期刊文献+
共找到132篇文章
< 1 2 7 >
每页显示 20 50 100
Neural Network Based Terminal Sliding Mode Control for WMRs Affected by an Augmented Ground Friction With Slippage Effect 被引量:9
1
作者 Ming Yue Linjiu Wang Teng Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期498-506,共9页
Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neura... Wheeled mobile robots(WMRs) encounter unavoidable slippage especially on the low adhesion terrain such that the robots stability and accuracy are reduced greatly.To overcome this drawback,this article presents a neural network(NN) based terminal sliding mode control(TSMC) for WMRs where an augmented ground friction model is reported by which the uncertain friction can be estimated and compensated according to the required performance.In contrast to the existing friction models,the developed augmented ground friction model corresponds to actual fact because not only the effects associated with the mobile platform velocity but also the slippage related to the wheel slip rate are concerned simultaneously.Besides,the presented control approach can combine the merits of both TSMC and radial basis function(RBF) neural networks techniques,thereby providing numerous excellent performances for the closed-loop system,such as finite time convergence and faster friction estimation property.Simulation results validate the proposed friction model and robustness of controller;these research results will improve the autonomy and intelligence of WMRs,particularly when the mobile platform suffers from the sophisticated unstructured environment. 展开更多
关键词 Ground friction radial basis function(RBF) neural network(NN) slippage effect terminal sliding mode control(TSMC) wheeled mobile robot(WMR)
在线阅读 下载PDF
Neural-Network-Based Terminal Sliding Mode Control for Frequency Stabilization of Renewable Power Systems 被引量:6
2
作者 Dianwei Qian Guoliang Fan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第3期706-717,共12页
This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turb... This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turbines is taken into account for simulation studies. The terminal sliding mode controllers are assigned in each area to achieve the LFC goal. The increasing complexity of the nonlinear power system aggravates the effects of system uncertainties. Radial basis function neural networks(RBF NNs) are designed to approximate the entire uncertainties. The terminal sliding mode controllers and the RBF NNs work in parallel to solve the LFC problem for the renewable power system. Some simulation results illustrate the feasibility and validity of the presented scheme. 展开更多
关键词 Generation rate constraint(GRC) load frequency control(LFC) radial basis function neural networks(RBF NNs) renewable power system terminal sliding mode control(T-SMC)
在线阅读 下载PDF
Modeling and Robust Backstepping Sliding Mode Control with Adaptive RBFNN for a Novel Coaxial Eight-rotor UAV 被引量:13
3
作者 Cheng Peng Yue Bai +3 位作者 Xun Gong Qingjia Gao Changjun Zhao Yantao Tian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期56-64,共9页
This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles (UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV.... This paper focuses on the robust attitude control of a novel coaxial eight-rotor unmanned aerial vehicles (UAV) which has higher drive capability as well as greater robustness against disturbances than quad-rotor UAV. The dynamical and kinematical model for the coaxial eight-rotor UAV is developed, which has never been proposed before. A robust backstepping sliding mode controller (BSMC) with adaptive radial basis function neural network (RBFNN) is proposed to control the attitude of the eightrotor UAV in the presence of model uncertainties and external disturbances. The combinative method of backstepping control and sliding mode control has improved robustness and simplified design procedure benefiting from the advantages of both controllers. The adaptive RBFNN as the uncertainty observer can effectively estimate the lumped uncertainties without the knowledge of their bounds for the eight-rotor UAV. Additionally, the adaptive learning algorithm, which can learn the parameters of RBFNN online and compensate the approximation error, is derived using Lyapunov stability theorem. And then the uniformly ultimate stability of the eight-rotor system is proved. Finally, simulation results demonstrate the validity of the proposed robust control method adopted in the novel coaxial eight-rotor UAV in the case of model uncertainties and external disturbances. © 2014 Chinese Association of Automation. 展开更多
关键词 Adaptive control systems Aircraft control Approximation algorithms Attitude control BACKSTEPPING controllers functions Learning algorithms radial basis function networks Robust control Robustness (control systems) sliding mode control Uncertainty analysis
在线阅读 下载PDF
Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design 被引量:31
4
作者 Jingmei Zhang Changyin Sun +1 位作者 Ruimin Zhang Chengshan Qian 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期94-101,共8页
Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near... Combining sliding mode control method with radial basis function neural network (RBFNN), this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking control of near space hypersonic vehicle (NSHV) in the presence of parameter variations and external disturbances. In the attitude angle loop, a robust adaptive virtual control law is designed by using the adaptive method to estimate the unknown upper bound of the compound uncertainties. In the angular velocity loop, an adaptive sliding mode control law is designed to suppress the effect of parameter variations and external disturbances. The main benefit of the sliding mode control is robustness to parameter variations and external disturbances. To further improve the control performance, RBFNNs are introduced to approximate the compound uncertainties in the attitude angle loop and angular velocity loop, respectively. Based on Lyapunov stability theory, the tracking errors are shown to be asymptotically stable. Simulation results show that the proposed control system attains a satisfied control performance and is robust against parameter variations and external disturbances. © 2014 Chinese Association of Automation. 展开更多
关键词 AIRSHIPS Angular velocity Attitude control BACKSTEPPING control theory Design functions Hypersonic aerodynamics Hypersonic vehicles Navigation radial basis function networks sliding mode control Uncertainty analysis Vehicles
在线阅读 下载PDF
A New Robust Adaptive Neural Network Backstepping Control for Single Machine Infinite Power System With TCSC 被引量:4
5
作者 Yanhong Luo Shengnan Zhao +1 位作者 Dongsheng Yang Huaguang Zhang 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期48-56,共9页
For a single machine infinite power system with thyristor controlled series compensation(TCSC) device, which is affected by system model uncertainties, nonlinear time-delays and external unknown disturbances, we prese... For a single machine infinite power system with thyristor controlled series compensation(TCSC) device, which is affected by system model uncertainties, nonlinear time-delays and external unknown disturbances, we present a robust adaptive backstepping control scheme based on the radial basis function neural network(RBFNN). The RBFNN is introduced to approximate the complex nonlinear function involving uncertainties and external unknown disturbances, and meanwhile a new robust term is constructed to further estimate the system residual error,which removes the requirement of knowing the upper bound of the disturbances and uncertainty terms. The stability analysis of the power system is presented based on the Lyapunov function,which can guarantee the uniform ultimate boundedness(UUB) of all parameters and states of the whole closed-loop system. A comparison is made between the RBFNN-based robust adaptive control and the general backstepping control in the simulation part to verify the effectiveness of the proposed control scheme. 展开更多
关键词 Backstepping control radial basis function neural network(rbfnn) robust adaptive control thyristor controlled series compensation(TCSC) uniform ultimate boundedness(UUB)
在线阅读 下载PDF
Sensor Fault Diagnosis for a Class of Time Delay Uncertain Nonlinear Systems Using Neural Network 被引量:4
6
作者 Mou Chen Chang-Sheng Jiang Qing-Xian Wu 《International Journal of Automation and computing》 EI 2008年第4期401-405,共5页
In this paper,a sliding mode observer scheme of sensor fault diagnosis is proposed for a class of time delay nonlinear systems with input uncertainty based on neural network.The sensor fault and the system input uncer... In this paper,a sliding mode observer scheme of sensor fault diagnosis is proposed for a class of time delay nonlinear systems with input uncertainty based on neural network.The sensor fault and the system input uncertainty are assumed to be unknown but bounded.The radial basis function (RBF) neural network is used to approximate the sensor fault.Based on the output of the RBF neural network,the sliding mode observer is presented.Using the Lyapunov method,a criterion for stability is given in terms of matrix inequality.Finally,an example is given for illustrating the availability of the fault diagnosis based on the proposed sliding mode observer. 展开更多
关键词 Uncertain nonlinear system time delay radial basis function (RBF) neural network sliding mode observer fault diag-nosis.
在线阅读 下载PDF
Two-layer networked learning control using self-learning fuzzy control algorithms 被引量:3
7
作者 Du Dajun Fei Minrui +1 位作者 Hu Huosheng Li Lixiong 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第12期2124-2131,共8页
Since the existing single-layer networked control systems have some inherent limitations and cannot effectively handle the problems associated with unreliable networks, a novel two-layer networked learning control sys... Since the existing single-layer networked control systems have some inherent limitations and cannot effectively handle the problems associated with unreliable networks, a novel two-layer networked learning control system (NLCS) is proposed in this paper. Its lower layer has a number of local controllers that are operated independently, and its upper layer has a learning agent that communicates with the independent local controllers in the lower layer. To implement such a system, a packet-discard strategy is firstly developed to deal with network-induced delay and data packet loss. A cubic spline interpolator is then employed to compensate the lost data. Finally, the output of the learning agent based on a novel radial basis function neural network (RBFNN) is used to update the parameters of fuzzy controllers. A nonlinear heating, ventilation and air-conditioning (HVAC) system is used to demonstrate the feasibility and effectiveness of the proposed system. 展开更多
关键词 自学习模糊控制算法 双层网络学习控制系统 径向基函数神经网络 三次样条校对机
在线阅读 下载PDF
Modeling and robust adaptive control for a coaxial twelve-rotor UAV
8
作者 Pei Xinbiao Peng Cheng +2 位作者 Bai Yue Wu Helong Ma Ping 《High Technology Letters》 EI CAS 2019年第2期137-143,共7页
Compared with the quad-rotor unmanned aerial vehicle (UAV), the coaxial twelve-rotor UAV has stronger load carrying capacity, higher driving ability and stronger damage resistance. This paper focuses on its robust ada... Compared with the quad-rotor unmanned aerial vehicle (UAV), the coaxial twelve-rotor UAV has stronger load carrying capacity, higher driving ability and stronger damage resistance. This paper focuses on its robust adaptive control. First, a mathematical model of a coaxial twelve-rotor is established. Aiming at the problem of model uncertainty and external disturbance of the coaxial twelve-rotor UAV, the attitude controller is innovatively adopted with the combination of a backstepping sliding mode controller (BSMC) and an adaptive radial basis function neural network (RBFNN). The BSMC combines the advantages of backstepping control and sliding mode control, which has a simple design process and strong robustness. The RBFNN as an uncertain observer, can effectively estimate the total uncertainty. Then the stability of the twelve-rotor UAV control system is proved by Lyapunov stability theorem. Finally, it is proved that the robust adaptive control strategy presented in this paper can overcome model uncertainty and external disturbance effectively through numerical simulation and prototype of twelve-rotor UAV tests. 展开更多
关键词 coaxial twelve-rotor unmanned aerial vehicle(UAV) backstepping sliding mode controller(BSMC) adaptive radial basis function neural network(rbfnn) external disturbances
在线阅读 下载PDF
重载列车运行过程的建模与RBFNN滑模控制
9
作者 李中奇 曾祥泉 余剑烽 《华东交通大学学报》 2024年第5期94-104,共11页
【目的】为解决重载列车在复杂线路条件下难以实现高精度轨迹跟踪控制的问题,提出了一种重载列车多质点模型和径向基函数神经网络滑模控制(RBFNNSMC)方法。【方法】首先,考虑空气制动和钩缓装置约束,建立重载列车多质点模型,并对人为测... 【目的】为解决重载列车在复杂线路条件下难以实现高精度轨迹跟踪控制的问题,提出了一种重载列车多质点模型和径向基函数神经网络滑模控制(RBFNNSMC)方法。【方法】首先,考虑空气制动和钩缓装置约束,建立重载列车多质点模型,并对人为测量误差和车辆参数差异等导致的模型不确定性问题,利用RBFNN对其进行估计。其次,设计一种非线性干扰观测器(NDO)对列车运行中受强风、雨雪等外界快时变干扰进行实时估计。然后,设计Lyapunov函数对整个系统进行稳定性证明。【结果】基于大秦线的实际线路数据,进行RBFNNSMC方法、PID方法和SMC方法的速度跟踪对比实验。仿真结果表明,RBFNNSMC方法的速度误差在±0.15 km/h以内,优于其他两种方法。加入NDO后,RBFNNSMC方法的抗干扰能力也更强。【结论】基于NDO的RBFNNSMC方法的跟踪精度相较于SMC方法在无干扰和受干扰情况下分别提升27.3%和28.9%,鲁棒性有所提升。 展开更多
关键词 重载列车 多质点模型 空气制动 滑模控制 径向基函数神经网络 非线性干扰观测器
在线阅读 下载PDF
港口重载AGV转向稳定性容错控制策略
10
作者 刘璇 刘玉卿 +2 位作者 王子航 张明路 张建华 《计算机集成制造系统》 北大核心 2025年第1期47-55,共9页
针对四轮独立驱动与转向(4WID-4WIS)型港口重载自动导引车(AGV)常见的驱动电机失效情况,提出了三层控制结构的容错控制策略来进行转向稳定性容错控制。上层控制模块设计为模型预测控制器(MPC)与PI车速跟随控制器,实现港口AGV的路径跟踪... 针对四轮独立驱动与转向(4WID-4WIS)型港口重载自动导引车(AGV)常见的驱动电机失效情况,提出了三层控制结构的容错控制策略来进行转向稳定性容错控制。上层控制模块设计为模型预测控制器(MPC)与PI车速跟随控制器,实现港口AGV的路径跟踪;中层控制模块设计为横摆角速度、质心侧偏角RBF神经网络鲁棒滑模控制器,用来计算出最佳附加横摆力矩;下层控制模块设计为失效分配策略,对力矩进行重新分配。最后,搭建了CarMaker测试平台,通过实验验证了容错控制策略的有效性与优越性。 展开更多
关键词 港口重载AGV 模型预测控制器 PI车速跟随控制器 RBF神经网络 滑模控制 失效分配
在线阅读 下载PDF
柔性空间机器人预定义时间自适应滑模控制
11
作者 刘宜成 杨迦凌 +1 位作者 唐瑞 程靖 《浙江大学学报(工学版)》 北大核心 2025年第2期351-361,共11页
针对具有典型非线性特性的多段线驱动柔性空间机器人的轨迹跟踪控制问题,提出基于预定义时间的自适应滑模控制方法.基于常曲率方法和拉格朗日法,建立多段线驱动柔性空间机器人的动力学模型.设计基于预定义时间理论的滑模控制器,利用径... 针对具有典型非线性特性的多段线驱动柔性空间机器人的轨迹跟踪控制问题,提出基于预定义时间的自适应滑模控制方法.基于常曲率方法和拉格朗日法,建立多段线驱动柔性空间机器人的动力学模型.设计基于预定义时间理论的滑模控制器,利用径向基函数(RBF)神经网络补偿多段线驱动柔性空间机器人系统的建模误差和外界干扰.利用Lyapunov理论,证明轨迹跟踪误差可以在预定义时间内收敛.通过数值仿真验证了模型和控制器的有效性,与固定时间控制器和无补偿的控制器相比,所提出的控制器使系统轨迹误差具有更快的收敛速度. 展开更多
关键词 柔性空间机器人 预定义时间稳定性 径向基函数神经网络 轨迹跟踪 滑模控制
在线阅读 下载PDF
An Efficient Adaptive Hierarchical Sliding Mode Control Strategy Using Neural Networks for 3D Overhead Cranes 被引量:5
12
作者 Viet-Anh Le Hai-Xuan Le +1 位作者 Linh Nguyen Minh-Xuan Phan 《International Journal of Automation and computing》 EI CSCD 2019年第5期614-627,共14页
In this paper, a new adaptive hierarchical sliding mode control scheme for a 3D overhead crane system is proposed. A controller is first designed by the use of a hierarchical structure of two first-order sliding surfa... In this paper, a new adaptive hierarchical sliding mode control scheme for a 3D overhead crane system is proposed. A controller is first designed by the use of a hierarchical structure of two first-order sliding surfaces represented by two actuated and un-actuated subsystems in the bridge crane. Parameters of the controller are then intelligently estimated, where uncertain parameters due to disturbances in the 3D overhead crane dynamic model are proposed to be represented by radial basis function networks whose weights are derived from a Lyapunov function. The proposed approach allows the crane system to be robust under uncertainty conditions in which some uncertain and unknown parameters are highly difficult to determine. Moreover, stability of the sliding surfaces is proved to be guaranteed. Effectiveness of the proposed approach is then demonstrated by implementing the algorithm in both synthetic and reallife systems, where the results obtained by our method are highly promising. 展开更多
关键词 3D OVERHEAD CRANE ADAPTIVE control HIERARCHICAL sliding mode control neural network radial basis function
原文传递
基于RBF反步滑模的多柔性梁耦合系统振动控制
13
作者 邱志成 杨阳 《振动.测试与诊断》 北大核心 2025年第1期110-115,203,共7页
针对多柔性梁耦合系统的振动特性以及主动控制问题,设计并建立了实验平台。为了得到准确的模型,提出了一种基于小波变换和灰狼寻优算法的实验辨识方法,对有限元模型进行修正。为实现振动快速抑制,设计了基于最小参数学习法的径向基网络... 针对多柔性梁耦合系统的振动特性以及主动控制问题,设计并建立了实验平台。为了得到准确的模型,提出了一种基于小波变换和灰狼寻优算法的实验辨识方法,对有限元模型进行修正。为实现振动快速抑制,设计了基于最小参数学习法的径向基网络反步滑模控制(radial basis function network backstepping slide mode control,简称RBF-BSSMC)算法。实验结果表明,相比于比例微分(proportional-derivative,简称PD)控制,RBF-BSSMC算法可以实现快速振动抑制,特别是小幅值振动。 展开更多
关键词 多柔性梁耦合系统 主动振动控制 径向基网络 反步滑模控制
在线阅读 下载PDF
Design and Application of Discrete Sliding Mode Control with RBF Network-based Switching Law 被引量:6
14
作者 牛建军 付永领 祁晓野 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第3期279-284,共6页
This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking... This article proposes a novel approach combining exponential-reaching-law-based equivalent control law with radial basis function (RBF) network-based switching law to strengthen the sliding mode control (SMC) tracking capacity for systems with uncertainties and disturbances. First, SMC discrete equivalent control law is designed on the basis of the nominal model of the system and the adaptive exponential reaching law, and subsequently, stability of the algorithm is analyzed. Second, RBF network is used to f... 展开更多
关键词 sliding mode control switching law design radial basis function networks flight simulators extra-low speed servo
原文传递
基于超级基神经网络的自适应反演非奇异滑模纱线恒张力控制
15
作者 王罗俊 彭来湖 +2 位作者 熊叙一 李杨 胡旭东 《纺织学报》 北大核心 2025年第2期92-99,共8页
为解决针织圆机高速工作时纱线张力波动较大问题,提出了一种基于超级基(HBF)神经网络区间观测器的反演非奇异滑模纱线恒张力控制方法。通过构建运动纱线系统的数学模型,运用神经网络逼近系统参数(输纱器与编织机构转动惯量)变动所导致... 为解决针织圆机高速工作时纱线张力波动较大问题,提出了一种基于超级基(HBF)神经网络区间观测器的反演非奇异滑模纱线恒张力控制方法。通过构建运动纱线系统的数学模型,运用神经网络逼近系统参数(输纱器与编织机构转动惯量)变动所导致的不确定性响应,将HBF神经网络与区间观测器相结合设计了一个区间状态观测器,估算出系统转速及纱线张力的边界范围,提高了状态识别的准确性。基于纱线张力估算值,构建反演非奇异终极滑模控制器,确保了张力跟踪误差能够在短时间内迅速收敛,从而增强了系统的鲁棒性与动态响应能力。仿真和实验结果表明:所提控制方法成功地使运动纱线张力在1.6 s内达到并维持在预设值,调节时间相较于标准滑模控制及现有文献中的滑模控制器分别缩短了57%和33%,验证了该控制算法的高效性与可靠性。 展开更多
关键词 纱线张力 超级基神经网络 状态观测器 张力误差 滑模控制器 针织圆机
在线阅读 下载PDF
基于自适应与神经网络滑模的航空器主动控制
16
作者 贾格非 陈荣杰 +1 位作者 钟福明 刘锡烨 《航空计算技术》 2025年第2期77-82,共6页
聚焦于应用压电驱动器实现对夹紧矩形膜结构的大幅非线性振动的主动控制。基于膜结构非线性动力学模型,采用自适应控制策略和引入滑模控制器与径向基函数神经网络的结合,通过Matlab数值仿真验证了控制方法的有效性。研究结果表明,自适... 聚焦于应用压电驱动器实现对夹紧矩形膜结构的大幅非线性振动的主动控制。基于膜结构非线性动力学模型,采用自适应控制策略和引入滑模控制器与径向基函数神经网络的结合,通过Matlab数值仿真验证了控制方法的有效性。研究结果表明,自适应控制和变结构神经网络控制成功抑制了膜结构振动,在面对不同激励条件下均能快速趋近参考模型的动态响应。并引入卡尔曼观测器有效抑制了测量噪声,降低了控制成本。为航空航天领域中薄膜结构振动控制提供了可靠的解决途径。 展开更多
关键词 大振幅振动 滑模控制 自适应控制 径向基函数神经网络 卡尔曼观测器
在线阅读 下载PDF
一种基于RBFNN的变体飞机高精度自适应反步控制方法 被引量:2
17
作者 谯富祥 史静平 +2 位作者 章卫国 吕永玺 屈晓波 《西北工业大学学报》 EI CAS CSCD 北大核心 2020年第3期540-549,共10页
针对变体飞机非线性模型的不确定性问题,提出了一种基于径向基神经网络(radial basis function neural networks,RBFNN)的高精度自适应反步控制方法。首先,在变体飞机静态和动态气动参数分析的基础上,运用传统反步法设计了非线性控制律... 针对变体飞机非线性模型的不确定性问题,提出了一种基于径向基神经网络(radial basis function neural networks,RBFNN)的高精度自适应反步控制方法。首先,在变体飞机静态和动态气动参数分析的基础上,运用传统反步法设计了非线性控制律,并引入径向基神经网络在线逼近系统的不确定项,提高系统鲁棒性;并设计鲁棒项消除径向基神经网络带来的逼近误差。其次,通过对虚拟控制变量进行求导项设计微分跟踪器,解决了传统反步法中存在的“微分膨胀”问题。通过Lyapunov稳定性分析,证明该方法能保证闭环系统跟踪误差最终收敛且一致有界。最后,基于Matlab/Simulink搭建了变体飞机的数字仿真模型,并与常规反步法进行了对比分析,仿真结果表明该方法具有控制精度高、鲁棒性强的特点。 展开更多
关键词 变体飞机 反步法 径向基网络 自适应控制
在线阅读 下载PDF
基于改进EMD和RBFNN的短期风速预测模型 被引量:5
18
作者 尹子中 陈众 +3 位作者 黄健 俞晓鹏 邱强杰 文亮 《广东电力》 2016年第4期34-38,44,共6页
为提高短期风速预测精度,提出改进经验模态分解法(empirical mode decomposition,EMD)与径向基函数神经网络(radial basis function neural network,RBFNN)相结合的短期风速预测模型。首先,利用极值点对称延拓法对预处理过的风速序列进... 为提高短期风速预测精度,提出改进经验模态分解法(empirical mode decomposition,EMD)与径向基函数神经网络(radial basis function neural network,RBFNN)相结合的短期风速预测模型。首先,利用极值点对称延拓法对预处理过的风速序列进行处理,以抑制传统EMD在分解过程中所引起的边缘效应,并引用分段三次埃米特插值法解决传统EMD包络线的过冲或欠冲问题;然后,利用改进EMD将风速序列分解成各本征模态(intrinsic mode function,IMF)分量,再针对各分量分别构建各自的RBFNN模型进行预测;最后,将各分量的预测结果进行重构、叠加,得到最终的原始风速预测值。实验结果表明,改进的EMD-RBFNN预测模型能有效地提高风速预测精度,并具有一定的应用价值。 展开更多
关键词 风速预测 改进经验模态分解法 径向基函数神经网络
在线阅读 下载PDF
基于RBFNN分段在线优化的VSR无源控制 被引量:2
19
作者 高维士 严运兵 +2 位作者 马强 朱博文 王晓东 《高技术通讯》 EI CAS 北大核心 2020年第11期1178-1188,共11页
针对传统L型滤波器电压型脉冲宽度调制(PWM)整流器存在的入网电流波形总畸变率过高、稳定性差及控制精度低等问题,提出了基于径向基函数神经网络(RBFNN)分段在线优化的LCL型滤波器电压型PWM整流器无源控制策略,设计了LCL滤波电压型PWM... 针对传统L型滤波器电压型脉冲宽度调制(PWM)整流器存在的入网电流波形总畸变率过高、稳定性差及控制精度低等问题,提出了基于径向基函数神经网络(RBFNN)分段在线优化的LCL型滤波器电压型PWM整流器无源控制策略,设计了LCL滤波电压型PWM整流器的内环无源控制器,和基于RBFNN的外环PID控制器。用粒子群优化算法(PSO)对初始注入阻尼及不同负载下的RBFNN学习率、动量因子及饱和函数的饱和值等参数进行离线优化,以负载电阻值作为RBFNN分段优化触发条件,根据负载变化使用PSO离线优化值对RBF-PID参数进行分段在线优化,实现最优动态调整。 展开更多
关键词 径向基函数神经网络(rbfnn) 粒子群优化算法(PSO) 无源控制(PBC) LCL型滤波器 整流器
在线阅读 下载PDF
基于RBFNN的桥式起重机AHSMC控制策略 被引量:5
20
作者 覃羡烘 《控制工程》 CSCD 北大核心 2022年第9期1679-1687,共9页
针对欠驱动三维桥式起重机控制策略难以在微控制器资源受限的条件下进行验证,以及传统分层滑模控制策略难以在不确定性条件下进行准确控制的问题,提出了基于径向基神经网络的三维桥式起重机自适应分层滑模控制策略。首先,基于分层滑模... 针对欠驱动三维桥式起重机控制策略难以在微控制器资源受限的条件下进行验证,以及传统分层滑模控制策略难以在不确定性条件下进行准确控制的问题,提出了基于径向基神经网络的三维桥式起重机自适应分层滑模控制策略。首先,基于分层滑模控制方法构建起重机全驱动和欠驱动子系统的一阶滑模面;然后,将一阶滑模面进行线性组合,形成第二阶滑模面;进一步,利用径向基函数神经网络对控制参数进行自适应估计并更新滑模面,提高不确定性条件下控制策略的鲁棒性。最后,通过仿真分析和物理实验验证了所提自适应分层滑模控制策略的有效性。 展开更多
关键词 桥式起重机 自适应分层滑模控制 神经网络 径向基函数
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部