A novel treating technology for nitrogen removal from soybean wastewater was studied. The process for nitrogen removal was achieved by alternating aeration and mixing, combined with real\|time control strategies. Resu...A novel treating technology for nitrogen removal from soybean wastewater was studied. The process for nitrogen removal was achieved by alternating aeration and mixing, combined with real\|time control strategies. Results showed that the COD and total nitrogen removal rates are more than 90% and 92% at COD and total nitrogen loads of 1\^0-1\^2 kg COD/(kgMLSS·d) and 0\^20-0\^27 kg TN/(kgMLSS·d), respectively. In addition, it could improve sludge settling property. SVI value is less than 70 g/ml during the whole cycles. The method not only may be adapted to treat soybean wastewater with high nitrogen, but also may be applied to treat other high nitrogen wastewater.展开更多
An innovative shortcut biological nitrogen removal system, consisting of an aerobic submerged membrane bioreactor (MBR) and an anaerobic packed-bed biofilm reactor (PBBR), was evaluated for treating high strength ...An innovative shortcut biological nitrogen removal system, consisting of an aerobic submerged membrane bioreactor (MBR) and an anaerobic packed-bed biofilm reactor (PBBR), was evaluated for treating high strength ammonium-bearing wastewater. The system was seeded with enriched ammonia-oxidizing bacteria (AOB) and operated without sludge purge with a decreased hydraulic retention time (HRT) through three phases. MBR was successful in both maintaining nitrite ratio over 0.95 and nitrification efficiency higher than 98% at HRT of 24 h, and PBBR showed satisfactory denitrification efficiency with very low effluent nitrite and nitrate concentration (both below 3 mg/L). By examining the nitrification activity of microorganism, it was found that the specifc ammonium oxidization rate (SAOR) increased from 0.17 to 0.51 g N/(g VSS.d) and then decreased to 0.22 g N/(g VSS.d) at the last phase, which resulted from the accumulation of extracellular polymers substances (EPS) and inert matters enwrapping around the zoogloea. In contrast, the average specific nitrite oxidization rate (SNOR) is 0.002 g N/(g VSS.d), only 1% of SAOR. Because very little Nitrobactor has been detected by fluorescence in situ hybridization (FISH), it is confirmed that the stability of high nitrite accumulation in MBR is caused by a large amount of AOB.展开更多
Shortcut nitrification-denitrification(SCND)is widely concerned because of its low energy consumption and high nitrogen removal efficiency.However,the current difficulty lies in the stable maintenance of SCND performa...Shortcut nitrification-denitrification(SCND)is widely concerned because of its low energy consumption and high nitrogen removal efficiency.However,the current difficulty lies in the stable maintenance of SCND performance,which leads to the challenge of large-scale application of this new denitrification technology.In this study,the nitrogen removal pathway from complete nitrification-denitrification(CND)to SCND was rapidly realized under high free ammonia(FA),high pH and low dissolved oxygen(DO)conditions.The variations of specific oxygen uptake rate(SOUR)of activated sludge in both processes were investigated by an online SOUR monitoring device.Different curves of SOUR from CND to SCND process were observed,and the ammonia peak obtained based on SOUR monitoring could be used to control aeration time accurately in SCND process.Accordingly,the SOUR ratio of ammonia oxidizing bacteria(AOB)to nitrite oxidizing bacteria(NOB)(SOURAOB/SOURNOB)was increased from 1.40 to 2.93.16S rRNA Miseq high throughput sequencing revealed the dynamics of AOB and NOB,and the ratio of relative abundance(AOB/NOB)was increased from 1.03 to 3.12.Besides,SOURAOB/SOURNOB displayed significant correlations to ammonia removal rate(P<0.05),ammonia oxidation rate/nitrite oxidation rate(P<0.05),nitrite accumulation rate(P<0.05)and the relative abundance of AOB/NOB(P<0.05).Thus,a strategy for evaluation the SCND process stability based on online SOUR monitoring is proposed,which provides a theoretical basis for optimizing the SCND performance.展开更多
文摘A novel treating technology for nitrogen removal from soybean wastewater was studied. The process for nitrogen removal was achieved by alternating aeration and mixing, combined with real\|time control strategies. Results showed that the COD and total nitrogen removal rates are more than 90% and 92% at COD and total nitrogen loads of 1\^0-1\^2 kg COD/(kgMLSS·d) and 0\^20-0\^27 kg TN/(kgMLSS·d), respectively. In addition, it could improve sludge settling property. SVI value is less than 70 g/ml during the whole cycles. The method not only may be adapted to treat soybean wastewater with high nitrogen, but also may be applied to treat other high nitrogen wastewater.
文摘An innovative shortcut biological nitrogen removal system, consisting of an aerobic submerged membrane bioreactor (MBR) and an anaerobic packed-bed biofilm reactor (PBBR), was evaluated for treating high strength ammonium-bearing wastewater. The system was seeded with enriched ammonia-oxidizing bacteria (AOB) and operated without sludge purge with a decreased hydraulic retention time (HRT) through three phases. MBR was successful in both maintaining nitrite ratio over 0.95 and nitrification efficiency higher than 98% at HRT of 24 h, and PBBR showed satisfactory denitrification efficiency with very low effluent nitrite and nitrate concentration (both below 3 mg/L). By examining the nitrification activity of microorganism, it was found that the specifc ammonium oxidization rate (SAOR) increased from 0.17 to 0.51 g N/(g VSS.d) and then decreased to 0.22 g N/(g VSS.d) at the last phase, which resulted from the accumulation of extracellular polymers substances (EPS) and inert matters enwrapping around the zoogloea. In contrast, the average specific nitrite oxidization rate (SNOR) is 0.002 g N/(g VSS.d), only 1% of SAOR. Because very little Nitrobactor has been detected by fluorescence in situ hybridization (FISH), it is confirmed that the stability of high nitrite accumulation in MBR is caused by a large amount of AOB.
基金This research was supported by Sichuan Key Point Research and Invention Program(Nos.2019YFS0502,2020YFS0026)Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20180002)Project funded by China Postdoctoral Science Foundation(No.2020M673293).
文摘Shortcut nitrification-denitrification(SCND)is widely concerned because of its low energy consumption and high nitrogen removal efficiency.However,the current difficulty lies in the stable maintenance of SCND performance,which leads to the challenge of large-scale application of this new denitrification technology.In this study,the nitrogen removal pathway from complete nitrification-denitrification(CND)to SCND was rapidly realized under high free ammonia(FA),high pH and low dissolved oxygen(DO)conditions.The variations of specific oxygen uptake rate(SOUR)of activated sludge in both processes were investigated by an online SOUR monitoring device.Different curves of SOUR from CND to SCND process were observed,and the ammonia peak obtained based on SOUR monitoring could be used to control aeration time accurately in SCND process.Accordingly,the SOUR ratio of ammonia oxidizing bacteria(AOB)to nitrite oxidizing bacteria(NOB)(SOURAOB/SOURNOB)was increased from 1.40 to 2.93.16S rRNA Miseq high throughput sequencing revealed the dynamics of AOB and NOB,and the ratio of relative abundance(AOB/NOB)was increased from 1.03 to 3.12.Besides,SOURAOB/SOURNOB displayed significant correlations to ammonia removal rate(P<0.05),ammonia oxidation rate/nitrite oxidation rate(P<0.05),nitrite accumulation rate(P<0.05)and the relative abundance of AOB/NOB(P<0.05).Thus,a strategy for evaluation the SCND process stability based on online SOUR monitoring is proposed,which provides a theoretical basis for optimizing the SCND performance.