The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential pr...The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential probability density function subjected to a harmonic excitation. Firstly the stochastic system is reduced into its equivalent deterministic one, and then the responses of stochastic system can be obtained by numerical methods. Nonlinear dynamical behaviour related to stochastic period-doubling bifurcation and chaos in the stochastic system is explored. Numerical simulations show that similar to its counterpart in deterministic nonlinear system of stochastic period-doubling bifurcation and chaos may occur in the stochastic Duffing-van der Pol system even for weak intensity of random parameter. Simply increasing the intensity of the random parameter may result in the period-doubling bifurcation which is absent from the deterministic system.展开更多
This article concerns the construction of approximate solutions for a general stochastic integrodifferential equation which is not explicitly solvable and whose coeffcients functionally depend on Lebesgue integrals an...This article concerns the construction of approximate solutions for a general stochastic integrodifferential equation which is not explicitly solvable and whose coeffcients functionally depend on Lebesgue integrals and stochastic integrals with respect to martingales. The approximate equations are linear ordinary stochastic differential equations, the solutions of which are defined on sub-intervals of an arbitrary partition of the time interval and connected at successive division points. The closeness of the initial and approximate solutions is measured in the L^p-th norm, uniformly on the time interval. The convergence with probability one is also given.展开更多
Stochastic approximation problem is to find some root or extremum of a nonlinear function for which only noisy measurements of the function are available. The classical algorithm for stochastic approximation problem i...Stochastic approximation problem is to find some root or extremum of a nonlinear function for which only noisy measurements of the function are available. The classical algorithm for stochastic approximation problem is the Robbins-Monro (RM) algorithm, which uses the noisy evaluation of the negative gradient direction as the iterative direction. In order to accelerate the RM algorithm, this paper gives a flame algorithm using adaptive iterative directions. At each iteration, the new algorithm goes towards either the noisy evaluation of the negative gradient direction or some other directions under some switch criterions. Two feasible choices of the criterions are proposed and two corresponding frame algorithms are formed. Different choices of the directions under the same given switch criterion in the frame can also form different algorithms. We also proposed the simultanous perturbation difference forms for the two frame algorithms. The almost surely convergence of the new algorithms are all established. The numerical experiments show that the new algorithms are promising.展开更多
In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering ...In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM) based on the harmonious finite element (HFE) technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.展开更多
In this paper, a computational approach is proposed for solving the discrete-time nonlinear optimal control problem, which is disturbed by a sequence of random noises. Because of the exact solution of such optimal con...In this paper, a computational approach is proposed for solving the discrete-time nonlinear optimal control problem, which is disturbed by a sequence of random noises. Because of the exact solution of such optimal control problem is impossible to be obtained, estimating the state dynamics is currently required. Here, it is assumed that the output can be measured from the real plant process. In our approach, the state mean propagation is applied in order to construct a linear model-based optimal control problem, where the model output is measureable. On this basis, an output error, which takes into account the differences between the real output and the model output, is defined. Then, this output error is minimized by applying the stochastic approximation approach. During the computation procedure, the stochastic gradient is established, so as the optimal solution of the model used can be updated iteratively. Once the convergence is achieved, the iterative solution approximates to the true optimal solution of the original optimal control problem, in spite of model-reality differences. For illustration, an example on a continuous stirred-tank reactor problem is studied, and the result obtained shows the applicability of the approach proposed. Hence, the efficiency of the approach proposed is highly recommended.展开更多
We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpansive operators in Hilbert spaces under the condition that operators are given with random errors. We ...We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpansive operators in Hilbert spaces under the condition that operators are given with random errors. We prove mean square convergence and convergence almost sure (a.s.) of iterative approximations and establish both asymptotic and nonasymptotic estimates of the convergence rate in degenerate and non-degenerate cases. Previously the stochastic approximation algorithms were studied mainly for optimization problems.展开更多
We propose a stochastic level value approximation method for a quadratic integer convex minimizing problem in this paper. This method applies an importance sampling technique, and make use of the cross-entropy method ...We propose a stochastic level value approximation method for a quadratic integer convex minimizing problem in this paper. This method applies an importance sampling technique, and make use of the cross-entropy method to update the sample density functions. We also prove the asymptotic convergence of this algorithm, and report some numerical results to illuminate its effectiveness.展开更多
In this paper, the simultaneous perturbation stochastic approximation (SPSA) algorithm is used for seeking optimal parameters in an adaptive filter developed for assimilating observations in the very high dimensiona...In this paper, the simultaneous perturbation stochastic approximation (SPSA) algorithm is used for seeking optimal parameters in an adaptive filter developed for assimilating observations in the very high dimensional dynamical systems. The main results show that the SPSA is capable of yielding the high filter performance similar to that produced by classical optimization algorithms, with better performance for non-linear filtering problems as more and more observations are assimilated. The advantage of the SPSA is that at each iteration it requires only two measurements of the objective function to approximate the gradient vector regardless of the dimension of the control vector (or maximally, three measurements if second-order optimization algorithms are used). The SPSA approach is thus free from the need to develop a discrete adjoint of tangent linear model as it is required up to now for solving optimization problems in very high dimensional systems. This technique offers promising perspectives on developing optimal assimilation systems encountered in the field of data assimilation in meteorology and oceanography.展开更多
This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained b...This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.展开更多
In this paper,we studied the approximate sampleddata observer design for a class of stochastic nonlinear systems.Euler-Maruyama approximation was investigated in this paper because it is the basis of other higher prec...In this paper,we studied the approximate sampleddata observer design for a class of stochastic nonlinear systems.Euler-Maruyama approximation was investigated in this paper because it is the basis of other higher precision numerical methods,and it preserves important structures of the nonlinear systems.Also,the form of Euler-Maruyama model is simple and easy to be calculated.The results provide a reference for sampled-data observer design method for such stochastic nonlinear systems,and may be useful to many practical control applications,such as tracking control in mechanical systems.And the effectiveness of the approach is demonstrated by a simulation example.展开更多
Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been anal...Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been analyzed. The efficiency of the proposed higher-order approximation scheme has been discussed in the results section. The solutions of SPKEs in the presence of Newtonian temperature feedback have also been provided to further discuss the physical behavior of the fractional model.展开更多
This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to st...This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to stochastic delay differential equations. Based on the Caratheodory approximate procedure, it was proved that stochastic delay differential equations have unique solution and established that the Caratheodory approximate solution converges to the unique solution of stochastic delay differential equations under the Cauchy sequence and initial condition. This Caratheodory approximate procedure and Euler method both converge at the same rate. This is achieved by replacing the present state with past state. The existence and uniqueness of an approximate solution of the stochastic delay differential equation were shown and the approximate solution to the unique solution was also shown. .展开更多
This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables...This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables with respect to the perturbation parameters for the SUEED model. Then by taking advantage of the gradient-based method for sensitivity analysis of a general nonlinear program, detailed formulae are developed for calculating the derivatives of designed variables with respect to perturbation parameters at the equilibrium state of the SUEED model. This method is not only applicable for a sensitivity analysis of the logit-type SUEED problem, but also for the probit-type SUEED problem. The application of the proposed method in a numerical example shows that the proposed method can be used to approximate the equilibrium link flow solutions for both logit-type SUEED and probit-type SUEED problems when small perturbations are introduced in the input parameters.展开更多
In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter...In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter. In the analysis, the stochastic BVP system is transformed by the Chebyshev polynomial approximation into an equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. In this way we have explored plenty of stochastic period-doubling bifurcation phenomena of the stochastic BVP system. The numerical simulations show that the behaviour of the stochastic period-doubling bifurcation in the stochastic BVP system is by and large similar to that in the deterministic mean-parameter BVP system, but there are still some featured differences between them. For example, in the stochastic dynamic system the period-doubling bifurcation point diffuses into a critical interval and the location of the critical interval shifts with the variation of intensity of the random parameter. The obtained results show that Chebyshev polynomial approximation is an effective approach to dynamical problems in some typical nonlinear systems with a bounded random parameter of an arch-like probability density function.展开更多
With coupled weakly-damped periodically driven bistable oscillators subjected to additive and multiplicative noises under concern, the objective of this paper is to check to what extent the resonant point predicted by...With coupled weakly-damped periodically driven bistable oscillators subjected to additive and multiplicative noises under concern, the objective of this paper is to check to what extent the resonant point predicted by the Gaussian distribution assumption can approximate the simulated one. The investigation based on the dynamical mean-field approx- imation and the direct simulation demonstrates that the pre- dicted resonant point and the simulated one are basically co- incident for the case of pure additive noise, but for the case including multiplicative noise the situation becomes some- what complex. Specifically speaking, when stochastic res- onance (SR) is observed by changing the additive noise in- tensity, the predicted resonant point is lower than the sim- ulated one; nevertheless, when SR is observed by chang- ing the multiplicative noise intensity, the predicted resonant point is higher than the simulated one. Our observations im- ply that the Gaussian distribution assumption can not exactly describe the actual situation, but it is useful to some extent in predicting the low-frequency stochastic resonance of the coupled weakly-damped bistable oscillator.展开更多
This paper investigates the phenomenon of stochastic resonance in a single-mode laser driven by quadratic pump noise and amplitude-modulated signal. A new linear approximation approach is advanced to calculate the sig...This paper investigates the phenomenon of stochastic resonance in a single-mode laser driven by quadratic pump noise and amplitude-modulated signal. A new linear approximation approach is advanced to calculate the signal-to-noise ratio. In the linear approximation only the drift term is linearized, the multiplicative noise term is unchangeable. It is found that there appears not only the standard form of stochastic resonance but also the broad sense of stochastic resonance, especially stochastic multiresonance appears in the curve of signal-to-noise ratio as a function of coupling strength A between the real and imaginary parts of the pump noise.展开更多
In this paper, an adaptive estimation algorithm is proposed for non-linear dynamic systems with unknown static parameters based on combination of particle filtering and Simultaneous Perturbation Stochastic Approxi- ma...In this paper, an adaptive estimation algorithm is proposed for non-linear dynamic systems with unknown static parameters based on combination of particle filtering and Simultaneous Perturbation Stochastic Approxi- mation (SPSA) technique. The estimations of parameters are obtained by maximum-likelihood estimation and sampling within particle filtering framework, and the SPSA is used for stochastic optimization and to approximate the gradient of the cost function. The proposed algorithm achieves combined estimation of dynamic state and static parameters of nonlinear systems. Simulation result demonstrates the feasibilitv and efficiency of the proposed algorithm展开更多
Let Q be the Q-matrix of an irreducible, positive recurrent Markov process on a countable state space. We show that, under a number of conditions, the stationary distributions of the n × n north-west corner augme...Let Q be the Q-matrix of an irreducible, positive recurrent Markov process on a countable state space. We show that, under a number of conditions, the stationary distributions of the n × n north-west corner augmentations of Q converge in total variation to the stationary distribution of the process. Two conditions guaranteeing such convergence include exponential ergodicity and stochastic monotonicity of the process. The same also holds for processes dominated by a stochastically monotone Markov process. In addition, we shall show that finite perturbations of stochastically monotone processes may be viewed as being dominated by a stochastically monotone process, thus extending the scope of these results to a larger class of processes. Consequently, the augmentation method provides an attractive, intuitive method for approximating the stationary distributions of a large class of Markov processes on countably infinite state spaces from a finite amount of known information.展开更多
A novel method based on time-dependent stochastic orthogonal bases for stochastic response surface approximation is proposed to overcome the problem of significant errors in the utilization of the generalized polynomi...A novel method based on time-dependent stochastic orthogonal bases for stochastic response surface approximation is proposed to overcome the problem of significant errors in the utilization of the generalized polynomial chaos(GPC) method that approximates the stochastic response by orthogonal polynomials. The accuracy and effectiveness of the method are illustrated by different numerical examples including both linear and nonlinear problems. The results indicate that the proposed method modifies the stochastic bases adaptively, and has a better approximation for the probability density function in contrast to the GPC method.展开更多
In this note, we study a discrete time approximation for the solution of a class of delayed stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H ∈(1/2,1). In order to prove ...In this note, we study a discrete time approximation for the solution of a class of delayed stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H ∈(1/2,1). In order to prove convergence, we use rough paths techniques. Theoretical bounds are established and numerical simulations are displayed.展开更多
基金Project supported by the National Natural Science Foundation of China (Grants Nos 10472091 and 10332030).
文摘The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential probability density function subjected to a harmonic excitation. Firstly the stochastic system is reduced into its equivalent deterministic one, and then the responses of stochastic system can be obtained by numerical methods. Nonlinear dynamical behaviour related to stochastic period-doubling bifurcation and chaos in the stochastic system is explored. Numerical simulations show that similar to its counterpart in deterministic nonlinear system of stochastic period-doubling bifurcation and chaos may occur in the stochastic Duffing-van der Pol system even for weak intensity of random parameter. Simply increasing the intensity of the random parameter may result in the period-doubling bifurcation which is absent from the deterministic system.
文摘This article concerns the construction of approximate solutions for a general stochastic integrodifferential equation which is not explicitly solvable and whose coeffcients functionally depend on Lebesgue integrals and stochastic integrals with respect to martingales. The approximate equations are linear ordinary stochastic differential equations, the solutions of which are defined on sub-intervals of an arbitrary partition of the time interval and connected at successive division points. The closeness of the initial and approximate solutions is measured in the L^p-th norm, uniformly on the time interval. The convergence with probability one is also given.
基金supported by the Chinese NSF grants 10571171 and 40233029.
文摘Stochastic approximation problem is to find some root or extremum of a nonlinear function for which only noisy measurements of the function are available. The classical algorithm for stochastic approximation problem is the Robbins-Monro (RM) algorithm, which uses the noisy evaluation of the negative gradient direction as the iterative direction. In order to accelerate the RM algorithm, this paper gives a flame algorithm using adaptive iterative directions. At each iteration, the new algorithm goes towards either the noisy evaluation of the negative gradient direction or some other directions under some switch criterions. Two feasible choices of the criterions are proposed and two corresponding frame algorithms are formed. Different choices of the directions under the same given switch criterion in the frame can also form different algorithms. We also proposed the simultanous perturbation difference forms for the two frame algorithms. The almost surely convergence of the new algorithms are all established. The numerical experiments show that the new algorithms are promising.
基金supported by the National Natural Science Foundation of China(Grant No.50379046)the Doctoral Fund of the Ministry of Education of China(Grant No.A50221)
文摘In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM) based on the harmonious finite element (HFE) technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.
文摘In this paper, a computational approach is proposed for solving the discrete-time nonlinear optimal control problem, which is disturbed by a sequence of random noises. Because of the exact solution of such optimal control problem is impossible to be obtained, estimating the state dynamics is currently required. Here, it is assumed that the output can be measured from the real plant process. In our approach, the state mean propagation is applied in order to construct a linear model-based optimal control problem, where the model output is measureable. On this basis, an output error, which takes into account the differences between the real output and the model output, is defined. Then, this output error is minimized by applying the stochastic approximation approach. During the computation procedure, the stochastic gradient is established, so as the optimal solution of the model used can be updated iteratively. Once the convergence is achieved, the iterative solution approximates to the true optimal solution of the original optimal control problem, in spite of model-reality differences. For illustration, an example on a continuous stirred-tank reactor problem is studied, and the result obtained shows the applicability of the approach proposed. Hence, the efficiency of the approach proposed is highly recommended.
文摘We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpansive operators in Hilbert spaces under the condition that operators are given with random errors. We prove mean square convergence and convergence almost sure (a.s.) of iterative approximations and establish both asymptotic and nonasymptotic estimates of the convergence rate in degenerate and non-degenerate cases. Previously the stochastic approximation algorithms were studied mainly for optimization problems.
基金Project supported by the National Natural Science Foundation of China (No.10671117)Shanghai Leading Academic Discipline Project (No.J050101)the Youth Science Foundation of Hunan Education Department of China (No.06B037)
文摘We propose a stochastic level value approximation method for a quadratic integer convex minimizing problem in this paper. This method applies an importance sampling technique, and make use of the cross-entropy method to update the sample density functions. We also prove the asymptotic convergence of this algorithm, and report some numerical results to illuminate its effectiveness.
文摘In this paper, the simultaneous perturbation stochastic approximation (SPSA) algorithm is used for seeking optimal parameters in an adaptive filter developed for assimilating observations in the very high dimensional dynamical systems. The main results show that the SPSA is capable of yielding the high filter performance similar to that produced by classical optimization algorithms, with better performance for non-linear filtering problems as more and more observations are assimilated. The advantage of the SPSA is that at each iteration it requires only two measurements of the objective function to approximate the gradient vector regardless of the dimension of the control vector (or maximally, three measurements if second-order optimization algorithms are used). The SPSA approach is thus free from the need to develop a discrete adjoint of tangent linear model as it is required up to now for solving optimization problems in very high dimensional systems. This technique offers promising perspectives on developing optimal assimilation systems encountered in the field of data assimilation in meteorology and oceanography.
基金supported by Ministry of Human Resource and Development(MHR-02-23-200-429/304)
文摘This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2014AA06A503)the National Natural Science Foundation of China(61422307,61673361)+3 种基金the Scientific Research Starting Foundation for the Returned Overseas Chinese Scholars and Ministry of Education of Chinasupports from the Youth Top-notch Talent Support Programthe 1000-talent Youth Programthe Youth Yangtze River Scholarship
文摘In this paper,we studied the approximate sampleddata observer design for a class of stochastic nonlinear systems.Euler-Maruyama approximation was investigated in this paper because it is the basis of other higher precision numerical methods,and it preserves important structures of the nonlinear systems.Also,the form of Euler-Maruyama model is simple and easy to be calculated.The results provide a reference for sampled-data observer design method for such stochastic nonlinear systems,and may be useful to many practical control applications,such as tracking control in mechanical systems.And the effectiveness of the approach is demonstrated by a simulation example.
文摘Stochastic point kinetics equations(SPKEs) are a system of Ito? stochastic differential equations whose solution has been obtained by higher-order approximation.In this study, a fractional model of SPKEs has been analyzed. The efficiency of the proposed higher-order approximation scheme has been discussed in the results section. The solutions of SPKEs in the presence of Newtonian temperature feedback have also been provided to further discuss the physical behavior of the fractional model.
文摘This study is focused on the approximate solution for the class of stochastic delay differential equations. The techniques applied involve the use of Caratheodory and Euler Maruyama procedures which approximated to stochastic delay differential equations. Based on the Caratheodory approximate procedure, it was proved that stochastic delay differential equations have unique solution and established that the Caratheodory approximate solution converges to the unique solution of stochastic delay differential equations under the Cauchy sequence and initial condition. This Caratheodory approximate procedure and Euler method both converge at the same rate. This is achieved by replacing the present state with past state. The existence and uniqueness of an approximate solution of the stochastic delay differential equation were shown and the approximate solution to the unique solution was also shown. .
基金The Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX13_110)the Young Scientists Fund of National Natural Science Foundation of China(No.51408253)the Young Scientists Fund of Huaiyin Institute of Technology(No.491713328)
文摘This paper puts forward a rigorous approach for a sensitivity analysis of stochastic user equilibrium with the elastic demand (SUEED) model. First, proof is given for the existence of derivatives of output variables with respect to the perturbation parameters for the SUEED model. Then by taking advantage of the gradient-based method for sensitivity analysis of a general nonlinear program, detailed formulae are developed for calculating the derivatives of designed variables with respect to perturbation parameters at the equilibrium state of the SUEED model. This method is not only applicable for a sensitivity analysis of the logit-type SUEED problem, but also for the probit-type SUEED problem. The application of the proposed method in a numerical example shows that the proposed method can be used to approximate the equilibrium link flow solutions for both logit-type SUEED and probit-type SUEED problems when small perturbations are introduced in the input parameters.
基金Project supported by the Major Program of the National Natural Science Foundation of China, China (Grant No 10332030), the National Natural Science Foundation of China (Grant No 10472091), and the Graduate Starting Seed Fund of Northwestern Polytechnical University, China (Grant No Z200655).
文摘In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter. In the analysis, the stochastic BVP system is transformed by the Chebyshev polynomial approximation into an equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. In this way we have explored plenty of stochastic period-doubling bifurcation phenomena of the stochastic BVP system. The numerical simulations show that the behaviour of the stochastic period-doubling bifurcation in the stochastic BVP system is by and large similar to that in the deterministic mean-parameter BVP system, but there are still some featured differences between them. For example, in the stochastic dynamic system the period-doubling bifurcation point diffuses into a critical interval and the location of the critical interval shifts with the variation of intensity of the random parameter. The obtained results show that Chebyshev polynomial approximation is an effective approach to dynamical problems in some typical nonlinear systems with a bounded random parameter of an arch-like probability density function.
基金supported by the National Natural Science Foundation of China (10602041,10972170 and 11072182)
文摘With coupled weakly-damped periodically driven bistable oscillators subjected to additive and multiplicative noises under concern, the objective of this paper is to check to what extent the resonant point predicted by the Gaussian distribution assumption can approximate the simulated one. The investigation based on the dynamical mean-field approx- imation and the direct simulation demonstrates that the pre- dicted resonant point and the simulated one are basically co- incident for the case of pure additive noise, but for the case including multiplicative noise the situation becomes some- what complex. Specifically speaking, when stochastic res- onance (SR) is observed by changing the additive noise in- tensity, the predicted resonant point is lower than the sim- ulated one; nevertheless, when SR is observed by chang- ing the multiplicative noise intensity, the predicted resonant point is higher than the simulated one. Our observations im- ply that the Gaussian distribution assumption can not exactly describe the actual situation, but it is useful to some extent in predicting the low-frequency stochastic resonance of the coupled weakly-damped bistable oscillator.
基金Project supported by the National Natural Science Foundation of China (Grant No 10275025)
文摘This paper investigates the phenomenon of stochastic resonance in a single-mode laser driven by quadratic pump noise and amplitude-modulated signal. A new linear approximation approach is advanced to calculate the signal-to-noise ratio. In the linear approximation only the drift term is linearized, the multiplicative noise term is unchangeable. It is found that there appears not only the standard form of stochastic resonance but also the broad sense of stochastic resonance, especially stochastic multiresonance appears in the curve of signal-to-noise ratio as a function of coupling strength A between the real and imaginary parts of the pump noise.
基金the National Natural Science Foundation of China (No. 60404011)
文摘In this paper, an adaptive estimation algorithm is proposed for non-linear dynamic systems with unknown static parameters based on combination of particle filtering and Simultaneous Perturbation Stochastic Approxi- mation (SPSA) technique. The estimations of parameters are obtained by maximum-likelihood estimation and sampling within particle filtering framework, and the SPSA is used for stochastic optimization and to approximate the gradient of the cost function. The proposed algorithm achieves combined estimation of dynamic state and static parameters of nonlinear systems. Simulation result demonstrates the feasibilitv and efficiency of the proposed algorithm
文摘Let Q be the Q-matrix of an irreducible, positive recurrent Markov process on a countable state space. We show that, under a number of conditions, the stationary distributions of the n × n north-west corner augmentations of Q converge in total variation to the stationary distribution of the process. Two conditions guaranteeing such convergence include exponential ergodicity and stochastic monotonicity of the process. The same also holds for processes dominated by a stochastically monotone Markov process. In addition, we shall show that finite perturbations of stochastically monotone processes may be viewed as being dominated by a stochastically monotone process, thus extending the scope of these results to a larger class of processes. Consequently, the augmentation method provides an attractive, intuitive method for approximating the stationary distributions of a large class of Markov processes on countably infinite state spaces from a finite amount of known information.
基金Project supported by the National Natural Science Foundation of China(Nos.11632011,11572189,and 51421092)the China Postdoctoral Science Foundation(No.2016M601585)
文摘A novel method based on time-dependent stochastic orthogonal bases for stochastic response surface approximation is proposed to overcome the problem of significant errors in the utilization of the generalized polynomial chaos(GPC) method that approximates the stochastic response by orthogonal polynomials. The accuracy and effectiveness of the method are illustrated by different numerical examples including both linear and nonlinear problems. The results indicate that the proposed method modifies the stochastic bases adaptively, and has a better approximation for the probability density function in contrast to the GPC method.
基金supported by MATH-AmSud 18-MATH-07 SaS MoTiDep ProjectHERMES project 41305+1 种基金partially supported by the Project ECOS-CONICYT C15E05,REDES 150038,MATH-AmSud 18-MATH-07 SaS MoTiDep Project and Fondecyt(1171335)supported by NSF(Grant DMS-1613163)
文摘In this note, we study a discrete time approximation for the solution of a class of delayed stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H ∈(1/2,1). In order to prove convergence, we use rough paths techniques. Theoretical bounds are established and numerical simulations are displayed.