Selenium is one of the essential trace elements in human body,however,due to the limitation of geographic factors,the intake of selenium is seriously insufficient in most regions.In this study,selenium-enriched peanut...Selenium is one of the essential trace elements in human body,however,due to the limitation of geographic factors,the intake of selenium is seriously insufficient in most regions.In this study,selenium-enriched peanut sprouts with high selenium content were prepared by soaking peanut seeds in sodium selenite.The content and distribution of selenium in germinated peanuts were investigated.The results showed that 200μmol/L sodium selenite and germination for 6 days resulted in the highest total selenium,organic selenium content,and organic selenium conversion in peanut sprouts.Selenium exists in peanut sprouts mainly in organic selenium form,of which selenoproteins are the most critical organic selenium carriers.ABTS free radical scavenging capacity and reducing power assays showed that alkali-soluble protein had the highest antioxidant activity among the four soluble proteins,attributed to its high selenium binding level.Radicle and cotyledons of peanut seedlings were significantly enriched with selenium compared to hypocotyl.Amino acid analysis and SDS-PAGE results showed that selenium increases significantly after peanut germination and selenium enrichment.This study provides a simple,environmentally friendly,and effective way of selenium enrichment and offers a theoretical basis for applying selenium-enriched foods in food and medicine.展开更多
In this work,the content of selenium(Se),physicochemical properties,and antioxidant capacity of Se-enriched peanut proteins isolate(S-PPI)and its fractions arachin(S-Arachin)and conarachin(S-Conarachin)were investigat...In this work,the content of selenium(Se),physicochemical properties,and antioxidant capacity of Se-enriched peanut proteins isolate(S-PPI)and its fractions arachin(S-Arachin)and conarachin(S-Conarachin)were investigated.The S-PPI,S-Arachin,and S-Conarachin were prepared using natural Se-enriched peanut with alkali extraction,acid precipitation,and sedimentation coefficients method.The Se content of S-PPI(420.83μg/kg)was two times compared to ordinary peanut protein isolate(O-PPI,203.10μg/kg).Besides,the Se is more likely to bind with conarachin than arachin.The solubility curves of these peanut proteins at different pH were similar.The emulsifying activities and the emulsion stability of S-Arachin was relatively low,as well as its foaming activity and the foam stability was the lowest.The DPPH scavenging activity of peanut proteins were decreased in order of S-Conarachin,S-PPI,S-Arachin,and O-PPI,as well as reducing power and the superoxide radical scavenging activity.The antioxidant activity trend was similar to Se content distribution trend,suggesting that the content of Se is related to antioxidant activity.The finding may indicate that Se content played a positive role in promoting the antioxidant activity of peanut protein.展开更多
Wild peanut(Arachis)species are promising sources of disease resistance for improving peanut cultivars.The objective of this study was to assess cross-compatibility among cultivated and wild peanuts in crosses between...Wild peanut(Arachis)species are promising sources of disease resistance for improving peanut cultivars.The objective of this study was to assess cross-compatibility among cultivated and wild peanuts in crosses between eight peanut cultivars and 27 wild species carrying the A,B,E,Ex,F,K,P,and H genomes.Embryo culture and chromosome doubling led to polyploids representing hybrids between cultivated peanut and A.stenosperma,A.macedoi,A.duranensis,A.villosa,and A.diogoi.The first two showed greater resistance to bacterial wilt than their cultivated parents.DNA markers were developed for verifying the hybrids and for identifying translocation or introgression lines with alien chromosome fragments.展开更多
Peanut varieties are diverse globally,with their characters and nutrition determining the product quality.However,the comparative analysis and statistical analysis of key quality indicators for peanut kernels across t...Peanut varieties are diverse globally,with their characters and nutrition determining the product quality.However,the comparative analysis and statistical analysis of key quality indicators for peanut kernels across the world remains relatively limited,impeding the comprehensive evaluation of peanut quality and hindering the industry development on a global scale.This study aimed to compare and analyze the apparent morphology,microstructure,single-cell structure,engineering and mechanical properties,as well as major nutrient contents of peanut kernels from 10 different cultivars representing major peanut-producing countries.The surface and cross-section microstructure of the peanut kernels exhibited a dense“blocky”appearance with a distinct cellular structure.The lipid droplets were predominantly spherical with a regular distribution within the cells.The single-cell structure of the kernels from these 10 peanut cultivars demonstrated varying morphologies and dimensions,which exhibited correlations with their mechanical and engineering properties.Furthermore,the mass loss versus temperature profiles of the peanut kernels revealed five distinct stages,corresponding to moisture loss,volatile loss,protein denaturation,and the degradation of various biomacromolecules.Variations were also observed in the lipid,protein,and sucrose contents,texture,bulk density,true density,porosity,geometric mean diameter,and sphericity among the diferent peanut varieties.This study establishes relationships and correlations among microstructure,engineering properties,and nutritional composition of commonly grown peanut varieties in major peanut-processing countries.The findings provide valuable insights into peanut quality evaluation,empowering the peanut industry to enhance their processing and product development efforts.展开更多
High-salt diet is well recognized as a risk factor for hypertension,and dietary intervention plays a critical role in the prevention of hypertension.The current study investigated the effects of selenium-enriched gree...High-salt diet is well recognized as a risk factor for hypertension,and dietary intervention plays a critical role in the prevention of hypertension.The current study investigated the effects of selenium-enriched green tea(Se-GT)and ordinary green tea(GT)on prevention of hypertension of rats induced by high-salt diet,as well as their potential regulatory and mechanism.Our results showed that GT and Se-GT supplementations significantly prevented the increase of blood pressure(BP),activated the phosphoinosmde-3-kinase/protein kinase B(PI3K/Akt)signaling pathway,and regulated the gene expression related to BP,as well as improved the tissue damage like heart,liver,and kidneys.Besides,the key parameters associated with oxidative stress,inflammation and endothelial dysfunction were also altered by GT and Se-GT treatments.Importantly,GT or Se-GT administration adjusted the diversity and composition of the intestinal flora.Moreover,GT and Se-GT supplementations increased the abundance of beneficial bacteria and reduced the abundance of harmful or conditional pathogenic bacteria.More specifically,GT intake specifically and significantly enriched the relative abundance of Paraprevotella and Bacteroides,whereas Se-GT was characterized by specific and significant enrichment for Allobaculum and Bifidobacterium.Our results proved that dietary supplement of GT and Se-GT remarkably improved the vascular functions and effectively prevented tissue damage by regulation of intestinal flora,and thus preventing hypertension induced by high-salt diet.展开更多
As an important symbol of agricultural and sideline products in Ankang City,selenium-enriched tea affects the development of regional agricultural and sideline industries.In this paper,the development status and probl...As an important symbol of agricultural and sideline products in Ankang City,selenium-enriched tea affects the development of regional agricultural and sideline industries.In this paper,the development status and problems of the selenium-enriched tea products of Ankang were analyzed in terms of capital,technology,management and sales mode.This research is of positive significance to the development of selenium-enriched products and other agricultural and sideline products of health value,and plays a very important role in promoting the cultivation of village-level characteristic industries and the effective realization of targeted poverty alleviation.展开更多
[Objectives] The aims were to optimize the extraction process of selenoproteins from selenium-enriched rice in Guangxi and provide references for the intensive processing and comprehensive utilization of selenium prot...[Objectives] The aims were to optimize the extraction process of selenoproteins from selenium-enriched rice in Guangxi and provide references for the intensive processing and comprehensive utilization of selenium protein resources. [Methods]Selenium-enriched rice was used as materials to extract selenoproteins by phosphate buffer extraction method and to optimize the extraction process of selenoproteins by using the orthogonal experiment. Proteins and selenium content was measured by Coomassie Brilliant Blue G-250 reagent and AFS( atomic fluorescence spectrometry) respectively. [Results] The most significant factor affecting extraction of rice Selenoproteins was extraction NaO H concentration,followed by the ratio of solid-liquid,temperature and then extraction time. The optimum extraction conditions of selenoproteins from rice were extraction temperature of 50 ℃,NaO H concentration of 0. 14 mol/L,extraction time of 5 h,and solid-liquid ratio of 1∶ 30. [Conclusions]The alkali extraction process optimized by orthogonal test could effectively improve the extraction rate of selenoproteins,and the optimized process parameters could be popularized and applied in practical production.展开更多
Selenium is an essential trace element for human health.Eating selenium-enriched eggs is conducive to easily and effectively solving the problem of selenium deficiency.In the production process of selenium-enriched eg...Selenium is an essential trace element for human health.Eating selenium-enriched eggs is conducive to easily and effectively solving the problem of selenium deficiency.In the production process of selenium-enriched eggs,different selenium sources,additive doses,feeding time,and the addition of other vitamins,trace elements,and methionine in the diet will influence the deposition of selenium in eggs.Through this review,it is intended to provide a reference for the practical,safe and economical production of selenium-enriched eggs.展开更多
Taking Scientific Outlook on Development as the guiding principle,this paper introduced the principles of innovation,coordination,green,openness and sharing. Based on gifted advantages of selenium-enriched soil and se...Taking Scientific Outlook on Development as the guiding principle,this paper introduced the principles of innovation,coordination,green,openness and sharing. Based on gifted advantages of selenium-enriched soil and selenium-enriched industry development in Guangxi,it discussed current practice,stressed green,ecological,characteristic demonstration,transformation and upgrading,and targeted poverty alleviation. Finally,it came up with perspective,practical,and operational strategies and recommendations for development of selenium-enriched industry,to provide reference for sustainable development of selenium-enriched functional industry in Guangxi.展开更多
In order to improve the added value of the main vegetable products in Qinghai Province,we researched the effect of soil selenium content on vegetable quality in selenium-enriched area of Qinghai. Through the analysis ...In order to improve the added value of the main vegetable products in Qinghai Province,we researched the effect of soil selenium content on vegetable quality in selenium-enriched area of Qinghai. Through the analysis of Qinghai selenium-enriched soil selenium content and5 kinds of main vegetables corresponds to the total selenium,part of the mineral elements and soluble sugar and VC content,the effects of soil selenium levels on selenium absorption and nourishment quality of vegetables were researched. The results showed that he Qinghai selenium-enriched soil selenium content in the range of 100. 00-563. 00 μg/kg,among them,the soil samples with sufficient selenium and rich selenium accounted for 76. 53% and 18. 88%,respectively. Soil selenium content of garlic sampling area was relatively high,and soil selenium content of sugar beet sampling area was relatively low. Vegetable selenium content was in the range of 11. 00-340. 94 μg/kg,the average content of total selenium content of garlic was up to 170. 40 μg/kg,and the average content of the total selenium content of radish is 73. 00 μg/kg.90. 63% of the vegetables in the region reached the level of sufficient selenium,and 70. 31% reached the level of selenium enrichment. The average content of Ca and Mg was higher than the national average. There was no significant correlation between selenium content of soil and vegetable and nutritional quality.展开更多
Peanut (Arachis hypogaea L.) production is valued at $1.28 billion annually in the USA. Plant growth habit can be used to determine plant population density and cultivation practices a given farmer uses. Erect plants ...Peanut (Arachis hypogaea L.) production is valued at $1.28 billion annually in the USA. Plant growth habit can be used to determine plant population density and cultivation practices a given farmer uses. Erect plants are generally more compact and can be more densely planted unlike plants with more prostrate growth. The objectives of this study were to analyze publicly available datasets to identify single-nucleotide polymorphism (SNP) markers associated with plant growth habit in peanuts and to conduct genomic selection. A genome-wide association study (GWAS) was used to identify SNPs for growth habit type among 775 USDA peanut accessions. A total of 13,306 SNPs were used to conduct GWAS using five statistical models. The models used were single-marker regression, generalized linear model (PCA), generalized linear model (Q), mixed linear model (PCA), and mixed linear model (Q) and a total of 181, 1, 108, 1, and 10 SNPs were found associated with growth habit respectively. Based on this dataset, results showed that genomic selection can achieve up to 61% accuracy, depending on the training population size being used for the prediction. SNP AX-176821681 was found in all models. Gene ontology for this location shows an annotated gene, Araip.0F3YM, found 2485 bp upstream of this SNP and encodes for a peptidyl-prolyl cis-trans isomerase. To the best of our knowledge, this is the first report identifying molecular markers linked to plant growth habit type in peanuts. This finding suggests that a molecular marker can be developed to identify specific plant growth habits in peanuts, enabling early generation selection by peanut breeders.展开更多
Peanuts pods grow underground and mature unevenly, resulting that choosing the correct time to harvest is more complicated than other crops. Pod maturity can be determined by blasting with a pressure washer to remove ...Peanuts pods grow underground and mature unevenly, resulting that choosing the correct time to harvest is more complicated than other crops. Pod maturity can be determined by blasting with a pressure washer to remove outer skin of the pod (exocarp) to expose the color of the middle layer (mesocarp). The mesocarp color changes with maturity from white to yellow, orange, brown and finally black. The sum of percentage from orange, brown, and black mesocarp (OBB) color and black color (BL) represents the kernels that are mature enough to harvest. The goal of this research is to identify methodologies to estimate OBB and BL of the pods using RGB images taken in the field and validate the proposed model using other pod images. The Mahalanobis distance classification method was used to process sets of images and calculate pod area (number of pixels) corresponding to two classes (mesocarp and background) with nine different color groups. The results showed a performance of 94% effectiveness for mesocarp using Mahalanobis distance classification. Statistical regression for OBB and BL was developed based on 315 images of peanut pods taken from the field. The R2 and root mean square error of predicted and actual OBB were 0.93 and 4.1%, respectively. The R2 and root mean square error of predicted and actual BL were 0.88 and 1.8%, respectively. The validation of OBB using other images provided reasonable estimation (R2 = 0.98 and RMSE = 2.73%). This study introduces a novel, cost-effective, and non-destructive method for estimating peanut maturity using RGB imagery and Mahalanobis distance classification in the field. This innovative approach addresses the limitations of traditional methods and offers a robust alternative for real-time maturity assessment.展开更多
Peanut(Arachis hypogaea L.)is an important oil crop.Oleic acid is a major factor that determines the quality of peanuts.Therefore,the high oleic and high oleic to linoleic acid ratio are the target traits in an advanc...Peanut(Arachis hypogaea L.)is an important oil crop.Oleic acid is a major factor that determines the quality of peanuts.Therefore,the high oleic and high oleic to linoleic acid ratio are the target traits in an advanced peanut breeding program.This study provided an extensive evaluation of the genetic and physical characteristics as well as disease resistance of 220 high oleic peanut varieties in China.Notably,these varieties clustered into five major categories based on their traits.A majority of these varieties have been bred using interspecific hybridization or selected from mutants of self-crossed parents,with the main parent varieties being Kaixuan 016 and CTWE.Analysis of disease resistance showed that most high oleic peanut varieties could resist two or three diseases.However,those varieties with resistance to multiple diseases were relatively scarce.Moreover,some high oleic peanut varieties showed no disease resistance or inadequate testing.The results further indicate that the genetic basis for high oleic peanut breeding is insufficient,highlighting the need for its further development.Importantly,our findings lay a critical foundation for future high oleic peanut breeding and promote better understanding of the genetic and trait diversity offered by these varieties.展开更多
Pod size is a key agronomic trait that influences peanut yield greatly.However,our understanding of the mechanisms underlying pod size is limited.In this study,we employed a segregating population derived from a cross...Pod size is a key agronomic trait that influences peanut yield greatly.However,our understanding of the mechanisms underlying pod size is limited.In this study,we employed a segregating population derived from a cross between the small-pod line ND_S and the large-pod line ND_L to map quantitative trait loci(QTL)associated with pod size.Initial mapping performed using bulk segregant analysis revealed a candidate interval on chromosome A05 referred to as qPSW05.We refined this interval to a 256.9 kb genomic region using newly developed molecular markers.Through sequence and expression analyses,we identified the candidate gene AhXE45GC,which encodes an AN1 zinc finger protein.We discovered a 33-bp insertion in the intron of AhXE45GC in ND_S.Accessions that lack this insertion,such as ND_L,had significantly larger pods than those with the insertion,including ND_S.To facilitate marker-assisted selection for peanut pod size,we developed a molecular marker associated with this polymorphism.This marker could provide a valuable genetic resource for breeding high-yielding peanut varieties.展开更多
Recent publications have highlighted the development of an alternate cotton-peanut intercropping as a novel strat-egy to enhance agricultural productivity.In this article,we provide an overview of the progress made in...Recent publications have highlighted the development of an alternate cotton-peanut intercropping as a novel strat-egy to enhance agricultural productivity.In this article,we provide an overview of the progress made in the alternate cotton-peanut intercropping,specifically focusing on its yield benefits,environmental impacts,and the underlying mechanisms.In addition,we advocate for future investigations into the selection or development of appropriate crop varieties and agricultural equipment,pest management options,and the mechanisms of root-canopy interactions.This review is intended to provide a valuable reference for understanding and adopting an alternate intercropping system for sustainable cotton production.展开更多
This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry ma...This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry matter accumulation of the N-sensitive cultivar decreased under reduced N treatments,whereas no effect was observed on the relevant indicators in the N-insensitive variety GH1026.Mg application increased the net photosynthetic rate by increasing the expression of genes involved in chlorophyll synthesis and Rubisco activity in the leaves during the pegging stage under 50%N treatment,while no effect on the net photosynthetic rate was observed under the 100%N treatment.The rate of dry matter accumulation at the early growth stage,total dry matter accumulation and pod yield at harvest increased after Mg application under 50%N treatment by increasing the transportation of assimilates from stems and leaves to pods in both peanut varieties,whereas no effect was found under 100%N treatment.Moreover,Mg application increased the NUE under 50%N treatment.No improvement of NUE in either peanut variety was found under 100%N treatment,while Mg application under the 50%N treatment can obtain a higher economic benefit than the 100%N treatment.In acidic soil,application of 307.5 kg ha^(-1)of Mg sulfate fertilizer under 50%reduced nitrogen application is a suitable fertilizer management measure for improving carbon assimilation,NUE and achieve high peanut yields in southern China.展开更多
Introduction: Food allergies are on the constant increase worldwide. Among them is peanut allergy, which also affects children. The aim of this study was to determine the profile of peanut sensitization in children at...Introduction: Food allergies are on the constant increase worldwide. Among them is peanut allergy, which also affects children. The aim of this study was to determine the profile of peanut sensitization in children attending a pneumo-allergology consultation. Methods: This was a cross-sectional study, which ran from January 1, 2018, to December 31, 2022, on children sensitized to peanuts seen in pneumo-allergology consultations at the Teaching Hospital Campus of Lomé. Results: The sample included 137 children aged 3 months to 18 years. The frequency of peanut sensitization was 25.3%. The mean age of patients was 6.3 ± 4.3 years (minimum 6 months and maximum 18 years). The 6 months to 5 years age group was the most represented (43.1%). The sex ratio was 1.3. The main reasons for consultation were rhinorrhea (67.9%), sneezing (36.5%) and cough (35.8%). Allergic rhinitis was identified as a personal history in 75.2% of patients. Peanut allergy was manifested as rhinorrhea (62.5%), asthma (26.8%) and eczema (8.9%). The risk of onset of symptoms within 15 - 30 minutes was 1.87 times (p = 0.001, CI = [1.2 - 2.1]) for peanuts consumed in roasted form with shell. Severe clinical signs such as Quincke’s Edema and anaphylactic shock were found in 1.4% of cases. Conclusion: Peanut allergy was common in children. Severe clinical signs were rare.展开更多
Introduction: Peanut pastes are food products resulting from artisanal or industrial processing, used in cooking in Africa in general and in Central African Republic in particular. These peanut pastes are often contam...Introduction: Peanut pastes are food products resulting from artisanal or industrial processing, used in cooking in Africa in general and in Central African Republic in particular. These peanut pastes are often contaminated by molds and filamentous fungi involved in the degradation of hygienic and organoleptic or even toxicological quality. This study aims to determine the epidemiological profile of molds contaminating peanut pastes sold on the Central African market. Methodology: This was a cross-sectional study carried out from June to September 2023. Samples of peanut pastes sold on Central African market were taken and analyzed at the National Laboratory of Clinical Biology and Public Health using the conventional microbiology method according to ISO 7954 standards. The data obtained were collected in the ODK 2023.3.1 application and analyzed with the Epi Info 7 software. A multivariate analysis by logistic regression, Ficher’s exact test, and chi<sup>2</sup> at the 5% threshold (p Penicillium sp.;11.25% of Mucor sp.;10.63% of Aspergillus terrei;3.13% of Aspergillus niger;1.25% of Aspergillus medullans;28.13% of Aspergillus flavus;2.50% of Aspergillus fumigatus. Peanut pastes stored beyond three days were more contaminated (94.19%). Conclusion: The results of this study made it possible to highlight strains of mold that impact the hygienic and organoleptic quality of peanut pastes sold at the Central African market. Most of the isolated strains were the Aspergillus flavus species which is recognized by its toxigenic effects. This species is much more incriminated in the contamination of foodstuffs with the production of the toxin which causes underlying pulmonary pathologies in humans.展开更多
Oil content is a crucial indicator for evaluating the quality of peanuts.A rapid and non-destructive method to determine oil content of individual peanut seed can provide robust technical support for breeding high-oil...Oil content is a crucial indicator for evaluating the quality of peanuts.A rapid and non-destructive method to determine oil content of individual peanut seed can provide robust technical support for breeding high-oil-content peanut varieties.In this study,we established a rapid determination method using near-infrared hyperspectral imaging and chemometrics to assess the oil content of single peanut seed.After selecting key wavelengths through competitive adaptive reweighted sampling(CARS),uninformative variable elimination(UVE),and random frog(RF),we constructed an oil content calibration model based on partial least squares regression for single peanut seed.Validation results demonstrated that the correlation coefficient was 0.8393 with a root mean square error of 1.7771 in the calibration set,while it was 0.7915 with a root mean square error of 2.2943 in the independent prediction set.Most samples exhibited relative errors below 5%,confirming the reliability of this model in predicting oil content of single peanut seed.展开更多
Non-enzymatic glycation reaction in food can produce diet-derived advanced glycation end products(dAGEs),which have potential health risks.Thus,it is of great significance to find efficient substances to improve the n...Non-enzymatic glycation reaction in food can produce diet-derived advanced glycation end products(dAGEs),which have potential health risks.Thus,it is of great significance to find efficient substances to improve the negative effects induced by dAGEs on human health.This study investigated the intervening effects of peanut skin procyanidins(PSP)on the dAGEs-induced oxidative stress and systemic inflammation in experimental mice model.Results showed that the accumulation of AGEs in serum,liver,and kidney was significantly increased after mice were fed dAGEs(P<0.05).The expression of advanced glycation product receptor(RAGE)was also significantly increased in liver and kidney(P<0.05).PSP could not only effectively reduce the accumulation of AGEs in serum,liver and kidney of mice,but also reduce the expression of RAGE in liver and kidney of mice.And the levels of pro-inflammatory cytokines interleukin-6(IL-6),tumor necrosis factor(TNF-α),and IL-1βin serum of mice were significantly decreased(P<0.05),while the levels of antiinflammatory factor IL-10 were increased,and the inflammatory injury in mice was improved.In addition,the levels of superoxide dismutase(SOD),glutathione(GSH),catalase(CAT)in liver and kidney of mice were increased(P<0.05),and the level of malondialdehyde(MDA)was decreased(P<0.05),which enhanced the antioxidant capacity of mice in vivo,and improved the oxidative damage of liver and kidney.Molecular docking technique was used to confirm that the parent compound of procyanidins and its main metabolites,such as 3-hydroxyphenylacetic acid,could interact with RAGE,which might inhibit the activation of nuclear transcription factor(NF-κB),and ultimately reduce oxidative stress and inflammation in mice.展开更多
基金supported by the National Natural Science Foundation of China[32172259]Key Research and Development Project of Henan Province[231111111800]+1 种基金Innovative Funds Plan of Henan University of Technology [2021ZKCJ03]The Program for the Top Young Talents of Henan Associate for Science and Technology.
文摘Selenium is one of the essential trace elements in human body,however,due to the limitation of geographic factors,the intake of selenium is seriously insufficient in most regions.In this study,selenium-enriched peanut sprouts with high selenium content were prepared by soaking peanut seeds in sodium selenite.The content and distribution of selenium in germinated peanuts were investigated.The results showed that 200μmol/L sodium selenite and germination for 6 days resulted in the highest total selenium,organic selenium content,and organic selenium conversion in peanut sprouts.Selenium exists in peanut sprouts mainly in organic selenium form,of which selenoproteins are the most critical organic selenium carriers.ABTS free radical scavenging capacity and reducing power assays showed that alkali-soluble protein had the highest antioxidant activity among the four soluble proteins,attributed to its high selenium binding level.Radicle and cotyledons of peanut seedlings were significantly enriched with selenium compared to hypocotyl.Amino acid analysis and SDS-PAGE results showed that selenium increases significantly after peanut germination and selenium enrichment.This study provides a simple,environmentally friendly,and effective way of selenium enrichment and offers a theoretical basis for applying selenium-enriched foods in food and medicine.
基金supported by the National Natural Science Foundation of China(31301436)Natural Science Fund for Distinguished Young Scholars of Jiangxi Province(20192BCB23006).
文摘In this work,the content of selenium(Se),physicochemical properties,and antioxidant capacity of Se-enriched peanut proteins isolate(S-PPI)and its fractions arachin(S-Arachin)and conarachin(S-Conarachin)were investigated.The S-PPI,S-Arachin,and S-Conarachin were prepared using natural Se-enriched peanut with alkali extraction,acid precipitation,and sedimentation coefficients method.The Se content of S-PPI(420.83μg/kg)was two times compared to ordinary peanut protein isolate(O-PPI,203.10μg/kg).Besides,the Se is more likely to bind with conarachin than arachin.The solubility curves of these peanut proteins at different pH were similar.The emulsifying activities and the emulsion stability of S-Arachin was relatively low,as well as its foaming activity and the foam stability was the lowest.The DPPH scavenging activity of peanut proteins were decreased in order of S-Conarachin,S-PPI,S-Arachin,and O-PPI,as well as reducing power and the superoxide radical scavenging activity.The antioxidant activity trend was similar to Se content distribution trend,suggesting that the content of Se is related to antioxidant activity.The finding may indicate that Se content played a positive role in promoting the antioxidant activity of peanut protein.
基金supported by National Natural Science Foundation of China(32272153)Henan Province Science and Technology R&D Joint Fund(232301420025)+4 种基金National Key Research and Development Program of China(2023YFD1200200)the Key Research Project of the Shennong Laboratory(SN01-2022-03)Independent Innovation Foundation of Henan Academy of Agricultural Sciences(2024ZC024)China Agriculture Research System(CARS-13)Henan Provincial Agriculture Research System(S2012-5).
文摘Wild peanut(Arachis)species are promising sources of disease resistance for improving peanut cultivars.The objective of this study was to assess cross-compatibility among cultivated and wild peanuts in crosses between eight peanut cultivars and 27 wild species carrying the A,B,E,Ex,F,K,P,and H genomes.Embryo culture and chromosome doubling led to polyploids representing hybrids between cultivated peanut and A.stenosperma,A.macedoi,A.duranensis,A.villosa,and A.diogoi.The first two showed greater resistance to bacterial wilt than their cultivated parents.DNA markers were developed for verifying the hybrids and for identifying translocation or introgression lines with alien chromosome fragments.
基金supported by the National Key R&D Program of China(2021YFD2100400,2023YFE0104900)Xinjiang Agriculture Research System-Oil Crop Research System,China(XJARS-05)+3 种基金Taishan Industrial Experts Programme,China(tscx202306075)the Scientific and Technological Assistance Projects to Developing Countries,China(KY202201003)the Agricultural Science and Technology Innovation Program,Institute of Food Science and Technology,Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2024-IFST)The authors are grateful for the financial support from the Arawana Charity Foundation,China.
文摘Peanut varieties are diverse globally,with their characters and nutrition determining the product quality.However,the comparative analysis and statistical analysis of key quality indicators for peanut kernels across the world remains relatively limited,impeding the comprehensive evaluation of peanut quality and hindering the industry development on a global scale.This study aimed to compare and analyze the apparent morphology,microstructure,single-cell structure,engineering and mechanical properties,as well as major nutrient contents of peanut kernels from 10 different cultivars representing major peanut-producing countries.The surface and cross-section microstructure of the peanut kernels exhibited a dense“blocky”appearance with a distinct cellular structure.The lipid droplets were predominantly spherical with a regular distribution within the cells.The single-cell structure of the kernels from these 10 peanut cultivars demonstrated varying morphologies and dimensions,which exhibited correlations with their mechanical and engineering properties.Furthermore,the mass loss versus temperature profiles of the peanut kernels revealed five distinct stages,corresponding to moisture loss,volatile loss,protein denaturation,and the degradation of various biomacromolecules.Variations were also observed in the lipid,protein,and sucrose contents,texture,bulk density,true density,porosity,geometric mean diameter,and sphericity among the diferent peanut varieties.This study establishes relationships and correlations among microstructure,engineering properties,and nutritional composition of commonly grown peanut varieties in major peanut-processing countries.The findings provide valuable insights into peanut quality evaluation,empowering the peanut industry to enhance their processing and product development efforts.
基金financial sponsored by the National Key R&D Program of China(No.2018YFC1604405)Fund of Shanghai Engineering Research Center of Plant Germplasm Resources(No.17DZ2252700)Research on the health function of tea and deep-processed products in preventing metabolic diseases(No.C-6105-20-074)。
文摘High-salt diet is well recognized as a risk factor for hypertension,and dietary intervention plays a critical role in the prevention of hypertension.The current study investigated the effects of selenium-enriched green tea(Se-GT)and ordinary green tea(GT)on prevention of hypertension of rats induced by high-salt diet,as well as their potential regulatory and mechanism.Our results showed that GT and Se-GT supplementations significantly prevented the increase of blood pressure(BP),activated the phosphoinosmde-3-kinase/protein kinase B(PI3K/Akt)signaling pathway,and regulated the gene expression related to BP,as well as improved the tissue damage like heart,liver,and kidneys.Besides,the key parameters associated with oxidative stress,inflammation and endothelial dysfunction were also altered by GT and Se-GT treatments.Importantly,GT or Se-GT administration adjusted the diversity and composition of the intestinal flora.Moreover,GT and Se-GT supplementations increased the abundance of beneficial bacteria and reduced the abundance of harmful or conditional pathogenic bacteria.More specifically,GT intake specifically and significantly enriched the relative abundance of Paraprevotella and Bacteroides,whereas Se-GT was characterized by specific and significant enrichment for Allobaculum and Bifidobacterium.Our results proved that dietary supplement of GT and Se-GT remarkably improved the vascular functions and effectively prevented tissue damage by regulation of intestinal flora,and thus preventing hypertension induced by high-salt diet.
基金National Key R&D Program of China(2018YFD1100202)Shaanxi Social Science Fund Program of China(2018S30)Shaanxi Undergraduate Innovation Planning Project of China(201829041).
文摘As an important symbol of agricultural and sideline products in Ankang City,selenium-enriched tea affects the development of regional agricultural and sideline industries.In this paper,the development status and problems of the selenium-enriched tea products of Ankang were analyzed in terms of capital,technology,management and sales mode.This research is of positive significance to the development of selenium-enriched products and other agricultural and sideline products of health value,and plays a very important role in promoting the cultivation of village-level characteristic industries and the effective realization of targeted poverty alleviation.
基金Supported by the Science and Technology Major Project of Guangxi(Guike AA17202026)Program for Scientific Research and Technology Development in Xixiangtant District of Nanning City(201710304)+7 种基金the Special Fund for the Innovation-Driven Development in Guangxi(Guike AA17202019-4&AA17202019)the Science and Technology Development Fund of Guangxi Academy of Agricultural Sciences(Guinongke 2017JM03)the Program for the Scientific Research and Technology Development in Guangxi(Guikehe415104001-22)the Fundamental Research Funds for Guangxi Academy of Agricultural Sciences(Guinongke 2017YZ03)the Key Research and Development Program of Guangxi(Guike AB16380088)the Experiment Station for Selenium Featured Crops in Guangxi(Gui TS2016011)the Key Research and Development Program of Qingxiu District,Guangxi(2016039)the Scientific and Technological Transformative Project of Guangxi Academy of Agricultural Sciences(NO.2017NZ04)
文摘[Objectives] The aims were to optimize the extraction process of selenoproteins from selenium-enriched rice in Guangxi and provide references for the intensive processing and comprehensive utilization of selenium protein resources. [Methods]Selenium-enriched rice was used as materials to extract selenoproteins by phosphate buffer extraction method and to optimize the extraction process of selenoproteins by using the orthogonal experiment. Proteins and selenium content was measured by Coomassie Brilliant Blue G-250 reagent and AFS( atomic fluorescence spectrometry) respectively. [Results] The most significant factor affecting extraction of rice Selenoproteins was extraction NaO H concentration,followed by the ratio of solid-liquid,temperature and then extraction time. The optimum extraction conditions of selenoproteins from rice were extraction temperature of 50 ℃,NaO H concentration of 0. 14 mol/L,extraction time of 5 h,and solid-liquid ratio of 1∶ 30. [Conclusions]The alkali extraction process optimized by orthogonal test could effectively improve the extraction rate of selenoproteins,and the optimized process parameters could be popularized and applied in practical production.
文摘Selenium is an essential trace element for human health.Eating selenium-enriched eggs is conducive to easily and effectively solving the problem of selenium deficiency.In the production process of selenium-enriched eggs,different selenium sources,additive doses,feeding time,and the addition of other vitamins,trace elements,and methionine in the diet will influence the deposition of selenium in eggs.Through this review,it is intended to provide a reference for the practical,safe and economical production of selenium-enriched eggs.
基金Supported by Key Science and Technology Project for Innovation-driven Development of Guangxi"High Efficient and Safe Use of Selenium-enriched Soil Resources"(2017AA19015)Scientific Research and Technological Development Program Project of Guangxi Province(Gui Ke He 415104001-22)+2 种基金Key Research and Development Program of Guangxi(Gui Ke AB16380088 and Gui Ke AB16380164)Scientific Research and Technological Development Program Project of Nanning City(20152054-13)Scientific Research and Technological Development Program of Xixiangtang District of Nanning City(2015312)
文摘Taking Scientific Outlook on Development as the guiding principle,this paper introduced the principles of innovation,coordination,green,openness and sharing. Based on gifted advantages of selenium-enriched soil and selenium-enriched industry development in Guangxi,it discussed current practice,stressed green,ecological,characteristic demonstration,transformation and upgrading,and targeted poverty alleviation. Finally,it came up with perspective,practical,and operational strategies and recommendations for development of selenium-enriched industry,to provide reference for sustainable development of selenium-enriched functional industry in Guangxi.
文摘In order to improve the added value of the main vegetable products in Qinghai Province,we researched the effect of soil selenium content on vegetable quality in selenium-enriched area of Qinghai. Through the analysis of Qinghai selenium-enriched soil selenium content and5 kinds of main vegetables corresponds to the total selenium,part of the mineral elements and soluble sugar and VC content,the effects of soil selenium levels on selenium absorption and nourishment quality of vegetables were researched. The results showed that he Qinghai selenium-enriched soil selenium content in the range of 100. 00-563. 00 μg/kg,among them,the soil samples with sufficient selenium and rich selenium accounted for 76. 53% and 18. 88%,respectively. Soil selenium content of garlic sampling area was relatively high,and soil selenium content of sugar beet sampling area was relatively low. Vegetable selenium content was in the range of 11. 00-340. 94 μg/kg,the average content of total selenium content of garlic was up to 170. 40 μg/kg,and the average content of the total selenium content of radish is 73. 00 μg/kg.90. 63% of the vegetables in the region reached the level of sufficient selenium,and 70. 31% reached the level of selenium enrichment. The average content of Ca and Mg was higher than the national average. There was no significant correlation between selenium content of soil and vegetable and nutritional quality.
文摘Peanut (Arachis hypogaea L.) production is valued at $1.28 billion annually in the USA. Plant growth habit can be used to determine plant population density and cultivation practices a given farmer uses. Erect plants are generally more compact and can be more densely planted unlike plants with more prostrate growth. The objectives of this study were to analyze publicly available datasets to identify single-nucleotide polymorphism (SNP) markers associated with plant growth habit in peanuts and to conduct genomic selection. A genome-wide association study (GWAS) was used to identify SNPs for growth habit type among 775 USDA peanut accessions. A total of 13,306 SNPs were used to conduct GWAS using five statistical models. The models used were single-marker regression, generalized linear model (PCA), generalized linear model (Q), mixed linear model (PCA), and mixed linear model (Q) and a total of 181, 1, 108, 1, and 10 SNPs were found associated with growth habit respectively. Based on this dataset, results showed that genomic selection can achieve up to 61% accuracy, depending on the training population size being used for the prediction. SNP AX-176821681 was found in all models. Gene ontology for this location shows an annotated gene, Araip.0F3YM, found 2485 bp upstream of this SNP and encodes for a peptidyl-prolyl cis-trans isomerase. To the best of our knowledge, this is the first report identifying molecular markers linked to plant growth habit type in peanuts. This finding suggests that a molecular marker can be developed to identify specific plant growth habits in peanuts, enabling early generation selection by peanut breeders.
文摘Peanuts pods grow underground and mature unevenly, resulting that choosing the correct time to harvest is more complicated than other crops. Pod maturity can be determined by blasting with a pressure washer to remove outer skin of the pod (exocarp) to expose the color of the middle layer (mesocarp). The mesocarp color changes with maturity from white to yellow, orange, brown and finally black. The sum of percentage from orange, brown, and black mesocarp (OBB) color and black color (BL) represents the kernels that are mature enough to harvest. The goal of this research is to identify methodologies to estimate OBB and BL of the pods using RGB images taken in the field and validate the proposed model using other pod images. The Mahalanobis distance classification method was used to process sets of images and calculate pod area (number of pixels) corresponding to two classes (mesocarp and background) with nine different color groups. The results showed a performance of 94% effectiveness for mesocarp using Mahalanobis distance classification. Statistical regression for OBB and BL was developed based on 315 images of peanut pods taken from the field. The R2 and root mean square error of predicted and actual OBB were 0.93 and 4.1%, respectively. The R2 and root mean square error of predicted and actual BL were 0.88 and 1.8%, respectively. The validation of OBB using other images provided reasonable estimation (R2 = 0.98 and RMSE = 2.73%). This study introduces a novel, cost-effective, and non-destructive method for estimating peanut maturity using RGB imagery and Mahalanobis distance classification in the field. This innovative approach addresses the limitations of traditional methods and offers a robust alternative for real-time maturity assessment.
基金supported by grants from the Key Program of National Natural Science Foundation of China(NSFC)(No.U22A20475)Key Scientific and Technological Project of Henan Province(No.221111110500,161100111000,HARS-22-05-G1)the Key Scientific Research Project of Henan Higher Education Institutions(24A210007).
文摘Peanut(Arachis hypogaea L.)is an important oil crop.Oleic acid is a major factor that determines the quality of peanuts.Therefore,the high oleic and high oleic to linoleic acid ratio are the target traits in an advanced peanut breeding program.This study provided an extensive evaluation of the genetic and physical characteristics as well as disease resistance of 220 high oleic peanut varieties in China.Notably,these varieties clustered into five major categories based on their traits.A majority of these varieties have been bred using interspecific hybridization or selected from mutants of self-crossed parents,with the main parent varieties being Kaixuan 016 and CTWE.Analysis of disease resistance showed that most high oleic peanut varieties could resist two or three diseases.However,those varieties with resistance to multiple diseases were relatively scarce.Moreover,some high oleic peanut varieties showed no disease resistance or inadequate testing.The results further indicate that the genetic basis for high oleic peanut breeding is insufficient,highlighting the need for its further development.Importantly,our findings lay a critical foundation for future high oleic peanut breeding and promote better understanding of the genetic and trait diversity offered by these varieties.
基金supported by the Key Program of National Natural Science Foundation of China (NSFC)-Henan United Fund (U22A20475)Key Scientific and Technological Project of Henan Province (221111110500,222301420026,HARS-22-05-G1).
文摘Pod size is a key agronomic trait that influences peanut yield greatly.However,our understanding of the mechanisms underlying pod size is limited.In this study,we employed a segregating population derived from a cross between the small-pod line ND_S and the large-pod line ND_L to map quantitative trait loci(QTL)associated with pod size.Initial mapping performed using bulk segregant analysis revealed a candidate interval on chromosome A05 referred to as qPSW05.We refined this interval to a 256.9 kb genomic region using newly developed molecular markers.Through sequence and expression analyses,we identified the candidate gene AhXE45GC,which encodes an AN1 zinc finger protein.We discovered a 33-bp insertion in the intron of AhXE45GC in ND_S.Accessions that lack this insertion,such as ND_L,had significantly larger pods than those with the insertion,including ND_S.To facilitate marker-assisted selection for peanut pod size,we developed a molecular marker associated with this polymorphism.This marker could provide a valuable genetic resource for breeding high-yielding peanut varieties.
基金National Natural Science Foundation of China(32101844)Shandong Provincial Natural Science Foundation(ZR2021QC188 and ZR2022MC103).
文摘Recent publications have highlighted the development of an alternate cotton-peanut intercropping as a novel strat-egy to enhance agricultural productivity.In this article,we provide an overview of the progress made in the alternate cotton-peanut intercropping,specifically focusing on its yield benefits,environmental impacts,and the underlying mechanisms.In addition,we advocate for future investigations into the selection or development of appropriate crop varieties and agricultural equipment,pest management options,and the mechanisms of root-canopy interactions.This review is intended to provide a valuable reference for understanding and adopting an alternate intercropping system for sustainable cotton production.
基金supported by the Guangdong Technical System of Peanut and Soybean Industry(2023KJ136-05)China Agriculture Research System(CARS-15)。
文摘This study investigated the effect of magnesium application on peanut growth and yield under two nitrogen(N)application rates in acidic soil in southern China.The chlorophyll content,net photosynthetic rate and dry matter accumulation of the N-sensitive cultivar decreased under reduced N treatments,whereas no effect was observed on the relevant indicators in the N-insensitive variety GH1026.Mg application increased the net photosynthetic rate by increasing the expression of genes involved in chlorophyll synthesis and Rubisco activity in the leaves during the pegging stage under 50%N treatment,while no effect on the net photosynthetic rate was observed under the 100%N treatment.The rate of dry matter accumulation at the early growth stage,total dry matter accumulation and pod yield at harvest increased after Mg application under 50%N treatment by increasing the transportation of assimilates from stems and leaves to pods in both peanut varieties,whereas no effect was found under 100%N treatment.Moreover,Mg application increased the NUE under 50%N treatment.No improvement of NUE in either peanut variety was found under 100%N treatment,while Mg application under the 50%N treatment can obtain a higher economic benefit than the 100%N treatment.In acidic soil,application of 307.5 kg ha^(-1)of Mg sulfate fertilizer under 50%reduced nitrogen application is a suitable fertilizer management measure for improving carbon assimilation,NUE and achieve high peanut yields in southern China.
文摘Introduction: Food allergies are on the constant increase worldwide. Among them is peanut allergy, which also affects children. The aim of this study was to determine the profile of peanut sensitization in children attending a pneumo-allergology consultation. Methods: This was a cross-sectional study, which ran from January 1, 2018, to December 31, 2022, on children sensitized to peanuts seen in pneumo-allergology consultations at the Teaching Hospital Campus of Lomé. Results: The sample included 137 children aged 3 months to 18 years. The frequency of peanut sensitization was 25.3%. The mean age of patients was 6.3 ± 4.3 years (minimum 6 months and maximum 18 years). The 6 months to 5 years age group was the most represented (43.1%). The sex ratio was 1.3. The main reasons for consultation were rhinorrhea (67.9%), sneezing (36.5%) and cough (35.8%). Allergic rhinitis was identified as a personal history in 75.2% of patients. Peanut allergy was manifested as rhinorrhea (62.5%), asthma (26.8%) and eczema (8.9%). The risk of onset of symptoms within 15 - 30 minutes was 1.87 times (p = 0.001, CI = [1.2 - 2.1]) for peanuts consumed in roasted form with shell. Severe clinical signs such as Quincke’s Edema and anaphylactic shock were found in 1.4% of cases. Conclusion: Peanut allergy was common in children. Severe clinical signs were rare.
文摘Introduction: Peanut pastes are food products resulting from artisanal or industrial processing, used in cooking in Africa in general and in Central African Republic in particular. These peanut pastes are often contaminated by molds and filamentous fungi involved in the degradation of hygienic and organoleptic or even toxicological quality. This study aims to determine the epidemiological profile of molds contaminating peanut pastes sold on the Central African market. Methodology: This was a cross-sectional study carried out from June to September 2023. Samples of peanut pastes sold on Central African market were taken and analyzed at the National Laboratory of Clinical Biology and Public Health using the conventional microbiology method according to ISO 7954 standards. The data obtained were collected in the ODK 2023.3.1 application and analyzed with the Epi Info 7 software. A multivariate analysis by logistic regression, Ficher’s exact test, and chi<sup>2</sup> at the 5% threshold (p Penicillium sp.;11.25% of Mucor sp.;10.63% of Aspergillus terrei;3.13% of Aspergillus niger;1.25% of Aspergillus medullans;28.13% of Aspergillus flavus;2.50% of Aspergillus fumigatus. Peanut pastes stored beyond three days were more contaminated (94.19%). Conclusion: The results of this study made it possible to highlight strains of mold that impact the hygienic and organoleptic quality of peanut pastes sold at the Central African market. Most of the isolated strains were the Aspergillus flavus species which is recognized by its toxigenic effects. This species is much more incriminated in the contamination of foodstuffs with the production of the toxin which causes underlying pulmonary pathologies in humans.
基金supported by the National Key Research and Development Project of China(2021YFD1600101)the earmarked fund for the China Agriculture Research System(CARS-12 and CARS-13)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2024-OCRI).
文摘Oil content is a crucial indicator for evaluating the quality of peanuts.A rapid and non-destructive method to determine oil content of individual peanut seed can provide robust technical support for breeding high-oil-content peanut varieties.In this study,we established a rapid determination method using near-infrared hyperspectral imaging and chemometrics to assess the oil content of single peanut seed.After selecting key wavelengths through competitive adaptive reweighted sampling(CARS),uninformative variable elimination(UVE),and random frog(RF),we constructed an oil content calibration model based on partial least squares regression for single peanut seed.Validation results demonstrated that the correlation coefficient was 0.8393 with a root mean square error of 1.7771 in the calibration set,while it was 0.7915 with a root mean square error of 2.2943 in the independent prediction set.Most samples exhibited relative errors below 5%,confirming the reliability of this model in predicting oil content of single peanut seed.
基金supported by the Doctoral Science Foundation of Shanxi Agricultural University(2023BQ34)Shanxi Province Work Award Fund Research Project(SXBYKY2022116).
文摘Non-enzymatic glycation reaction in food can produce diet-derived advanced glycation end products(dAGEs),which have potential health risks.Thus,it is of great significance to find efficient substances to improve the negative effects induced by dAGEs on human health.This study investigated the intervening effects of peanut skin procyanidins(PSP)on the dAGEs-induced oxidative stress and systemic inflammation in experimental mice model.Results showed that the accumulation of AGEs in serum,liver,and kidney was significantly increased after mice were fed dAGEs(P<0.05).The expression of advanced glycation product receptor(RAGE)was also significantly increased in liver and kidney(P<0.05).PSP could not only effectively reduce the accumulation of AGEs in serum,liver and kidney of mice,but also reduce the expression of RAGE in liver and kidney of mice.And the levels of pro-inflammatory cytokines interleukin-6(IL-6),tumor necrosis factor(TNF-α),and IL-1βin serum of mice were significantly decreased(P<0.05),while the levels of antiinflammatory factor IL-10 were increased,and the inflammatory injury in mice was improved.In addition,the levels of superoxide dismutase(SOD),glutathione(GSH),catalase(CAT)in liver and kidney of mice were increased(P<0.05),and the level of malondialdehyde(MDA)was decreased(P<0.05),which enhanced the antioxidant capacity of mice in vivo,and improved the oxidative damage of liver and kidney.Molecular docking technique was used to confirm that the parent compound of procyanidins and its main metabolites,such as 3-hydroxyphenylacetic acid,could interact with RAGE,which might inhibit the activation of nuclear transcription factor(NF-κB),and ultimately reduce oxidative stress and inflammation in mice.