期刊文献+
共找到795篇文章
< 1 2 40 >
每页显示 20 50 100
Self-adaptive Bat Algorithm With Genetic Operations 被引量:4
1
作者 Jing Bi Haitao Yuan +2 位作者 Jiahui Zhai MengChu Zhou H.Vincent Poor 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1284-1294,共11页
Swarm intelligence in a bat algorithm(BA)provides social learning.Genetic operations for reproducing individuals in a genetic algorithm(GA)offer global search ability in solving complex optimization problems.Their int... Swarm intelligence in a bat algorithm(BA)provides social learning.Genetic operations for reproducing individuals in a genetic algorithm(GA)offer global search ability in solving complex optimization problems.Their integration provides an opportunity for improved search performance.However,existing studies adopt only one genetic operation of GA,or design hybrid algorithms that divide the overall population into multiple subpopulations that evolve in parallel with limited interactions only.Differing from them,this work proposes an improved self-adaptive bat algorithm with genetic operations(SBAGO)where GA and BA are combined in a highly integrated way.Specifically,SBAGO performs their genetic operations of GA on previous search information of BA solutions to produce new exemplars that are of high-diversity and high-quality.Guided by these exemplars,SBAGO improves both BA’s efficiency and global search capability.We evaluate this approach by using 29 widely-adopted problems from four test suites.SBAGO is also evaluated by a real-life optimization problem in mobile edge computing systems.Experimental results show that SBAGO outperforms its widely-used and recently proposed peers in terms of effectiveness,search accuracy,local optima avoidance,and robustness. 展开更多
关键词 bat algorithm(BA) genetic algorithm(GA) hybrid algorithm learning mechanism meta-heuristic optimization algorithms
在线阅读 下载PDF
Differential Evolution Algorithm Based Self-adaptive Control Strategy for Fed-batch Cultivation of Yeast
2
作者 Aiyun Hu Sunli Cong +2 位作者 Jian Ding Yao Cheng Enock Mpofu 《Computer Systems Science & Engineering》 SCIE EI 2021年第7期65-77,共13页
In the fed-batch cultivation of Saccharomyces cerevisiae,excessive glucose addition leads to increased ethanol accumulation,which will reduce the efficiency of glucose utilization and inhibit product synthesis.Insuffi... In the fed-batch cultivation of Saccharomyces cerevisiae,excessive glucose addition leads to increased ethanol accumulation,which will reduce the efficiency of glucose utilization and inhibit product synthesis.Insufficient glucose addition limits cell growth.To properly regulate glucose feed,a different evolution algorithm based on self-adaptive control strategy was proposed,consisting of three modules(PID,system identification and parameter optimization).Performance of the proposed and conventional PID controllers was validated and compared in simulated and experimental cultivations.In the simulation,cultivation with the self-adaptive control strategy had a more stable glucose feed rate and concentration,more stable ethanol concentration around the set-point(1.0 g·L^(-1)),and final biomass concentration of 34.5 g-DCW·L^(-1),29.2%higher than that with a conventional PID control strategy.In the experiment,the cultivation with the self-adaptive control strategy also had more stable glucose and ethanol concentrations,as well as a final biomass concentration that was 37.4%higher than that using the conventional strategy. 展开更多
关键词 Saccharomyces cerevisiae Ethanol accumulation differential evolution algorithm self-adaptive control
在线阅读 下载PDF
Self-adaptive PID controller of microwave drying rotary device tuning on-line by genetic algorithms 被引量:6
3
作者 杨彪 梁贵安 +5 位作者 彭金辉 郭胜惠 李玮 张世敏 李英伟 白松 《Journal of Central South University》 SCIE EI CAS 2013年第10期2685-2692,共8页
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi... The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design. 展开更多
关键词 industrial microwave DRYING ROTARY device self-adaptive PID controller genetic algorithm ON-LINE tuning SELENIUM-ENRICHED SLAG
在线阅读 下载PDF
Acid-pickling plates and strips speed control system by microwave heating based on self-adaptive fuzzy PID algorithm 被引量:7
4
作者 杨彪 彭金辉 +3 位作者 郭胜惠 张世敏 李玮 何涛 《Journal of Central South University》 SCIE EI CAS 2012年第8期2179-2186,共8页
Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful... Double self-adaptive fuzzy PID algorithm-based control strategy was proposed to construct quasi-cascade control system to control the speed of the acid-pickling process of titanium plates and strips. It is very useful in overcoming non-linear dynamic behavior, uncertain and time-varying parameters, un-modeled dynamics, and couples between the automatic turbulence control (ATC) and the automatic acid temperature control (AATC) with varying parameters during the operation process. The quasi-cascade control system of inner and outer loop self-adaptive fuzzy PID controller was built, which could effectively control the pickling speed of plates and strips. The simulated results and real application indicate that the plates and strips acid pickling speed control system has good performances of adaptively tracking the parameter variations and anti-disturbances, which ensures the match of acid pickling temperature and turbulence of flowing with acid pickling speed, improving the surface quality of plates and strips acid pickling, and energy efficiency. 展开更多
关键词 self-adaptive fuzzy PID algorithm microwave heating acid pickling plates and strips mixed-acid media
在线阅读 下载PDF
Unfolding neutron spectra from water-pumping-injection multilayered concentric sphere neutron spectrometer using self-adaptive differential evolution algorithm 被引量:5
5
作者 Rui Li Jian-Bo Yang +2 位作者 Xian-Guo Tuo Jie Xu Rui Shi 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第3期41-51,共11页
A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neut... A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS. 展开更多
关键词 Water-pumping-injection multilayered spectrometer Neutron spectrum unfolding Differential evolution algorithm self-adaptive control
在线阅读 下载PDF
Simulation of unmanned survey path planning in debris flow gully based on GRE-Bat algorithm
6
作者 LIU Dunlong FENG Duanguo +2 位作者 SANG Xuejia ZHANG Shaojie YANG Hongjuan 《Journal of Mountain Science》 SCIE CSCD 2024年第12期4062-4082,共21页
Unmanned aerial vehicle(UAV)paths in the field directly affect the efficiency and accuracy of payload data collection.Path planning of UAV advancing along river valleys in wild environments is one of the first and mos... Unmanned aerial vehicle(UAV)paths in the field directly affect the efficiency and accuracy of payload data collection.Path planning of UAV advancing along river valleys in wild environments is one of the first and most difficult problems faced by unmanned surveys of debris flow valleys.This study proposes a new hybrid bat optimization algorithm,GRE-Bat(Good point set,Reverse learning,Elite Pool-Bat algorithm),for unmanned exploration path planning of debris flow sources in outdoor environments.In the GRE-Bat algorithm,the good point set strategy is adopted to evenly distribute the population,ensure sufficient coverage of the search space,and improve the stability of the convergence accuracy of the algorithm.Subsequently,a reverse learning strategy is introduced to increase the diversity of the population and improve the local stagnation problem of the algorithm.In addition,an Elite pool strategy is added to balance the replacement and learning behaviors of particles within the population based on elimination and local perturbation factors.To demonstrate the effectiveness of the GRE-Bat algorithm,we conducted multiple simulation experiments using benchmark test functions and digital terrain models.Compared to commonly used path planning algorithms such as the Bat Algorithm(BA)and the Improved Sparrow Search Algorithm(ISSA),the GRE-Bat algorithm can converge to the optimal value in different types of test functions and obtains a near-optimal solution after an average of 60 iterations.The GRE-Bat algorithm can obtain higher quality flight routes in the designated environment of unmanned investigation in the debris flow gully basin,demonstrating its potential for practical application. 展开更多
关键词 bat algorithm Unmanned surveys Debris flow gully Path planning Unmanned aerial vehicle Reverse learning
在线阅读 下载PDF
An improved self-adaptive membrane computing optimization algorithm and its applications in residue hydrogenating model parameter estimation 被引量:1
7
作者 芦会彬 薄翠梅 杨世品 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3909-3915,共7页
In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied... In order to solve the non-linear and high-dimensional optimization problems more effectively, an improved self-adaptive membrane computing(ISMC) optimization algorithm was proposed. The proposed ISMC algorithm applied improved self-adaptive crossover and mutation formulae that can provide appropriate crossover operator and mutation operator based on different functions of the objects and the number of iterations. The performance of ISMC was tested by the benchmark functions. The simulation results for residue hydrogenating kinetics model parameter estimation show that the proposed method is superior to the traditional intelligent algorithms in terms of convergence accuracy and stability in solving the complex parameter optimization problems. 展开更多
关键词 optimization algorithm membrane computing benchmark function improved self-adaptive operator
在线阅读 下载PDF
Enhanced self-adaptive evolutionary algorithm for numerical optimization 被引量:1
8
作者 Yu Xue YiZhuang +2 位作者 Tianquan Ni Jian Ouyang ZhouWang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期921-928,共8页
There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se... There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors. 展开更多
关键词 self-adaptive numerical optimization evolutionary al-gorithm stochastic search algorithm.
在线阅读 下载PDF
Modified Self-adaptive Immune Genetic Algorithm for Optimization of Combustion Side Reaction of p-Xylene Oxidation 被引量:1
9
作者 陶莉莉 孔祥东 +1 位作者 钟伟民 钱锋 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第6期1047-1052,共6页
In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation fa... In recent years, immune genetic algorithm (IGA) is gaining popularity for finding the optimal solution for non-linear optimization problems in many engineering applications. However, IGA with deterministic mutation factor suffers from the problem of premature convergence. In this study, a modified self-adaptive immune genetic algorithm (MSIGA) with two memory bases, in which immune concepts are applied to determine the mutation parameters, is proposed to improve the searching ability of the algorithm and maintain population diversity. Performance comparisons with other well-known population-based iterative algorithms show that the proposed method converges quickly to the global optimum and overcomes premature problem. This algorithm is applied to optimize a feed forward neural network to measure the content of products in the combustion side reaction of p-xylene oxidation, and satisfactory results are obtained. 展开更多
关键词 self-adaptive immune genetic algorithm artificial neural network measurement p-xylene oxidation process
在线阅读 下载PDF
Dynamic self-adaptive ANP algorithm and its application to electric field simulation of aluminum reduction cell 被引量:1
10
作者 王雅琳 陈冬冬 +2 位作者 陈晓方 蔡国民 阳春华 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4731-4739,共9页
Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index ... Region partition(RP) is the key technique to the finite element parallel computing(FEPC),and its performance has a decisive influence on the entire process of analysis and computation.The performance evaluation index of RP method for the three-dimensional finite element model(FEM) has been given.By taking the electric field of aluminum reduction cell(ARC) as the research object,the performance of two classical RP methods,which are Al-NASRA and NGUYEN partition(ANP) algorithm and the multi-level partition(MLP) method,has been analyzed and compared.The comparison results indicate a sound performance of ANP algorithm,but to large-scale models,the computing time of ANP algorithm increases notably.This is because the ANP algorithm determines only one node based on the minimum weight and just adds the elements connected to the node into the sub-region during each iteration.To obtain the satisfied speed and the precision,an improved dynamic self-adaptive ANP(DSA-ANP) algorithm has been proposed.With consideration of model scale,complexity and sub-RP stage,the improved algorithm adaptively determines the number of nodes and selects those nodes with small enough weight,and then dynamically adds these connected elements.The proposed algorithm has been applied to the finite element analysis(FEA) of the electric field simulation of ARC.Compared with the traditional ANP algorithm,the computational efficiency of the proposed algorithm has been shortened approximately from 260 s to 13 s.This proves the superiority of the improved algorithm on computing time performance. 展开更多
关键词 finite element parallel computing(FEPC) region partition(RP) dynamic self-adaptive ANP(DSA-ANP) algorithm electric field simulation aluminum reduction cell(ARC)
在线阅读 下载PDF
Generalized Self-Adaptive Genetic Algorithms
11
作者 Bin Wu Xuyan Tu +1 位作者 Jian Wu Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China Department of Information and Control Engineering, Southwest Institute of Technology, Mianyang 621002, China 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2000年第1期72-75,共4页
In order to solve the problem between searching performance and convergence of genetic algorithms, a fast genetic algorithm generalized self-adaptive genetic algorithm (GSAGA) is presented. (1) Evenly distributed init... In order to solve the problem between searching performance and convergence of genetic algorithms, a fast genetic algorithm generalized self-adaptive genetic algorithm (GSAGA) is presented. (1) Evenly distributed initial population is generated. (2) Superior individuals are not broken because of crossover and mutation operation for they are sent to subgeneration directly. (3) High quality im- migrants are introduced according to the condition of the population schema. (4) Crossover and mutation are operated on self-adaptation. Therefore, GSAGA solves the coordination problem between convergence and searching performance. In GSAGA, the searching per- formance and global convergence are greatly improved compared with many existing genetic algorithms. Through simulation, the val- idity of this modified genetic algorithm is proved. 展开更多
关键词 generalized self-adaptive genetic algorithm initial population IMMIGRATION fitness function
在线阅读 下载PDF
Particle Swarm Optimization Algorithm Based on Chaotic Sequences and Dynamic Self-Adaptive Strategy
12
作者 Mengshan Li Liang Liu +4 位作者 Genqin Sun Keming Su Huaijin Zhang Bingsheng Chen Yan Wu 《Journal of Computer and Communications》 2017年第12期13-23,共11页
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se... To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum. 展开更多
关键词 Particle SWARM algorithm CHAOTIC SEQUENCES self-adaptive STRATEGY MULTI-OBJECTIVE Optimization
在线阅读 下载PDF
Self-Adaptive Algorithms for the Split Common Fixed Point Problem of the Demimetric Mappings
13
作者 Xinhong Chen Yanlai Song +1 位作者 Jianying He Liping Gong 《Journal of Applied Mathematics and Physics》 2019年第10期2187-2199,共13页
The split common fixed point problem is an inverse problem that consists in finding an element in a fixed point set such that its image under a bounded linear operator belongs to another fixed-point set. In this paper... The split common fixed point problem is an inverse problem that consists in finding an element in a fixed point set such that its image under a bounded linear operator belongs to another fixed-point set. In this paper, we present new iterative algorithms for solving the split common fixed point problem of demimetric mappings in Hilbert spaces. Moreover, our algorithm does not need any prior information of the operator norm. Weak and strong convergence theorems are given under some mild assumptions. The results in this paper are the extension and improvement of the recent results in the literature. 展开更多
关键词 HILBERT Space Demimetric Mapping SPLIT Common Fixed Point PROBLEM self-adaptive algorithm
在线阅读 下载PDF
EVOLUTIONARY FUZZY GUIDANCE LAW WITH SELF-ADAPTIVE REGION 被引量:3
14
作者 邹庆元 姜长生 吴柢 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第3期234-240,共7页
Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is ina... Effective guidance is one of the most important tasks to the performance of air-to-air missile. The fuzzy logic controller is able to perform effectively even in situations where the information about the plant is inaccurate and the operating conditions are uncertain. Based on the proportional navigation, the fuzzy logic and the genetic algorithm are combined to develop an evolutionary fuzzy navigation law with self-adapt region for the air-to-air missile guidance. The line of sight (LOS) rate and the closing speed between the missile and the target are inputs of the fuzzy controller. The output of the fuzzy controller is the commanded acceleration. Then a nonlinear function based on the conventional fuzzy logic control is imported to change the region. This nonlinear function can be changed with the input variables. So the dynamic change of the fuzzy variable region is achieved. The guidance law is optimized by the genetic algorithm. Simulation results of air-to-air missile attack using MATLAB show that the method needs less acceleration and shorter flying time, and its realization is simple.[KH*3/4D] 展开更多
关键词 guidance law fuzzy logic genetic algorithm self-adaptive region
在线阅读 下载PDF
A Novel Bat Algorithm based on Cross Boundary Learning and Uniform Explosion Strategy 被引量:2
15
作者 YONG Jia-shi HE Fa-zhi +1 位作者 LI Hao-ran ZHOU Wei-qing 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2019年第4期480-502,共23页
Population-based algorithms have been used in many real-world problems.Bat algorithm(BA)is one of the states of the art of these approaches.Because of the super bat,on the one hand,BA can converge quickly;on the other... Population-based algorithms have been used in many real-world problems.Bat algorithm(BA)is one of the states of the art of these approaches.Because of the super bat,on the one hand,BA can converge quickly;on the other hand,it is easy to fall into local optimum.Therefore,for typical BA algorithms,the ability of exploration and exploitation is not strong enough and it is hard to find a precise result.In this paper,we propose a novel bat algorithm based on cross boundary learning(CBL)and uniform explosion strategy(UES),namely BABLUE in short,to avoid the above contradiction and achieve both fast convergence and high quality.Different from previous opposition-based learning,the proposed CBL can expand the search area of population and then maintain the ability of global exploration in the process of fast convergence.In order to enhance the ability of local exploitation of the proposed algorithm,we propose UES,which can achieve almost the same search precise as that of firework explosion algorithm but consume less computation resource.BABLUE is tested with numerous experiments on unimodal,multimodal,one-dimensional,high-dimensional and discrete problems,and then compared with other typical intelligent optimization algorithms.The results show that the proposed algorithm outperforms other algorithms. 展开更多
关键词 Optimization bat algorithm CROSS BOUNDARY LEARNING UNIFORM explosion STRATEGY
在线阅读 下载PDF
A Novel Improved Bat Algorithm in UAV Path Planning 被引量:8
16
作者 Na Lin Jiacheng Tang +1 位作者 Xianwei Li Liang Zhao 《Computers, Materials & Continua》 SCIE EI 2019年第7期323-344,共22页
Path planning algorithm is the key point to UAV path planning scenario.Many traditional path planning methods still suffer from low convergence rate and insufficient robustness.In this paper,three main methods are con... Path planning algorithm is the key point to UAV path planning scenario.Many traditional path planning methods still suffer from low convergence rate and insufficient robustness.In this paper,three main methods are contributed to solving these problems.First,the improved artificial potential field(APF)method is adopted to accelerate the convergence process of the bat’s position update.Second,the optimal success rate strategy is proposed to improve the adaptive inertia weight of bat algorithm.Third chaos strategy is proposed to avoid falling into a local optimum.Compared with standard APF and chaos strategy in UAV path planning scenarios,the improved algorithm CPFIBA(The improved artificial potential field method combined with chaotic bat algorithm,CPFIBA)significantly increases the success rate of finding suitable planning path and decrease the convergence time.Simulation results show that the proposed algorithm also has great robustness for processing with path planning problems.Meanwhile,it overcomes the shortcomings of the traditional meta-heuristic algorithms,as their convergence process is the potential to fall into a local optimum.From the simulation,we can see also obverse that the proposed CPFIBA provides better performance than BA and DEBA in problems of UAV path planning. 展开更多
关键词 UAV path planning bat algorithm the optimal success rate strategy the APF method chaos strategy
在线阅读 下载PDF
New Modified Controlled Bat Algorithm for Numerical Optimization Problem 被引量:3
17
作者 Waqas Haider Bangyal Abdul Hameed +7 位作者 Jamil Ahmad Kashif Nisar Muhammad Reazul Haque Ag.Asri Ag.Ibrahim Joel J.P.C.Rodrigues M.Adil Khan Danda B.Rawat Richard Etengu 《Computers, Materials & Continua》 SCIE EI 2022年第2期2241-2259,共19页
Bat algorithm(BA)is an eminent meta-heuristic algorithm that has been widely used to solve diverse kinds of optimization problems.BA leverages the echolocation feature of bats produced by imitating the bats’searching... Bat algorithm(BA)is an eminent meta-heuristic algorithm that has been widely used to solve diverse kinds of optimization problems.BA leverages the echolocation feature of bats produced by imitating the bats’searching behavior.BA faces premature convergence due to its local search capability.Instead of using the standard uniform walk,the Torus walk is viewed as a promising alternative to improve the local search capability.In this work,we proposed an improved variation of BA by applying torus walk to improve diversity and convergence.The proposed.Modern Computerized Bat Algorithm(MCBA)approach has been examined for fifteen well-known benchmark test problems.The finding of our technique shows promising performance as compared to the standard PSO and standard BA.The proposed MCBA,BPA,Standard PSO,and Standard BA have been examined for well-known benchmark test problems and training of the artificial neural network(ANN).We have performed experiments using eight benchmark datasets applied from the worldwide famous machine-learning(ML)repository of UCI.Simulation results have shown that the training of an ANN with MCBA-NN algorithm tops the list considering exactness,with more superiority compared to the traditional methodologies.The MCBA-NN algorithm may be used effectively for data classification and statistical problems in the future. 展开更多
关键词 bat algorithm MCBA ANN ML Torus walk
在线阅读 下载PDF
ECO-BAT: A New Routing Protocol for Energy Consumption Optimization Based on BAT Algorithm in WSN 被引量:2
18
作者 Mohammed Kaddi Abdallah Banana Mohammed Omari 《Computers, Materials & Continua》 SCIE EI 2021年第2期1497-1510,共14页
Wireless sensor network (WSN) has been widely used due to its vastrange of applications. The energy problem is one of the important problems influencingthe complete application. Sensor nodes use very small batteries a... Wireless sensor network (WSN) has been widely used due to its vastrange of applications. The energy problem is one of the important problems influencingthe complete application. Sensor nodes use very small batteries as a powersource and replacing them is not an easy task. With this restriction, the sensornodes must conserve their energy and extend the network lifetime as long as possible.Also, these limits motivate much of the research to suggest solutions in alllayers of the protocol stack to save energy. So, energy management efficiencybecomes a key requirement in WSN design. The efficiency of these networks ishighly dependent on routing protocols directly affecting the network lifetime.Clustering is one of the most popular techniques preferred in routing operations.In this work we propose a novel energy-efficient protocol for WSN based on a batalgorithm called ECO-BAT (Energy Consumption Optimization with BAT algorithmfor WSN) to prolong the network lifetime. We use an objective function thatgenerates an optimal number of sensor clusters with cluster heads (CH) to minimizeenergy consumption. The performance of the proposed approach is comparedwith Low-Energy Adaptive Clustering Hierarchy (LEACH) and EnergyEfficient cluster formation in wireless sensor networks based on the Multi-Objective Bat algorithm (EEMOB) protocols. The results obtained are interestingin terms of energy-saving and prolongation of the network lifetime. 展开更多
关键词 WSNs network lifetime routing protocols ECO-bat bat algorithm CH energy consumption LEACH EEMOB
在线阅读 下载PDF
A Novel Self Adaptive Modification Approach Based on Bat Algorithm for Optimal Management of Renewable MG 被引量:4
19
作者 Aliasghar Baziar Abdollah Kavoosi-Fard Jafar Zare 《Journal of Intelligent Learning Systems and Applications》 2013年第1期11-18,共8页
In the new competitive electricity market, the accurate operation management of Micro-Grid (MG) with various types of renewable power sources (RES) can be an effective approach to supply the electrical consumers more ... In the new competitive electricity market, the accurate operation management of Micro-Grid (MG) with various types of renewable power sources (RES) can be an effective approach to supply the electrical consumers more reliably and economically. In this regard, this paper proposes a novel solution methodology based on bat algorithm to solve the op- timal energy management of MG including several RESs with the back-up of Fuel Cell (FC), Wind Turbine (WT), Photovoltaics (PV), Micro Turbine (MT) as well as storage devices to meet the energy mismatch. The problem is formulated as a nonlinear constraint optimization problem to minimize the total cost of the grid and RESs, simultaneously. In addition, the problem considers the interactive effects of MG and utility in a 24 hour time interval which would in- crease the complexity of the problem from the optimization point of view more severely. The proposed optimization technique is consisted of a self adaptive modification method compromised of two modification methods based on bat algorithm to explore the total search space globally. The superiority of the proposed method over the other well-known algorithms is demonstrated through a typical renewable MG as the test system. 展开更多
关键词 RENEWABLE MICRO-GRID (MG) RENEWABLE Power Sources (RESs) Self Adaptive Modified bat algorithm (SAMBA) Nonlinear Constraint Optimization
在线阅读 下载PDF
Modified Bat Algorithm for Optimal VM’s in Cloud Computing 被引量:1
20
作者 Amit Sundas Sumit Badotra +2 位作者 Youseef Alotaibi Saleh Alghamdi Osamah Ibrahim Khalaf 《Computers, Materials & Continua》 SCIE EI 2022年第8期2877-2894,共18页
All task scheduling applications need to ensure that resources are optimally used,performance is enhanced,and costs are minimized.The purpose of this paper is to discuss how to Fitness Calculate Values(FCVs)to provide... All task scheduling applications need to ensure that resources are optimally used,performance is enhanced,and costs are minimized.The purpose of this paper is to discuss how to Fitness Calculate Values(FCVs)to provide application software with a reliable solution during the initial stages of load balancing.The cloud computing environment is the subject of this study.It consists of both physical and logical components(most notably cloud infrastructure and cloud storage)(in particular cloud services and cloud platforms).This intricate structure is interconnected to provide services to users and improve the overall system’s performance.This case study is one of the most important segments of cloud computing,i.e.,Load Balancing.This paper aims to introduce a new approach to balance the load among Virtual Machines(VM’s)of the cloud computing environment.The proposed method led to the proposal and implementation of an algorithm inspired by the Bat Algorithm(BA).This proposed Modified Bat Algorithm(MBA)allows balancing the load among virtual machines.The proposed algorithm works in two variants:MBA with Overloaded Optimal Virtual Machine(MBAOOVM)and Modified Bat Algorithm with Balanced Virtual Machine(MBABVM).MBA generates cost-effective solutions and the strengths of MBA are finally validated by comparing it with Bat Algorithm. 展开更多
关键词 bat algorithm cloud computing fitness value calculation load balancing modified bat algorithm
在线阅读 下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部