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期57-64,共8页
The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite numb... The distribution of material phases is crucial to determine the composite’s mechanical property.While the full structure-mechanics relationship of highly ordered material distributions can be studied with finite number of cases,this relationship is difficult to be revealed for complex irregular distributions,preventing design of such material structures to meet certain mechanical requirements.The noticeable developments of artificial intelligence(AI)algorithms in material design enables to detect the hidden structure-mechanics correlations which is essential for designing composite of complex structures.It is intriguing how these tools can assist composite design.Here,we focus on the rapid generation of bicontinuous composite structures together with the stress distribution in loading.We find that generative AI,enabled through fine-tuned Low Rank Adaptation models,can be trained with a few inputs to generate both synthetic composite structures and the corresponding von Mises stress distribution.The results show that this technique is convenient in generating massive composites designs with useful mechanical information that dictate stiffness,fracture and robustness of the material with one model,and such has to be done by several different experimental or simulation tests.This research offers valuable insights for the improvement of composite design with the goal of expanding the design space and automatic screening of composite designs for improved mechanical functions. 展开更多
关键词 generative artificial intelligence Stable diffusion Composite design Phase field model Molecular dynamics simulation
在线阅读 下载PDF
Coverless Steganography for Digital Images Based on a Generative Model 被引量:5
7
作者 Xintao Duan Haoxian Song +1 位作者 Chuan Qin Muhammad Khurram Khan 《Computers, Materials & Continua》 SCIE EI 2018年第6期483-493,共11页
In this paper,we propose a novel coverless image steganographic scheme based on a generative model.In our scheme,the secret image is first fed to the generative model database,to generate a meaning-normal and independ... In this paper,we propose a novel coverless image steganographic scheme based on a generative model.In our scheme,the secret image is first fed to the generative model database,to generate a meaning-normal and independent image different from the secret image.The generated image is then transmitted to the receiver and fed to the generative model database to generate another image visually the same as the secret image.Thus,we only need to transmit the meaning-normal image which is not related to the secret image,and we can achieve the same effect as the transmission of the secret image.This is the first time to propose the coverless image information steganographic scheme based on generative model,compared with the traditional image steganography.The transmitted image is not embedded with any information of the secret image in this method,therefore,can effectively resist steganalysis tools.Experimental results show that our scheme has high capacity,security and reliability. 展开更多
关键词 generative model coverless image steganography STEGANALYSIS steganographic capacity security.
在线阅读 下载PDF
Brain Encoding and Decoding in fMRI with Bidirectional Deep Generative Models 被引量:2
8
作者 Changde Du Jinpeng Li +1 位作者 Lijie Huang Huiguang He 《Engineering》 SCIE EI 2019年第5期948-953,共6页
Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and... Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and decoding models,existing methods still require improvement using advanced machine learning techniques.For example,traditional methods usually build the encoding and decoding models separately,and are prone to overfitting on a small dataset.In fact,effectively unifying the encoding and decoding procedures may allow for more accurate predictions.In this paper,we first review the existing encoding and decoding methods and discuss the potential advantages of a“bidirectional”modeling strategy.Next,we show that there are correspondences between deep neural networks and human visual streams in terms of the architecture and computational rules.Furthermore,deep generative models(e.g.,variational autoencoders(VAEs)and generative adversarial networks(GANs))have produced promising results in studies on brain encoding and decoding.Finally,we propose that the dual learning method,which was originally designed for machine translation tasks,could help to improve the performance of encoding and decoding models by leveraging large-scale unpaired data. 展开更多
关键词 BRAIN encoding and DECODING Functional magnetic resonance imaging DEEP neural networks DEEP generative models Dual learning
在线阅读 下载PDF
Generative Adversarial Networks Based Digital Twin Channel Modeling for Intelligent Communication Networks 被引量:4
9
作者 Yuxin Zhang Ruisi He +5 位作者 Bo Ai Mi Yang Ruifeng Chen Chenlong Wang Zhengyu Zhang Zhangdui Zhong 《China Communications》 SCIE CSCD 2023年第8期32-43,共12页
Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With D... Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking. 展开更多
关键词 digital twin channel modeling generative adversarial networks intelligent communication networking
在线阅读 下载PDF
Quantifying Uncertainty in Dielectric Solids’ Mechanical Properties Using Isogeometric Analysis and Conditional Generative Adversarial Networks
10
作者 Shuai Li Xiaodong Zhao +1 位作者 Jinghu Zhou Xiyue Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2587-2611,共25页
Accurate quantification of the uncertainty in the mechanical characteristics of dielectric solids is crucial for advancing their application in high-precision technological domains,necessitating the development of rob... Accurate quantification of the uncertainty in the mechanical characteristics of dielectric solids is crucial for advancing their application in high-precision technological domains,necessitating the development of robust com-putational methods.This paper introduces a Conditional Generation Adversarial Network Isogeometric Analysis(CGAN-IGA)to assess the uncertainty of dielectric solids’mechanical characteristics.IGA is utilized for the precise computation of electric potentials in dielectric,piezoelectric,and flexoelectric materials,leveraging its advantage of integrating seamlessly with Computer-Aided Design(CAD)models to maintain exact geometrical fidelity.The CGAN method is highly efficient in generating models for piezoelectric and flexoelectric materials,specifically adapting to targeted design requirements and constraints.Then,the CGAN-IGA is adopted to calculate the electric potential of optimum models with different parameters to accelerate uncertainty quantification processes.The accuracy and feasibility of this method are verified through numerical experiments presented herein. 展开更多
关键词 Dielectric solid isogeometric finite element method surrogate model generative adversarial
在线阅读 下载PDF
Analytical Model and Topology Optimization of Doubly-fed Induction Generator
11
作者 Lu Sun Haoyu Kang +4 位作者 Jin Wang Zequan Li Jianjun Liu Yiming Ma Libing Zhou 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期162-169,共8页
As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and ... As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method. 展开更多
关键词 Doubly-fed induction generators Accurate subdomain model Surrogate-assisted Transfer learning
在线阅读 下载PDF
Evaluation of Modern Generative Networks for EchoCG Image Generation
12
作者 Sabina Rakhmetulayeva Zhandos Zhanabekov Aigerim Bolshibayeva 《Computers, Materials & Continua》 SCIE EI 2024年第12期4503-4523,共21页
The applications of machine learning(ML)in the medical domain are often hindered by the limited availability of high-quality data.To address this challenge,we explore the synthetic generation of echocardiography image... The applications of machine learning(ML)in the medical domain are often hindered by the limited availability of high-quality data.To address this challenge,we explore the synthetic generation of echocardiography images(echoCG)using state-of-the-art generative models.We conduct a comprehensive evaluation of three prominent methods:Cycle-consistent generative adversarial network(CycleGAN),Contrastive Unpaired Translation(CUT),and Stable Diffusion 1.5 with Low-Rank Adaptation(LoRA).Our research presents the data generation methodol-ogy,image samples,and evaluation strategy,followed by an extensive user study involving licensed cardiologists and surgeons who assess the perceived quality and medical soundness of the generated images.Our findings indicate that Stable Diffusion outperforms both CycleGAN and CUT in generating images that are nearly indistinguishable from real echoCG images,making it a promising tool for augmenting medical datasets.However,we also identify limitations in the synthetic images generated by CycleGAN and CUT,which are easily distinguishable as non-realistic by medical professionals.This study highlights the potential of diffusion models in medical imaging and their applicability in addressing data scarcity,while also outlining the areas for future improvement. 展开更多
关键词 Synthetic image generation synthetic echogcardiography generative adversarial networks CycleGAN latent diffusion models stable diffusion
在线阅读 下载PDF
Multi-source information fused generative adversarial network model and data assimilation based history matching for reservoir with complex geologies 被引量:2
13
作者 Kai Zhang Hai-Qun Yu +7 位作者 Xiao-Peng Ma Jin-Ding Zhang Jian Wang Chuan-Jin Yao Yong-Fei Yang Hai Sun Jun Yao Jian Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第2期707-719,共13页
For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for... For reservoirs with complex non-Gaussian geological characteristics,such as carbonate reservoirs or reservoirs with sedimentary facies distribution,it is difficult to implement history matching directly,especially for the ensemble-based data assimilation methods.In this paper,we propose a multi-source information fused generative adversarial network(MSIGAN)model,which is used for parameterization of the complex geologies.In MSIGAN,various information such as facies distribution,microseismic,and inter-well connectivity,can be integrated to learn the geological features.And two major generative models in deep learning,variational autoencoder(VAE)and generative adversarial network(GAN)are combined in our model.Then the proposed MSIGAN model is integrated into the ensemble smoother with multiple data assimilation(ESMDA)method to conduct history matching.We tested the proposed method on two reservoir models with fluvial facies.The experimental results show that the proposed MSIGAN model can effectively learn the complex geological features,which can promote the accuracy of history matching. 展开更多
关键词 Multi-source information Automatic history matching Deep learning Data assimilation generative model
在线阅读 下载PDF
HybridGAD: Identification of AI-Generated Radiology Abstracts Based on a Novel Hybrid Model with Attention Mechanism
14
作者 TugbaÇelikten Aytug Onan 《Computers, Materials & Continua》 SCIE EI 2024年第8期3351-3377,共27页
Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well a... Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well as recent advances in the field.Materials and Methods:This paper provides an overview of conventional radiography digital radiography panoramic radiography computed tomography and cone-beam computed tomography.Additionally recent advances in radiological imaging are discussed such as imaging diagnosis and modern computer-aided diagnosis systems.Results:This paper details the differences between the imaging techniques the benefits of each and the current advances in the field to aid in the diagnosis of medical conditions.Conclusion:Radiological imaging is an extremely important tool in modern medicine to assist in medical diagnosis.This work provides an overview of the types of imaging techniques used the recent advances made and their potential applications. 展开更多
关键词 generative artificial intelligence AI-generated text detection attention mechanism hybrid model for text classification
在线阅读 下载PDF
Prompt Engineering Importance and Applicability with Generative AI
15
作者 Prashant Bansal 《Journal of Computer and Communications》 2024年第10期14-23,共10页
Prompt engineering, the art of crafting effective prompts for artificial intelligence models, has emerged as a pivotal factor in determining the quality and usefulness of AI (Artificial Intelligence)-generated outputs... Prompt engineering, the art of crafting effective prompts for artificial intelligence models, has emerged as a pivotal factor in determining the quality and usefulness of AI (Artificial Intelligence)-generated outputs. This practice involves strategically designing and structuring prompts to guide AI models toward desired outcomes, ensuring that they generate relevant, informative, and accurate responses. The significance of prompt engineering cannot be overstated. Well-crafted prompts can significantly enhance the capabilities of AI models, enabling them to perform tasks that were once thought to be exclusively human domain. By providing clear and concise instructions, prompts can guide AI models to generate creative text, translate languages, write different kinds of creative content, and answer your questions in an informative way. Moreover, prompt engineering can help mitigate biases and ensure that AI models produce outputs that are fair, equitable, and inclusive. However, prompt engineering is not without its challenges. Crafting effective prompts requires a deep understanding of both the AI model’s capabilities and the specific task at hand. Additionally, the quality of the prompts can be influenced by factors such as the model’s training data [1] and the complexity of the task. As AI models continue to evolve, prompt engineering will likely become even more critical in unlocking their full potential. 展开更多
关键词 Prompt Engineering AI ML PROMPT Zero Shot Few Shot generative AI Chatbots AI models
在线阅读 下载PDF
Quantum Generative Model with Variable-Depth Circuit
16
作者 Yiming Huang Hang Lei +3 位作者 Xiaoyu Li Qingsheng Zhu Wanghao Ren Xusheng Liu 《Computers, Materials & Continua》 SCIE EI 2020年第10期445-458,共14页
In recent years,an increasing number of studies about quantum machine learning not only provide powerful tools for quantum chemistry and quantum physics but also improve the classical learning algorithm.The hybrid qua... In recent years,an increasing number of studies about quantum machine learning not only provide powerful tools for quantum chemistry and quantum physics but also improve the classical learning algorithm.The hybrid quantum-classical framework,which is constructed by a variational quantum circuit(VQC)and an optimizer,plays a key role in the latest quantum machine learning studies.Nevertheless,in these hybrid-framework-based quantum machine learning models,the VQC is mainly constructed with a fixed structure and this structure causes inflexibility problems.There are also few studies focused on comparing the performance of quantum generative models with different loss functions.In this study,we address the inflexibility problem by adopting the variable-depth VQC model to automatically change the structure of the quantum circuit according to the qBAS score.The basic idea behind the variable-depth VQC is to consider the depth of the quantum circuit as a parameter during the training.Meanwhile,we compared the performance of the variable-depth VQC model based on four widely used statistical distances set as the loss functions,including Kullback-Leibler divergence(KL-divergence),Jensen-Shannon divergence(JS-divergence),total variation distance,and maximum mean discrepancy.Our numerical experiment shows a promising result that the variable-depth VQC model works better than the original VQC in the generative learning tasks. 展开更多
关键词 Machine learning quantum information processing generative model
在线阅读 下载PDF
On the Assessment of Generative AI in Requirements Analysis and Modeling Tasks with UML:An Exploratory Study
17
作者 Chong Wang Peng Liang +2 位作者 Xiaojian Li Jian Wang Zhong Luo 《计算机教育》 2023年第12期2-10,共9页
Generative AI is rapidly employed by software developers to generate code or other software artifacts.However,the analysis and assessment of generative AI with respect to requirements analysis and modeling tasks,espec... Generative AI is rapidly employed by software developers to generate code or other software artifacts.However,the analysis and assessment of generative AI with respect to requirements analysis and modeling tasks,especially with UML,has received little attention.This paper investigates the capabilities of generative AI to aid in the creation of three types of UML models:UML use case models,class diagrams,and sequence diagrams.For this purpose,we designed an AI-aided UML modeling task in our course on software requirements modeling.50 undergraduates who majored in Software Engineering at Wuhan University completed the modeling task and the corresponding online survey.Our findings show that generative AI can help create these three types of UML models,but its performance is limited to identifying essential modeling elements of these UML models. 展开更多
关键词 AI-aided education UML modeling generative AI Requirements engineering
在线阅读 下载PDF
基于Modelica的发电湿汽轮机系统仿真及特性分析
18
作者 王劲韬 曾国庆 +3 位作者 谢旭阳 谢罗涛 邹梓仪 陈国兵 《舰船科学技术》 北大核心 2025年第4期105-111,共7页
本文旨在解决船用发电湿汽轮机系统在使用传统模型和数字驱动方法时,数据完整性和动态仿真精度方面存在局限性的问题。在船用发电湿汽轮机物理试验平台的基础上,采用模块化建模方法,结合自顶向下的需求分析策略和自下而上的建模思想,明... 本文旨在解决船用发电湿汽轮机系统在使用传统模型和数字驱动方法时,数据完整性和动态仿真精度方面存在局限性的问题。在船用发电湿汽轮机物理试验平台的基础上,采用模块化建模方法,结合自顶向下的需求分析策略和自下而上的建模思想,明确模型的功能要求,并逐步完成各设备模块功能的调试和组合。分析结果显示,静态和变工况仿真结果的数据误差均低于5%,且在变工况下与实际机组情况基本一致。这些仿真结果能够较为真实地反映系统的运行状况,能够为后续船舶动力数字孪生系统的建立和虚实交互提供了基础。 展开更多
关键词 模块化建模 系统仿真 modelICA语言 船用发电湿汽轮机 MWorks仿真平台
在线阅读 下载PDF
Development and application of rock rheological constitutive model considering dynamic stress field and seepage field
19
作者 Yian Chen Guangming Zhao +2 位作者 Wensong Xu Shoujian Peng Jiang Xu 《International Journal of Mining Science and Technology》 2025年第3期467-482,共16页
The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is great... The generalized rheological tests on sandstone were conducted under both dynamic stress and seepage fields.The results demonstrate that the rheological strain of the specimen under increased stress conditions is greater than that under creep conditions,indicating that the dynamic stress field significantly influences the rheological behaviours of sandstone.Following the rheological tests,the number of small pores in the sandstone decreased,while the number of medium-sized pores increased,forming new seepage channels.The high initial rheological stress accelerated fracture compression and the closure of seepage channels,resulting in reduction in the permeability of sandstone.Based on the principles of generalized rheology and the experimental findings,a novel rock rheological constitutive model incorporating both the dynamic stress field and seepage properties has been developed.Numerical simulations of surrounding rock deformation in geotechnical engineering were carried out using a secondary development version of this model,which confirmed the applicability of the generalized rheological numerical simulation method.These results provide theoretical support for the long-term stability evaluation of engineering rock masses and for predicting the deformation of surrounding rock. 展开更多
关键词 generalized rheological test Seepage-stress coupling Seepage properties Dynamic stress field Rheological constitutive model
在线阅读 下载PDF
A fractional-order improved FitzHugh–Nagumo neuron model
20
作者 Pushpendra Kumar Vedat Suat Erturk 《Chinese Physics B》 2025年第1期519-528,共10页
We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numeri... We propose a fractional-order improved Fitz Hugh–Nagumo(FHN)neuron model in terms of a generalized Caputo fractional derivative.Following the existence of a unique solution for the proposed model,we derive the numerical solution using a recently proposed L1 predictor–corrector method.The given method is based on the L1-type discretization algorithm and the spline interpolation scheme.We perform the error and stability analyses for the given method.We perform graphical simulations demonstrating that the proposed FHN neuron model generates rich electrical activities of periodic spiking patterns,chaotic patterns,and quasi-periodic patterns.The motivation behind proposing a fractional-order improved FHN neuron model is that such a system can provide a more nuanced description of the process with better understanding and simulation of the neuronal responses by incorporating memory effects and non-local dynamics,which are inherent to many biological systems. 展开更多
关键词 FitzHugh-Nagumo neuron model generalized Caputo fractional derivative L1 predictor-corrector method STABILITY error estimation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部