The existence of at least two positive solutions is presented for the singular second-order boundary value problem{1/p(t)( p(t)x′(t))′+Φ(t)f(t,x(t),p(t)x′(t))=0,0〈t〈1, limt→0 p(t)x′(t)=...The existence of at least two positive solutions is presented for the singular second-order boundary value problem{1/p(t)( p(t)x′(t))′+Φ(t)f(t,x(t),p(t)x′(t))=0,0〈t〈1, limt→0 p(t)x′(t)=0,x(1)=0by using the fixed point index, where f may be singular at x = 0 and px ′= 0.展开更多
This paper deals with the existence of positive solutions to the singular boundary value problemwhere q(t) may be singular at t = 0 and t = 1, f(t,y) may be superlinear at y =∞ and singular, at y = 0.
New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the cond...New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.展开更多
In this paper we present some new existence results for singular boundary value problems by Arzela-Ascoli theorem. In particular our nonlinearity may be singular in its dependent variable.
In this paper, we establish the existence of positive solutions of (|y'| p-2g' )'+f(t,y)= 0 (P>1 ). y (0)=y (1) = 0. The function f is allowed to be singular when y= 0.
In this paper the existence of solutions of the singularly perturbed boundary value problems on infinite interval for the second order nonlinear equation containing a small parameterε>0,εy'=f(x,y,y'),y...In this paper the existence of solutions of the singularly perturbed boundary value problems on infinite interval for the second order nonlinear equation containing a small parameterε>0,εy'=f(x,y,y'),y'(0)=a,y(∞)=βis examined,where are constants,and i=0,1.Moreover,asymptotic estimates of the solutions for the above problems are given.展开更多
In this paper the following result is obtained: Suppose f(x,u,v) is nonnegative, continuous in ( a, b)×R +×R +; f may be singular at x=a (and/or x=b ) and v=0; f is nondecreasing on u for each x,v,...In this paper the following result is obtained: Suppose f(x,u,v) is nonnegative, continuous in ( a, b)×R +×R +; f may be singular at x=a (and/or x=b ) and v=0; f is nondecreasing on u for each x,v, nonincreasing on v for each x,u; there exists a constant q∈(0,1) such that t qf(x,t -1 u,tu)f(x,u,u)λ qf(x,λ -1 u,λu),0<t<1<λ, u∈R +. Then a necessary and sufficient condition for the equation u″+f(x,u,u)=0 on the boundary condition αu(a)-βu′(a)=0, γ(b)+δu′(b)=0 to have C 1(I) nonzero solutions is that 0<∫ b af(x,e(x),e(x))dx<∞, where α,β,γ,δ are nonnegative real numbers, Δ=(b-a)αγ+αδ+βγ>0, e(x)=G(x,x), G(x,y) is Green's function of above mentioned boundary value problem (when f(x,u,v)≡0). Received September 9,1996. Revised March 31,1997. 1991 MR Subject Classification: 34B.展开更多
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r...In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.展开更多
Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 ...Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.展开更多
In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansio...In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.展开更多
By establishing a comparison result and using monotone iterative methods, the theorem of existence for minimal and maximal solutions of periodic boundary value problems for second-order nonlinear integro-differential ...By establishing a comparison result and using monotone iterative methods, the theorem of existence for minimal and maximal solutions of periodic boundary value problems for second-order nonlinear integro-differential equations in Banach spaces is proved.展开更多
A class of nonlinear boundary value problems(BVP) for the second_order E 2 class elliptic systems in general form is discussed. By introducing a kind of transformation,this kind of BVP is reduced to a class of genera...A class of nonlinear boundary value problems(BVP) for the second_order E 2 class elliptic systems in general form is discussed. By introducing a kind of transformation,this kind of BVP is reduced to a class of generalized nonlinear Riemann_Hilbert BVP. And then some singular integral operators are introduced to establish the equivalent nonlinear singular integral equations. The solvability is proved under some suitable hypotheses by means of the properties of singular integral operators and the function theoretic methods.展开更多
This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- an...This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- and upper-solution pair, a concept defined in this paper, and employ the Nagumo conditions and algebraic boundary layer functions to ensure the existence of solutions of the problem. The uniformly valid asymptotic estimate of the solutions is given as well. The differential systems have nonlinear dependence on all order derivatives of the unknown.展开更多
In this paper, the second-order three-point boundary value problem u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,u(t) = u(1- t), u(0)- u(1) = u(12)is studied, where λ is a positive parameter, under various assumption ...In this paper, the second-order three-point boundary value problem u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,u(t) = u(1- t), u(0)- u(1) = u(12)is studied, where λ is a positive parameter, under various assumption on a and f, we establish intervals of the parameter λ, which yield the existence of positive solution, our proof based on Krasnosel'skii fixed-point theorem in cone.{u"(t)+λa(t)f(t,u(t))=0,0<t<1,u(t)=u(1-t),u′(0)-u′(1)=u(1/2)is studied,where A is a positive parameter,under various assumption on a and f,we establish intervals of the parameter A,which yield the existence of positive solution,our proof based on Krasnosel'skii fixed-point theorem in cone.展开更多
In this paper, it has been studied that the singular perturbations for the higherorder nonlinear boundary value problem of the formε2y(n)=f(t, ε, y. '', y(n-2))pj(ε)y(1)(0, ε)-qj(ε)y(j+1)(0. ε)=Aj(ε) (0...In this paper, it has been studied that the singular perturbations for the higherorder nonlinear boundary value problem of the formε2y(n)=f(t, ε, y. '', y(n-2))pj(ε)y(1)(0, ε)-qj(ε)y(j+1)(0. ε)=Aj(ε) (0≤j≤n-3)a1(ε)u(n-2)(0.ε)-a2(ε)y(n-1)(0, ε)=B(ε)b1(ε)y(n-2)(1, ε)+b2(ε)y(n-1),(1. ε)=C(ε)by the method of higher order differential inequalities and boundary layer corrections.Under some mild conditions, the existence of the perturbed solution is proved and itsuniformly efficient asymptotic expansions up to its n-th order derivative function aregiven out. Hence, the existing results are extended and improved.展开更多
This paper deals with the existence of positive solutions for the singular fourth order boundary value problem.A necessary and sufficient condition for the existence of C3 positive solution is given by means of the mo...This paper deals with the existence of positive solutions for the singular fourth order boundary value problem.A necessary and sufficient condition for the existence of C3 positive solution is given by means of the monotone iterative technique.Furthermore,the uniqueness of the C3 positive solution,and the iterative sequence of the C3 positive solution are also obtained.展开更多
Sufficient conditions for the existence and uniqueness of second boundary value problems of two kinds of even order nonlinear differential equations are obtained. The proofs are based on the lemma on bilinear form, de...Sufficient conditions for the existence and uniqueness of second boundary value problems of two kinds of even order nonlinear differential equations are obtained. The proofs are based on the lemma on bilinear form, developed by A.C.Lazer, Schauder fixed point theorem and the Leray-Schauder degree theory, respectively.展开更多
The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. A...The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. Apart from block iterative methods, the formulation of the MSOR (Modified Successive Over-Relaxation) method known as SOR method with red-black ordering strategy by using two accelerated parameters, ω and ω′, has also improved the convergence rate of the standard SOR method. Due to the effectiveness of these iterative methods, the primary goal of this paper is to examine the performance of the EG family without or with accelerated parameters in solving second order two-point nonlinear boundary value problems. In this work, the second order two-point nonlinear boundary value problems need to be discretized by using the second order central difference scheme in constructing a nonlinear finite difference approximation equation. Then this approximation equation leads to a nonlinear system. As well known that to linearize nonlinear systems, the Newton method has been proposed to transform the original system into the form of linear system. In addition to that, the basic formulation and implementation of 2 and 4-point EG iterative methods based on GS (Gauss-Seidel), SOR and MSOR approaches, namely EGGS, EGSOR and EGMSOR respectively are also presented. Then, combinations between the EG family and Newton scheme are indicated as EGGS-Newton, EGSOR-Newton and EGMSOR-Newton methods respectively. For comparison purpose, several numerical experiments of three problems are conducted in examining the effectiveness of tested methods. Finally, it can be concluded that the 4-point EGMSOR-Newton method is more superior in accelerating the convergence rate compared with the tested methods.展开更多
In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough num...In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough number of steps) of an associated homogeneous system is given.Finally,a sufficient condition for well-condi-tioning,intrinsically related to the problem data is proposed.展开更多
In this paper,a class of singular perturbation of nonlocal boundary value problems for elliptic partial differential equations of higher order is considered by using the differential inequalities.The uniformly valid a...In this paper,a class of singular perturbation of nonlocal boundary value problems for elliptic partial differential equations of higher order is considered by using the differential inequalities.The uniformly valid asymptotic expansion of solution is obtained.展开更多
基金the NNSFC(10571111)the Fundation of Natural Science of Shandong Province(Y2005A07)
文摘The existence of at least two positive solutions is presented for the singular second-order boundary value problem{1/p(t)( p(t)x′(t))′+Φ(t)f(t,x(t),p(t)x′(t))=0,0〈t〈1, limt→0 p(t)x′(t)=0,x(1)=0by using the fixed point index, where f may be singular at x = 0 and px ′= 0.
文摘This paper deals with the existence of positive solutions to the singular boundary value problemwhere q(t) may be singular at t = 0 and t = 1, f(t,y) may be superlinear at y =∞ and singular, at y = 0.
文摘New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.
文摘In this paper we present some new existence results for singular boundary value problems by Arzela-Ascoli theorem. In particular our nonlinearity may be singular in its dependent variable.
文摘In this paper, we establish the existence of positive solutions of (|y'| p-2g' )'+f(t,y)= 0 (P>1 ). y (0)=y (1) = 0. The function f is allowed to be singular when y= 0.
文摘In this paper the existence of solutions of the singularly perturbed boundary value problems on infinite interval for the second order nonlinear equation containing a small parameterε>0,εy'=f(x,y,y'),y'(0)=a,y(∞)=βis examined,where are constants,and i=0,1.Moreover,asymptotic estimates of the solutions for the above problems are given.
文摘In this paper the following result is obtained: Suppose f(x,u,v) is nonnegative, continuous in ( a, b)×R +×R +; f may be singular at x=a (and/or x=b ) and v=0; f is nondecreasing on u for each x,v, nonincreasing on v for each x,u; there exists a constant q∈(0,1) such that t qf(x,t -1 u,tu)f(x,u,u)λ qf(x,λ -1 u,λu),0<t<1<λ, u∈R +. Then a necessary and sufficient condition for the equation u″+f(x,u,u)=0 on the boundary condition αu(a)-βu′(a)=0, γ(b)+δu′(b)=0 to have C 1(I) nonzero solutions is that 0<∫ b af(x,e(x),e(x))dx<∞, where α,β,γ,δ are nonnegative real numbers, Δ=(b-a)αγ+αδ+βγ>0, e(x)=G(x,x), G(x,y) is Green's function of above mentioned boundary value problem (when f(x,u,v)≡0). Received September 9,1996. Revised March 31,1997. 1991 MR Subject Classification: 34B.
基金supported by the National Natural Science Foundation of China (No.12172154)the 111 Project (No.B14044)+1 种基金the Natural Science Foundation of Gansu Province (No.23JRRA1035)the Natural Science Foundation of Anhui University of Finance and Economics (No.ACKYC20043).
文摘In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5.
基金Supported by the Natural Science Foundation of Hunan Province(06JJ50008) Supported by the Natural Science Foundation of Guangdong Province(7004569)
文摘Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.
文摘In this paper a singular perturbation of boundary value problem for elliptic partial differential equations of higher order is considered by using the differential inequalities. The uniformly valid asymptotic expansion in entire region is obtained.
基金theNaturalScienceFoundationofEducationalCommitteeofHainanProvince China
文摘By establishing a comparison result and using monotone iterative methods, the theorem of existence for minimal and maximal solutions of periodic boundary value problems for second-order nonlinear integro-differential equations in Banach spaces is proved.
文摘A class of nonlinear boundary value problems(BVP) for the second_order E 2 class elliptic systems in general form is discussed. By introducing a kind of transformation,this kind of BVP is reduced to a class of generalized nonlinear Riemann_Hilbert BVP. And then some singular integral operators are introduced to establish the equivalent nonlinear singular integral equations. The solvability is proved under some suitable hypotheses by means of the properties of singular integral operators and the function theoretic methods.
基金supported by the National Natural Science Foundation of China (Grant No.10771212)the Natural Science Foundation of Jiangsu Province (Grant No.BK2008119)the Natural Science Foundation of the Education Division of Jiangsu Province (Grant No.08KJB110011)
文摘This paper deals with the existence of solutions to a singularly perturbed second-order three-point boundary value problem for nonlinear differential systems. The authors construct an appropriate generalized lower- and upper-solution pair, a concept defined in this paper, and employ the Nagumo conditions and algebraic boundary layer functions to ensure the existence of solutions of the problem. The uniformly valid asymptotic estimate of the solutions is given as well. The differential systems have nonlinear dependence on all order derivatives of the unknown.
基金Supported by the National Natural Science Foundation of China(11261053) Supported by the Natural Science Foundation of Gansu Province of China(1308RJZA125)
文摘In this paper, the second-order three-point boundary value problem u(t) + λa(t)f(t, u(t)) = 0, 0 < t < 1,u(t) = u(1- t), u(0)- u(1) = u(12)is studied, where λ is a positive parameter, under various assumption on a and f, we establish intervals of the parameter λ, which yield the existence of positive solution, our proof based on Krasnosel'skii fixed-point theorem in cone.{u"(t)+λa(t)f(t,u(t))=0,0<t<1,u(t)=u(1-t),u′(0)-u′(1)=u(1/2)is studied,where A is a positive parameter,under various assumption on a and f,we establish intervals of the parameter A,which yield the existence of positive solution,our proof based on Krasnosel'skii fixed-point theorem in cone.
文摘In this paper, it has been studied that the singular perturbations for the higherorder nonlinear boundary value problem of the formε2y(n)=f(t, ε, y. '', y(n-2))pj(ε)y(1)(0, ε)-qj(ε)y(j+1)(0. ε)=Aj(ε) (0≤j≤n-3)a1(ε)u(n-2)(0.ε)-a2(ε)y(n-1)(0, ε)=B(ε)b1(ε)y(n-2)(1, ε)+b2(ε)y(n-1),(1. ε)=C(ε)by the method of higher order differential inequalities and boundary layer corrections.Under some mild conditions, the existence of the perturbed solution is proved and itsuniformly efficient asymptotic expansions up to its n-th order derivative function aregiven out. Hence, the existing results are extended and improved.
文摘This paper deals with the existence of positive solutions for the singular fourth order boundary value problem.A necessary and sufficient condition for the existence of C3 positive solution is given by means of the monotone iterative technique.Furthermore,the uniqueness of the C3 positive solution,and the iterative sequence of the C3 positive solution are also obtained.
文摘Sufficient conditions for the existence and uniqueness of second boundary value problems of two kinds of even order nonlinear differential equations are obtained. The proofs are based on the lemma on bilinear form, developed by A.C.Lazer, Schauder fixed point theorem and the Leray-Schauder degree theory, respectively.
文摘The convergence results of block iterative schemes from the EG (Explicit Group) family have been shown to be one of efficient iterative methods in solving any linear systems generated from approximation equations. Apart from block iterative methods, the formulation of the MSOR (Modified Successive Over-Relaxation) method known as SOR method with red-black ordering strategy by using two accelerated parameters, ω and ω′, has also improved the convergence rate of the standard SOR method. Due to the effectiveness of these iterative methods, the primary goal of this paper is to examine the performance of the EG family without or with accelerated parameters in solving second order two-point nonlinear boundary value problems. In this work, the second order two-point nonlinear boundary value problems need to be discretized by using the second order central difference scheme in constructing a nonlinear finite difference approximation equation. Then this approximation equation leads to a nonlinear system. As well known that to linearize nonlinear systems, the Newton method has been proposed to transform the original system into the form of linear system. In addition to that, the basic formulation and implementation of 2 and 4-point EG iterative methods based on GS (Gauss-Seidel), SOR and MSOR approaches, namely EGGS, EGSOR and EGMSOR respectively are also presented. Then, combinations between the EG family and Newton scheme are indicated as EGGS-Newton, EGSOR-Newton and EGMSOR-Newton methods respectively. For comparison purpose, several numerical experiments of three problems are conducted in examining the effectiveness of tested methods. Finally, it can be concluded that the 4-point EGMSOR-Newton method is more superior in accelerating the convergence rate compared with the tested methods.
基金This work has been partially supported by the "Generalitat Valenciana" grant GV1118/93the Spanish D. G. I. C. Y.T. grant PB93-0381
文摘In this paper well-conditioning of boundary value problems for systems of second order difference equa-tions is studied.First,a sufficient condition for the existence of a unique bounded solution (for large enough number of steps) of an associated homogeneous system is given.Finally,a sufficient condition for well-condi-tioning,intrinsically related to the problem data is proposed.
文摘In this paper,a class of singular perturbation of nonlocal boundary value problems for elliptic partial differential equations of higher order is considered by using the differential inequalities.The uniformly valid asymptotic expansion of solution is obtained.