In this article, a finite volume element algorithm is presented and discussed for the numerical solutions of a time-fractional nonlinear fourth-order diffusion equation with time delay. By choosing the second-order sp...In this article, a finite volume element algorithm is presented and discussed for the numerical solutions of a time-fractional nonlinear fourth-order diffusion equation with time delay. By choosing the second-order spatial derivative of the original unknown as an additional variable, the fourth-order problem is transformed into a second-order system. Then the fully discrete finite volume element scheme is formulated by using L1approximation for temporal Caputo derivative and finite volume element method in spatial direction. The unique solvability and stable result of the proposed scheme are proved. A priori estimate of L2-norm with optimal order of convergence O(h2+τ2−α)where τand hare time step length and space mesh parameter, respectively, is obtained. The efficiency of the scheme is supported by some numerical experiments.展开更多
In this paper,the oscillation criteria for the solutions of the nonlinear differential equations of neutral type of the forms:[x(t)+p(t)x(σ(t))]″+q(t)f(x(τ(t)))g(x′(t))=0and[x(t)+p(t)x(σ(t))]″+q(t)f(x(t),x(τ(t)...In this paper,the oscillation criteria for the solutions of the nonlinear differential equations of neutral type of the forms:[x(t)+p(t)x(σ(t))]″+q(t)f(x(τ(t)))g(x′(t))=0and[x(t)+p(t)x(σ(t))]″+q(t)f(x(t),x(τ(t)))g(x′(t))=0are obtained.展开更多
By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral dela...By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.展开更多
By the generalized Riccati transformation and the integral averaging technique, some sufficient conditions of oscillation of the solutions for second order nonlinear differential equations with damping were discussed....By the generalized Riccati transformation and the integral averaging technique, some sufficient conditions of oscillation of the solutions for second order nonlinear differential equations with damping were discussed.Some sufficient oscillation criteria for previous equations were built up.Some oscillation criteria have been expanded and strengthened in some other known results.展开更多
In this paper, we obtained some sufficient conditions for the oscillation of all solutions of the second order neutral differential equation of the form where , and . Examples are provided to illustrate the main results.
Several oscillation criteria are given for the second order nonlinear differential equation with damped term of the form [α(t)(y'(t))σ]' +p(t)(y'(t))σ+ q(t)f(y(t)) = 0, where α∈C(R, (0,∞)), p(t) and ...Several oscillation criteria are given for the second order nonlinear differential equation with damped term of the form [α(t)(y'(t))σ]' +p(t)(y'(t))σ+ q(t)f(y(t)) = 0, where α∈C(R, (0,∞)), p(t) and q(t) are allowed to change sign on [t0, ∞), and f∈C1 (R, R) such that xf(x) > 0 for x ≠0. Our results improve and extend some known oscillation criteria. Examples are inserted to illustrate our results.展开更多
The oscillatory behavior of solutions of a class of second order nonlinear differential equations with damping is studied and some new sufficient conditions are obtained by using the refined integral averaging techniq...The oscillatory behavior of solutions of a class of second order nonlinear differential equations with damping is studied and some new sufficient conditions are obtained by using the refined integral averaging technique. Some well known results in the literature are extended. Moreover, two examples are given to illustrate the theoretical analysis.展开更多
The design and the synthesis of two conjugated donor acceptor imidazole derivatives(1, 2) were carried out for second order nonlinear optics. The thermal properties, the transparency and second order nonlinear opti...The design and the synthesis of two conjugated donor acceptor imidazole derivatives(1, 2) were carried out for second order nonlinear optics. The thermal properties, the transparency and second order nonlinear optical properties of the molecules were investigated. The experimental results indicate that a good nonlinearity transparency thermal stability trade off is achieved for them.展开更多
Some new oscillation theorems are established for the second order nonlinear differential equations with damping of the form where p(t) and q(t) are allowed to change sign on [t0,∞).
In this paper we have established the stability of a generalized nonlinear second-order differential equation in the sense of Hyers and Ulam. We also have proved the Hyers-Ulam stability of Emden-Fowler type equation ...In this paper we have established the stability of a generalized nonlinear second-order differential equation in the sense of Hyers and Ulam. We also have proved the Hyers-Ulam stability of Emden-Fowler type equation with initial conditions.展开更多
alculations of the nonlinear second-order optical susceptlbilities(β_(ijk))for sub- stituted tl1iophene derivative;with quinoidlike conformation are reported.These systetems possess small dipole moment;and large diff...alculations of the nonlinear second-order optical susceptlbilities(β_(ijk))for sub- stituted tl1iophene derivative;with quinoidlike conformation are reported.These systetems possess small dipole moment;and large differences between dipole mo- ments of ground and first-excited states.Geometry optimizations of the molecules investigated were carried out using AM 1 method.The calculations were performed using INDO/CI method comboned with a sum-over-states expression for β_(jik). The calculated results sbw that the second-order susceptibility is a function of the na- ture and location of substituents and is larger for disubstituted molecules than monosubstituted molecules. Bipolymeric thiophenemetmne with NH_2/NO_2 groups was calctilated to have a β_μof 79. 920 × 10 ̄(-30) esu. It was found that the NH_2 and NO_2 groups in above disubstituted molecules are pull-pull groups in ground states,but are usual push-pull groups in the first excited states.展开更多
This peper discusses a class of second order nonlinear neutral differential equations with variable coefficients and variable d eviations. Oscillation oriterta for all solutions of the equations are estublished and su...This peper discusses a class of second order nonlinear neutral differential equations with variable coefficients and variable d eviations. Oscillation oriterta for all solutions of the equations are estublished and sufficient conditions are also given to ensure those derivatives of all differentiable solutions of the equations to be oscillatory.展开更多
The bilinear equation of the genera/nonlinear Schrodinger equation with derivative (GDNLSE) and the N-soliton solutions are obtained through the dependent variable transformation and the Hirota method, respectively....The bilinear equation of the genera/nonlinear Schrodinger equation with derivative (GDNLSE) and the N-soliton solutions are obtained through the dependent variable transformation and the Hirota method, respectively. The bilinear equation of the nonlinear Schrodinger equation with derivative (DNLSE) and its multisoliton solutions are given by reduction.展开更多
A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a G...A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.展开更多
The second-order nonlinear system with delay x ' (t) + f(x(t),x ' (t)) + g(x(t),x ' (t))psi (x(t-tau)) = p(t) being considered. Four theorems on the stability of zero solution, the boundedness of the solut...The second-order nonlinear system with delay x ' (t) + f(x(t),x ' (t)) + g(x(t),x ' (t))psi (x(t-tau)) = p(t) being considered. Four theorems on the stability of zero solution, the boundedness of the solutions, the existence of the periodic solutions, the existence and uniqueness of the stationary oscillation are obtained by means of the Liapunov's second method, The conclusion in the literatures are generalized.展开更多
We extend Lou's direct perturbation method for solving the nonlinear Schrodinger equation to the case of the derivative nonlinear Schrodinger equation (DNLSE). By applying this method, different types of perturbati...We extend Lou's direct perturbation method for solving the nonlinear Schrodinger equation to the case of the derivative nonlinear Schrodinger equation (DNLSE). By applying this method, different types of perturbation solutions are obtained. Based on these approximate solutions, the analytical forms of soliton parameters, such as the velocity, the width and the initial position, are carried out and the effects of perturbation on solitons are analyzed at the same time. A numerical simulation of perturbed DNLSE finally verifies the results of the perturbation method.展开更多
In this paper,we study the existence of quasi-periodic solutions and the bound- edness of solutions for a wide class nonlinear differential equations of second order.Using the KAM theorem of reversible systems and the...In this paper,we study the existence of quasi-periodic solutions and the bound- edness of solutions for a wide class nonlinear differential equations of second order.Using the KAM theorem of reversible systems and the theory of transformations,we obtain the existence of quasi-periodic solutions and the boundedness of solutions under some reasonable conditions.展开更多
Invertibility is one of the desirable properties of moving average processes. This study derives consequences of the invertibility condition on the parameters of a moving average process of order three. The study also...Invertibility is one of the desirable properties of moving average processes. This study derives consequences of the invertibility condition on the parameters of a moving average process of order three. The study also establishes the intervals for the first three autocorrelation coefficients of the moving average process of order three for the purpose of distinguishing between the process and any other process (linear or nonlinear) with similar autocorrelation structure. For an invertible moving average process of order three, the intervals obtained are , -0.5ρ2ρ1<0.5.展开更多
The second-order nonlinear optical (NLO) properties of a series of benzothiazole derivatives were studied by use of the ZINDO-SOS method. These chromophores are formed by a donor-π-bridge-acceptor system, based on a ...The second-order nonlinear optical (NLO) properties of a series of benzothiazole derivatives were studied by use of the ZINDO-SOS method. These chromophores are formed by a donor-π-bridge-acceptor system, based on a nitro group connected with benzothiazole as the acceptor and a hydroxyl-functional amino group as the donor. For the purpose of comparison, we also designed molecules in which nitrobenzene is an acceptor. The calculation results indicate that benzothiazole derivatives exhibit larger second-order polarizabilities than nitrobenzene derivatives. In order to clarify the origin of the NLO response of these chromophores, their electron properties were investigated as well. The benzothiazole derivatives are good candidates for application in electro-optical device due to their high optical nonlinearities, good thermal and photonic stability.展开更多
文摘In this article, a finite volume element algorithm is presented and discussed for the numerical solutions of a time-fractional nonlinear fourth-order diffusion equation with time delay. By choosing the second-order spatial derivative of the original unknown as an additional variable, the fourth-order problem is transformed into a second-order system. Then the fully discrete finite volume element scheme is formulated by using L1approximation for temporal Caputo derivative and finite volume element method in spatial direction. The unique solvability and stable result of the proposed scheme are proved. A priori estimate of L2-norm with optimal order of convergence O(h2+τ2−α)where τand hare time step length and space mesh parameter, respectively, is obtained. The efficiency of the scheme is supported by some numerical experiments.
文摘In this paper,the oscillation criteria for the solutions of the nonlinear differential equations of neutral type of the forms:[x(t)+p(t)x(σ(t))]″+q(t)f(x(τ(t)))g(x′(t))=0and[x(t)+p(t)x(σ(t))]″+q(t)f(x(t),x(τ(t)))g(x′(t))=0are obtained.
文摘By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.
文摘By the generalized Riccati transformation and the integral averaging technique, some sufficient conditions of oscillation of the solutions for second order nonlinear differential equations with damping were discussed.Some sufficient oscillation criteria for previous equations were built up.Some oscillation criteria have been expanded and strengthened in some other known results.
文摘In this paper, we obtained some sufficient conditions for the oscillation of all solutions of the second order neutral differential equation of the form where , and . Examples are provided to illustrate the main results.
文摘Several oscillation criteria are given for the second order nonlinear differential equation with damped term of the form [α(t)(y'(t))σ]' +p(t)(y'(t))σ+ q(t)f(y(t)) = 0, where α∈C(R, (0,∞)), p(t) and q(t) are allowed to change sign on [t0, ∞), and f∈C1 (R, R) such that xf(x) > 0 for x ≠0. Our results improve and extend some known oscillation criteria. Examples are inserted to illustrate our results.
文摘The oscillatory behavior of solutions of a class of second order nonlinear differential equations with damping is studied and some new sufficient conditions are obtained by using the refined integral averaging technique. Some well known results in the literature are extended. Moreover, two examples are given to illustrate the theoretical analysis.
基金Supported by the Natural Science Foundation of Hubei ProvinceChina(No.2 0 0 0 J15 6 )
文摘The design and the synthesis of two conjugated donor acceptor imidazole derivatives(1, 2) were carried out for second order nonlinear optics. The thermal properties, the transparency and second order nonlinear optical properties of the molecules were investigated. The experimental results indicate that a good nonlinearity transparency thermal stability trade off is achieved for them.
文摘Some new oscillation theorems are established for the second order nonlinear differential equations with damping of the form where p(t) and q(t) are allowed to change sign on [t0,∞).
文摘In this paper we have established the stability of a generalized nonlinear second-order differential equation in the sense of Hyers and Ulam. We also have proved the Hyers-Ulam stability of Emden-Fowler type equation with initial conditions.
文摘alculations of the nonlinear second-order optical susceptlbilities(β_(ijk))for sub- stituted tl1iophene derivative;with quinoidlike conformation are reported.These systetems possess small dipole moment;and large differences between dipole mo- ments of ground and first-excited states.Geometry optimizations of the molecules investigated were carried out using AM 1 method.The calculations were performed using INDO/CI method comboned with a sum-over-states expression for β_(jik). The calculated results sbw that the second-order susceptibility is a function of the na- ture and location of substituents and is larger for disubstituted molecules than monosubstituted molecules. Bipolymeric thiophenemetmne with NH_2/NO_2 groups was calctilated to have a β_μof 79. 920 × 10 ̄(-30) esu. It was found that the NH_2 and NO_2 groups in above disubstituted molecules are pull-pull groups in ground states,but are usual push-pull groups in the first excited states.
文摘This peper discusses a class of second order nonlinear neutral differential equations with variable coefficients and variable d eviations. Oscillation oriterta for all solutions of the equations are estublished and sufficient conditions are also given to ensure those derivatives of all differentiable solutions of the equations to be oscillatory.
基金The project supported by National Natural Science Foundation of China under Grant No.10671121
文摘The bilinear equation of the genera/nonlinear Schrodinger equation with derivative (GDNLSE) and the N-soliton solutions are obtained through the dependent variable transformation and the Hirota method, respectively. The bilinear equation of the nonlinear Schrodinger equation with derivative (DNLSE) and its multisoliton solutions are given by reduction.
基金supported by the National Natural Science Foundation of China(Nos.11502103 and11421062)the Open Fund of State Key Laboratory of Structural Analysis for Industrial Equipment of China(No.GZ15115)
文摘A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.
文摘The second-order nonlinear system with delay x ' (t) + f(x(t),x ' (t)) + g(x(t),x ' (t))psi (x(t-tau)) = p(t) being considered. Four theorems on the stability of zero solution, the boundedness of the solutions, the existence of the periodic solutions, the existence and uniqueness of the stationary oscillation are obtained by means of the Liapunov's second method, The conclusion in the literatures are generalized.
基金supported by National Natural Science Foundation of China under Grant No.10575087
文摘We extend Lou's direct perturbation method for solving the nonlinear Schrodinger equation to the case of the derivative nonlinear Schrodinger equation (DNLSE). By applying this method, different types of perturbation solutions are obtained. Based on these approximate solutions, the analytical forms of soliton parameters, such as the velocity, the width and the initial position, are carried out and the effects of perturbation on solitons are analyzed at the same time. A numerical simulation of perturbed DNLSE finally verifies the results of the perturbation method.
文摘In this paper,we study the existence of quasi-periodic solutions and the bound- edness of solutions for a wide class nonlinear differential equations of second order.Using the KAM theorem of reversible systems and the theory of transformations,we obtain the existence of quasi-periodic solutions and the boundedness of solutions under some reasonable conditions.
文摘Invertibility is one of the desirable properties of moving average processes. This study derives consequences of the invertibility condition on the parameters of a moving average process of order three. The study also establishes the intervals for the first three autocorrelation coefficients of the moving average process of order three for the purpose of distinguishing between the process and any other process (linear or nonlinear) with similar autocorrelation structure. For an invertible moving average process of order three, the intervals obtained are , -0.5ρ2ρ1<0.5.
基金ProjectsupportedbytheNationalNaturalScienceFoundationofChina (No .2 99730 10 )andtheKeyLabofSupramolecularStructureandMate rialofJilinUniversity .
文摘The second-order nonlinear optical (NLO) properties of a series of benzothiazole derivatives were studied by use of the ZINDO-SOS method. These chromophores are formed by a donor-π-bridge-acceptor system, based on a nitro group connected with benzothiazole as the acceptor and a hydroxyl-functional amino group as the donor. For the purpose of comparison, we also designed molecules in which nitrobenzene is an acceptor. The calculation results indicate that benzothiazole derivatives exhibit larger second-order polarizabilities than nitrobenzene derivatives. In order to clarify the origin of the NLO response of these chromophores, their electron properties were investigated as well. The benzothiazole derivatives are good candidates for application in electro-optical device due to their high optical nonlinearities, good thermal and photonic stability.