In a global positioning system(GPS)passive radar,a high resolution requires a high sampling frequency,which increases the computational load.Balancing the computational load and the range resolution is challenging.Thi...In a global positioning system(GPS)passive radar,a high resolution requires a high sampling frequency,which increases the computational load.Balancing the computational load and the range resolution is challenging.This paper presents a method to trade off the range resolution and the computational load by experimentally determining the optimal sampling frequency through an analysis of multiple sets of GPS satellite data at different sampling frequencies.The test data are used to construct a range resolution-sampling frequency trade-off model using least-squares estimation.The theoretical analysis shows that the experimental data are the best fit using smoothing and nthorder derivative splines.Using field GPS C/A code signal-based GPS radar,the trade-off between the optimal sampling frequency is determined to be in the 20461.25–24553.5 kHz range,which supports a resolution of 43–48 m.Compared with the conventional method,the CPU time is reduced by approximately 50%.展开更多
Indoor positioning systems (IPSs) have been intended to provide position information of persons and devices. Higher user percentage of handheld devices such as tablets or mobile phones had led to the development of a ...Indoor positioning systems (IPSs) have been intended to provide position information of persons and devices. Higher user percentage of handheld devices such as tablets or mobile phones had led to the development of a number of indoor positioning systems. In this research a work on a real time portable RFID indoor positioning device such as on smartphone will be performed. The personal networks will be designed to meet the users’ needs and interconnect users’ devices equipped with different communications technologies in various places to form one network for better result. Radio frequency identification (RFID) with directional antenna has proved its potential for locating objects in indoor environment. Hence, the proposed device idea will be used to exploit various unknown locations in an indoor environment such as college campus;this interpretation will rely on Wireless LAN, Received Signal Strength values from Access Points (AP) in specific mentioned arenas;these APs will be monitored constantly by RFID with directional antenna (DA) and handheld devices. For obtaining the better results from existing devices, algorithms of Range Estimation are proposed, which can be used on various handheld devices for locating indoor objects.展开更多
针对弱信号环境下全球定位系统(global position system,GPS)信号捕获问题,提出了一种基于双块零拓展(double block zero padding,DBZP)差分相干捕获算法。该算法将快速傅里叶变换(fast Fourier transform,FFT)、DBZP、差分相干及频率...针对弱信号环境下全球定位系统(global position system,GPS)信号捕获问题,提出了一种基于双块零拓展(double block zero padding,DBZP)差分相干捕获算法。该算法将快速傅里叶变换(fast Fourier transform,FFT)、DBZP、差分相干及频率误差修正等4项技术有机结合,从而有效减小了在FFT计算过程中由大多普勒频移引起的码片速率变化而造成的相关功率损失,同时也削弱了残余多普勒频率造成的功率损失。实验表明,算法能明显提高系统捕获性能,在仿真数据集下,与直接FFT差分相干算法相比,捕获灵敏度提高了约2.8dB,并在给定的积分时间及载噪比下,捕获频率误差的标准差小于20Hz;在实验数据集下,与直接FFT差分相干算法相比,捕获结果信噪比提高了约3dB。展开更多
基金supported by the National Natural Science Foundation of China(42001297)the Research Foundation of Education Department of Hunan Province(19B061)the National Natural Science Foundation of Hunan Province(2021JJ40631)。
文摘In a global positioning system(GPS)passive radar,a high resolution requires a high sampling frequency,which increases the computational load.Balancing the computational load and the range resolution is challenging.This paper presents a method to trade off the range resolution and the computational load by experimentally determining the optimal sampling frequency through an analysis of multiple sets of GPS satellite data at different sampling frequencies.The test data are used to construct a range resolution-sampling frequency trade-off model using least-squares estimation.The theoretical analysis shows that the experimental data are the best fit using smoothing and nthorder derivative splines.Using field GPS C/A code signal-based GPS radar,the trade-off between the optimal sampling frequency is determined to be in the 20461.25–24553.5 kHz range,which supports a resolution of 43–48 m.Compared with the conventional method,the CPU time is reduced by approximately 50%.
文摘Indoor positioning systems (IPSs) have been intended to provide position information of persons and devices. Higher user percentage of handheld devices such as tablets or mobile phones had led to the development of a number of indoor positioning systems. In this research a work on a real time portable RFID indoor positioning device such as on smartphone will be performed. The personal networks will be designed to meet the users’ needs and interconnect users’ devices equipped with different communications technologies in various places to form one network for better result. Radio frequency identification (RFID) with directional antenna has proved its potential for locating objects in indoor environment. Hence, the proposed device idea will be used to exploit various unknown locations in an indoor environment such as college campus;this interpretation will rely on Wireless LAN, Received Signal Strength values from Access Points (AP) in specific mentioned arenas;these APs will be monitored constantly by RFID with directional antenna (DA) and handheld devices. For obtaining the better results from existing devices, algorithms of Range Estimation are proposed, which can be used on various handheld devices for locating indoor objects.
文摘针对弱信号环境下全球定位系统(global position system,GPS)信号捕获问题,提出了一种基于双块零拓展(double block zero padding,DBZP)差分相干捕获算法。该算法将快速傅里叶变换(fast Fourier transform,FFT)、DBZP、差分相干及频率误差修正等4项技术有机结合,从而有效减小了在FFT计算过程中由大多普勒频移引起的码片速率变化而造成的相关功率损失,同时也削弱了残余多普勒频率造成的功率损失。实验表明,算法能明显提高系统捕获性能,在仿真数据集下,与直接FFT差分相干算法相比,捕获灵敏度提高了约2.8dB,并在给定的积分时间及载噪比下,捕获频率误差的标准差小于20Hz;在实验数据集下,与直接FFT差分相干算法相比,捕获结果信噪比提高了约3dB。