期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进SAGGAN模型的齿轮故障分类方法研究
1
作者 刘洋 但斌斌 +2 位作者 易灿灿 严旭果 薛家成 《机电工程》 CAS 北大核心 2024年第12期2185-2194,共10页
针对齿轮故障样本获取困难,导致深度学习驱动故障分类模型的可靠性和准确性不足这一问题,提出了一种基于改进自注意力门单元生成对抗网络(SAGGAN)的半监督齿轮故障分类模型。首先,为增强改进SAGGAN模型的特征表示能力,提升齿轮故障的半... 针对齿轮故障样本获取困难,导致深度学习驱动故障分类模型的可靠性和准确性不足这一问题,提出了一种基于改进自注意力门单元生成对抗网络(SAGGAN)的半监督齿轮故障分类模型。首先,为增强改进SAGGAN模型的特征表示能力,提升齿轮故障的半监督分类效果,在自注意力生成对抗网络(SAGAN)的基础上,引入了门控通道转换模块(GCT)、改进自注意力门控模块(SAG)和预训练的Inception V3分支;然后,使用齿轮故障实验装置采集齿轮断齿、磨损、周节误差和正常四种状态下的振动信号,并将数据划分为训练集、验证集与测试集;最后,将计算结果与现有的半监督分类方法:TripleGAN、Bad-GAN、Reg-GAN、SF-GAN进行了对比,并对改进模块进行了消融实验研究。研究结果表明:在标签样本为40、60、80、100时,改进SAGGAN模型的整体分类准确率分别为89%、90%、92%、94.25%,远高于其他四种方法,特别在只有少量标签样本情况下的优越性更为明显。以上结果揭示了改进的SAGGAN模型在齿轮故障分类领域中的实用性和优越性。 展开更多
关键词 齿轮故障 模式分类 自注意力门单元生成对抗网络 半监督学习 自注意力生成对抗网络 门控通道转换模块 自注意力门控模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部