期刊文献+
共找到321篇文章
< 1 2 17 >
每页显示 20 50 100
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
1
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional Neural Network Long short-term Memory Temporal Pattern Attention power load forecasting
在线阅读 下载PDF
Short-Term Power Load Forecasting with Hybrid TPA-BiLSTM Prediction Model Based on CSSA 被引量:2
2
作者 Jiahao Wen Zhijian Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期749-765,共17页
Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural ne... Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model. 展开更多
关键词 Chaotic sparrow search optimization algorithm TPA BiLSTM short-term power load forecasting grey relational analysis
在线阅读 下载PDF
Theory Study and Application of the BP-ANN Method for Power Grid Short-Term Load Forecasting 被引量:12
3
作者 Xia Hua Gang Zhang +1 位作者 Jiawei Yang Zhengyuan Li 《ZTE Communications》 2015年第3期2-5,共4页
Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented ... Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality. 展开更多
关键词 BP-ANN short-term load forecasting of power grid multiscale entropy correlation analysis
在线阅读 下载PDF
A Weighted Combination Forecasting Model for Power Load Based on Forecasting Model Selection and Fuzzy Scale Joint Evaluation
4
作者 Bingbing Chen Zhengyi Zhu +1 位作者 Xuyan Wang Can Zhang 《Energy Engineering》 EI 2021年第5期1499-1514,共16页
To solve the medium and long term power load forecasting problem,the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward.This model is divided ... To solve the medium and long term power load forecasting problem,the combination forecasting method is further expanded and a weighted combination forecasting model for power load is put forward.This model is divided into two stages which are forecasting model selection and weighted combination forecasting.Based on Markov chain conversion and cloud model,the forecasting model selection is implanted and several outstanding models are selected for the combination forecasting.For the weighted combination forecasting,a fuzzy scale joint evaluation method is proposed to determine the weight of selected forecasting model.The percentage error and mean absolute percentage error of weighted combination forecasting result of the power consumption in a certain area of China are 0.7439%and 0.3198%,respectively,while the maximum values of these two indexes of single forecasting models are 5.2278%and 1.9497%.It shows that the forecasting indexes of proposed model are improved significantly compared with the single forecasting models. 展开更多
关键词 power load forecasting forecasting model selection fuzzy scale joint evaluation weighted combination forecasting
在线阅读 下载PDF
Short Term Load Forecasting Using Subset Threshold Auto Regressive Model
5
作者 孙海健 《Journal of Southeast University(English Edition)》 EI CAS 1999年第2期78-83,共6页
The subset threshold auto regressive (SSTAR) model, which is capable of reproducing the limit cycle behavior of nonlinear time series, is introduced. The algorithm for fitting the sampled data with SSTAR model is pr... The subset threshold auto regressive (SSTAR) model, which is capable of reproducing the limit cycle behavior of nonlinear time series, is introduced. The algorithm for fitting the sampled data with SSTAR model is proposed and applied to model and forecast power load. Numerical example verifies that desirable accuracy of short term load forecasting can be achieved by using the SSTAR model. 展开更多
关键词 power load forecasting subset threshold auto regressive model
在线阅读 下载PDF
A Levenberg–Marquardt Based Neural Network for Short-Term Load Forecasting 被引量:1
6
作者 Saqib Ali Shazia Riaz +2 位作者 Safoora Xiangyong Liu Guojun Wang 《Computers, Materials & Continua》 SCIE EI 2023年第4期1783-1800,共18页
Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactio... Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work. 展开更多
关键词 short-term load forecasting artificial neural network power generation smart grid Levenberg-Marquardt technique
在线阅读 下载PDF
Short-Term Load Forecasting Using Radial Basis Function Neural Network
7
作者 Wen-Yeau Chang 《Journal of Computer and Communications》 2015年第11期40-45,共6页
An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis ... An accurate short-term forecasting method for load of electric power system can help the electric power system’s operator to reduce the risk of unreliability of electricity supply. This paper proposed a radial basis function (RBF) neural network method to forecast the short-term load of electric power system. To demonstrate the effectiveness of the proposed method, the method is tested on the practical load data information of the Tai power system. The good agreements between the realistic values and forecasting values are obtained;the numerical results show that the proposed forecasting method is accurate and reliable. 展开更多
关键词 short-term load forecasting RBF NEURAL NETWORK TAI power System
在线阅读 下载PDF
Load-forecasting method for IES based on LSTM and dynamic similar days with multi-features 被引量:4
8
作者 Fan Sun Yaojia Huo +3 位作者 Lei Fu Huilan Liu Xi Wang Yiming Ma 《Global Energy Interconnection》 EI CSCD 2023年第3期285-296,共12页
To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM an... To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM and dynamic similar days with multi-features.Feature expansion was performed to construct a comprehensive load day covering the load and meteorological information with coarse and fine time granularity,far and near time periods.The Gaussian mixture model(GMM)was used to divide the scene of the comprehensive load day,and gray correlation analysis was used to match the scene with the coarse time granularity characteristics of the day to be forecasted.Five typical days with the highest correlation with the day to be predicted in the scene were selected to construct a“dynamic similar day”by weighting.The key features of adjacent days and dynamic similar days were used to forecast multi-loads with fine time granularity using LSTM.Comparing the static features as input and the selection method of similar days based on non-extended single features,the effectiveness of the proposed prediction method was verified. 展开更多
关键词 Integrated energy system load forecast Long short-term memory Dynamic similar days Gaussian mixture model
在线阅读 下载PDF
Day-Ahead Probabilistic Load Flow Analysis Considering Wind Power Forecast Error Correlation
9
作者 Qiang Ding Chuancheng Zhang +4 位作者 Jingyang Zhou Sai Dai Dan Xu Zhiqiang Luo Chengwei Zhai 《Energy and Power Engineering》 2017年第4期292-299,共8页
Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration... Short-term power flow analysis has a significant influence on day-ahead generation schedule. This paper proposes a time series model and prediction error distribution model of wind power output. With the consideration of wind speed and wind power output forecast error’s correlation, the probabilistic distributions of transmission line flows during tomorrow’s 96 time intervals are obtained using cumulants combined Gram-Charlier expansion method. The probability density function and cumulative distribution function of transmission lines on each time interval could provide scheduling planners with more accurate and comprehensive information. Simulation in IEEE 39-bus system demonstrates effectiveness of the proposed model and algorithm. 展开更多
关键词 Wind power Time Series model forecast ERROR Distribution forecast ERROR CORRELATION PROBABILISTIC load Flow Gram-Charlier Expansion
在线阅读 下载PDF
Short-term load forecasting based on CEEMDAN-VMD-GLT model
10
作者 Li Fenfen Hou Bin Zu Yunxiao 《The Journal of China Universities of Posts and Telecommunications》 CSCD 2024年第6期1-15,共15页
The high level of randomness in user-level load sequences presents formidable challenges for load forecasting in power system.In this research,the complete ensemble empirical mode decomposition(EMD)with adaptive noise... The high level of randomness in user-level load sequences presents formidable challenges for load forecasting in power system.In this research,the complete ensemble empirical mode decomposition(EMD)with adaptive noise(CEEMDAN)algorithm is employed for a primary decomposition of the original load sequence to reduce its complexity,and the variational mode decomposition(VMD)is used for a secondary decomposition of the high-frequency sequence to extract its characteristics more effectively.The decomposed and reconstructed load sequences are input into long short-term memory(LSTM)neural network,gated recurrent unit(GRU)and Transformer models for prediction,then the corresponding ensemble model based on the three models is proposed to realize short-term load forecasting(STLF).The combination of LSTM,GRU and Transformer is referred to as GLT.The STLF method is based on the CEEMDAN-VMD-GLT model.To validate the performance of the proposed model,the dataset of a cement factory in Wuhu City is taken as an example,experimental results show that the proposed ensemble model improves the prediction accuracy by 4.061%,4.447%,and 1.765%,respectively,compared to the three benchmark models,namely CEEMDAN-VMD-GRU,CEEMDAN-VMD-LSTM,and CEEMDAN-VMD-Transformer,demonstrating good predictive performance.The simulation results provide a theoretical basis and data support for load forecasting at the user level in the power system and in the industrial production sector. 展开更多
关键词 secondary decomposition Transformer model multi-model ensemble short-term load forecasting(STLF)
原文传递
Novel grey forecast model and its application 被引量:1
11
作者 丁洪发 舒双焰 段献忠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2003年第3期315-320,共6页
The advancement of grey system theory provides an effective analytic tool for power system load fore-cast. All kinds of presently available grey forecast models can be well used to deal with the short-term load fore-c... The advancement of grey system theory provides an effective analytic tool for power system load fore-cast. All kinds of presently available grey forecast models can be well used to deal with the short-term load fore-cast. However, they make big errors for medium or long-term load forecasts, and the load that does not satisfythe approximate exponential increasing law in particular. A novel grey forecast model that is capable of distin-guishing the increasing law of load is adopted to forecast electric power consumption (EPC) of Shanghai. Theresults show that this model can be used to greatly improve the forecast precision of EPC for a secondary industryor the whole society. 展开更多
关键词 grey model load forecast electric power consumption
在线阅读 下载PDF
Impact of festival factor on electric quantity multiplication forecast model
12
作者 Chen, Jianhua Sun, Jingchun Hou, Junhu 《Journal of Southeast University(English Edition)》 EI CAS 2008年第S1期94-98,共5页
This research aims to improve the forecasting precision of electric quantity. It is discovered that the total electricity consumption considerably increased during the Spring Festival by the analysis of the electric q... This research aims to improve the forecasting precision of electric quantity. It is discovered that the total electricity consumption considerably increased during the Spring Festival by the analysis of the electric quantity time series from 2002 to 2007 in Shandong province. The festival factor is ascertained to be one of the important seasonal factors affecting the electric quantity fluctuations, and the multiplication model for forecasting is improved by introducing corresponding variables and parameters. The computational results indicate that the average relative error of the new model decreases from 4.31% to 1.93% and the maximum relative error from 14.05% to 6.52% compared with those of the model when the festival factor is not considered. It shows that introducing the festival factor into the multiplication model for electric quantity forecasting evidently improves the precision. 展开更多
关键词 forecast electric power production TENDENCY seasonal periods multiplication model
在线阅读 下载PDF
基于多情景组合的我国电能替代潜力预测与实施路径研究
13
作者 王博 王灿 +2 位作者 张洪秩 李浩 王兆华 《工程管理科技前沿》 北大核心 2025年第1期19-27,共9页
本文基于对数平均迪式指数法探究家庭和产业部门电力消费驱动因素的异质性,并结合分解结果扩展电力负荷预测模型,将智能化程度、电气化政策等我国新时期电力需求变化关键影响因素纳入模型,研判中国化共享社会经济路径(SSPs)与典型浓度路... 本文基于对数平均迪式指数法探究家庭和产业部门电力消费驱动因素的异质性,并结合分解结果扩展电力负荷预测模型,将智能化程度、电气化政策等我国新时期电力需求变化关键影响因素纳入模型,研判中国化共享社会经济路径(SSPs)与典型浓度路径(RCPs)的组合情景下我国电能替代水平。研究结果发现:(1)短期看家庭部门驱动因素的作用效果总体小于产业部门,两部门的能源强度效应和能源结构效应都将对电力增长发挥重要驱动作用;(2)我国未来电力需求增长空间广、情景差异大,2060年,可持续发展(SSP1-RCP1.9)情景下我国用电量达14.97万亿千瓦时,高化石能源依赖(SSP5-RCP8.5)情景下电力需求量达16.87万亿千瓦时,历史模式发展(SSP2-RCP4.5)情景下用电量仅为SSP5-RCP8.5情景的3/4。电力需求发展路径研判为未来能源系统转型、低碳政策制定提供科学支撑。 展开更多
关键词 电力需求预测 驱动因素解析 扩展电力负荷预测模型 SSP-RCP情景框架
在线阅读 下载PDF
GANO算法下广域电力系统短期负荷预测仿真
14
作者 李文武 张李勇 张鹏宇 《计算机仿真》 2025年第1期92-95,110,共5页
用电模式的复杂程度随着电力市场和电网技术的发展逐渐增加,在此背景下提高了对电力系统短期负荷预测稳定性和精度的要求。提出GANO算法下广域电力系统短期负荷预测方法,建立自编码器,将电力系统的历史负荷数据输入自编码器中,通过数据... 用电模式的复杂程度随着电力市场和电网技术的发展逐渐增加,在此背景下提高了对电力系统短期负荷预测稳定性和精度的要求。提出GANO算法下广域电力系统短期负荷预测方法,建立自编码器,将电力系统的历史负荷数据输入自编码器中,通过数据重构实现电力负荷数据的去噪处理;分别建立了用于广域电力系统短期负荷预测的GM(1,1)模型和神经网络模型,为了提高负荷预测精度,结合GM(1,1)模型和神经网络模型的预测结果,建立灰色神经网络预测组合预测模型(GANO),实现电力系统短期负荷预测。仿真结果表明,在预测精度和预测效率方面,所提方法表现出良好的性能。 展开更多
关键词 广域电力系统 自编码器 负荷预测 神经网络模型
在线阅读 下载PDF
基于RA-LSTM模型的山西省中长期电力负荷预测
15
作者 周绍妮 吴优 +1 位作者 窦雨菡 郑奕扬 《气象与环境科学》 2025年第1期78-87,共10页
准确的中长期电力负荷预测对电力系统的规划和运行至关重要。由于传统方法在非线性特性处理和时序依赖建模方面存在局限,难以全面捕捉负荷数据的复杂特征,因而提出了一种基于残差网络和注意力机制的RA-LSTM模型。模型通过引入残差连接,... 准确的中长期电力负荷预测对电力系统的规划和运行至关重要。由于传统方法在非线性特性处理和时序依赖建模方面存在局限,难以全面捕捉负荷数据的复杂特征,因而提出了一种基于残差网络和注意力机制的RA-LSTM模型。模型通过引入残差连接,缓解梯度消失问题,增强了模型对长时序依赖特征的捕捉能力;同时融合注意力机制,增强了对关键时间点和特征的敏感性。以山西省为案例,构建了融合时间特征和气象要素的数据集,对RA-LSTM模型进行了全面评估。实验结果表明,RA-LSTM模型在均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)及决定系数(R^(2))等指标上均显著优于基准BP模型和传统LSTM模型。RA-LSTM模型的MAPE、MAE较BP模型的分别降低了41.8%、40.9%,显著提升了模型的预测精度和稳定性。显著性检验结果进一步验证了RA-LSTM模型预测结果的科学性,为中长期电力负荷预测提供了一种高效且稳健的解决方案,并为未来探索多特征融合和模型优化提供了理论和实践基础。 展开更多
关键词 中长期电力负荷 预测 RA-LSTM模型 残差网络 注意力机制 深度学习
在线阅读 下载PDF
基于空间映射区分度提升和Bi-LSTM的PLF
16
作者 陈建平 周明 +1 位作者 许锋 魏业文 《计算机仿真》 2025年第1期47-51,120,共6页
提出了基于多颜色空间高维映射和Bi-LSTM深度网络相结合的电力负荷预测方法。将图像处理中经典的多颜色空间模型将原始的电力负荷数据映射至高维空间,提升电力负荷数据的空间可分离性,同时对高维数据应用主元分析方法进行降维,确保预测... 提出了基于多颜色空间高维映射和Bi-LSTM深度网络相结合的电力负荷预测方法。将图像处理中经典的多颜色空间模型将原始的电力负荷数据映射至高维空间,提升电力负荷数据的空间可分离性,同时对高维数据应用主元分析方法进行降维,确保预测精度的前提下,提升算法的运行效率,应用Bi-LSTM深度网络实现对电力负荷的预测。实验结果表明,基于改进的多颜色空间模型和主元分析方法实现的高维空间映射方法可有效的提升电力负荷数据的空间可分离性,提升了电力负荷预测的精度。 展开更多
关键词 电力负荷预测 多颜色空间模型 空间映射区分度
在线阅读 下载PDF
基于Attention-LSTM的短期电力负荷预测
17
作者 李璨 伍黎艳 +4 位作者 赵威 李晟 曾加贝 苏旨音 曾进辉 《船电技术》 2025年第1期5-8,共4页
电力负荷预测的准确性受到多种因素的干扰,如气候变化、经济发展以及区域差异等,这些因素使得电力负荷呈现出显著的不稳定性和复杂的非线性特征,从而增加了提高预测精度的难度。为了应对这一挑战,本文创新性地引入了一种结合自注意力机... 电力负荷预测的准确性受到多种因素的干扰,如气候变化、经济发展以及区域差异等,这些因素使得电力负荷呈现出显著的不稳定性和复杂的非线性特征,从而增加了提高预测精度的难度。为了应对这一挑战,本文创新性地引入了一种结合自注意力机制与长短期记忆网络(LSTM)的预测方法。通过在美国某一地区的实际用电负荷数据验证模型,实验结果表明,该方法的决定系数(R2)为0.96,平均绝对误差(MAE)为0.023,均方根误差(RMSE)为0.029,提升了预测的准确性。这不仅证明了所提模型在提高电力负荷预测精度方面的有效性,也为其在船舶电力负荷预测的应用奠定了一定的基础。 展开更多
关键词 短期电力负荷预测 长短期记忆网络 自注意力机制 预测精度 模型泛化能力
在线阅读 下载PDF
电力系统负荷预测建模
18
作者 张晋轩 陈雨 孙峰 《科学与信息化》 2025年第2期126-128,共3页
新能源具有随机性、波动性、间歇性等特点,增加了电力负荷预测难度,提高预测的精确度至关重要,如何建立精确的模型是关键。本文首先介绍了长、中、短三类负荷预测,针对随机性较大的中、短期负荷预测进行建模,通过筛选原始数据作为数据... 新能源具有随机性、波动性、间歇性等特点,增加了电力负荷预测难度,提高预测的精确度至关重要,如何建立精确的模型是关键。本文首先介绍了长、中、短三类负荷预测,针对随机性较大的中、短期负荷预测进行建模,通过筛选原始数据作为数据作为训练、预测数据样本,按照动态负荷、静态负荷、常规负荷、特殊负荷等原始数据进行确定负荷特性,最后进行介绍仿真过程。 展开更多
关键词 建模 电力负荷 预测
在线阅读 下载PDF
基于BFA-SVR的短期电力负荷预测
19
作者 王毅 曲烽瑞 +2 位作者 曾松涛 葛佳菲 李智斌 《微型电脑应用》 2025年第1期92-95,共4页
短期电力负荷表现出明显的随机性和波动性,传统单一预测方法存在预测精度低、鲁棒性差等问题。为此,提出一种改进因子分析模型(FA)联合支持向量回归(SVR)的短期电力负荷预测模型。将贝叶斯理论引入FA,建立贝叶斯因子分析(BFA)模型实现... 短期电力负荷表现出明显的随机性和波动性,传统单一预测方法存在预测精度低、鲁棒性差等问题。为此,提出一种改进因子分析模型(FA)联合支持向量回归(SVR)的短期电力负荷预测模型。将贝叶斯理论引入FA,建立贝叶斯因子分析(BFA)模型实现对因子个数的自动确定;利用BFA对电力负荷数据进行分析,将其分解为多个能够反映用电负荷数据变化趋势的隐变量形式;利用SVR对每个隐变量分别进行预测,将各个预测结果综合叠加得到最终的预测结果。试验结果表明,所提BFA-SVR模型能够获得较高的短期电力负荷预测精度,其平均绝对百分比误差、均方根误差2项指标均明显优于SVR、BP神经网络和LSTM模型。 展开更多
关键词 电力负荷预测 因子分析模型 支持向量回归 贝叶斯理论
在线阅读 下载PDF
基于Stacking模型融合算法的风电功率预测方法
20
作者 张雪原 蔡思烨 +4 位作者 刘巧宏 朱坚 包晓炜 夏玉剑 陈极 《电力与能源》 2025年第1期61-66,共6页
随着新能源在新型电力系统中渗透率的日益增加,对风电场功率预测的准确性能要求也不断提升。为提高风电功率预测的准确性和可靠性,设计了以线性回归、K邻近、随机森林算法为特征提取层,以轻量梯度提升机为回归预测层的Stacking模型融合... 随着新能源在新型电力系统中渗透率的日益增加,对风电场功率预测的准确性能要求也不断提升。为提高风电功率预测的准确性和可靠性,设计了以线性回归、K邻近、随机森林算法为特征提取层,以轻量梯度提升机为回归预测层的Stacking模型融合算法。以某风电场近年运行数据为案例,验证了该基于Stacking模型融合算法的预测方法相较于任一单一机器学习算法都具有更高的预测精度。 展开更多
关键词 风力发电 Stacking模型融合算法 随机森林 K邻近 负荷预测
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部