In real industrial scenarios, equipment cannot be operated in a faulty state for a long time, resulting in a very limited number of available fault samples, and the method of data augmentation using generative adversa...In real industrial scenarios, equipment cannot be operated in a faulty state for a long time, resulting in a very limited number of available fault samples, and the method of data augmentation using generative adversarial networks for smallsample data has achieved a wide range of applications. However, the current generative adversarial networks applied in industrial processes do not impose realistic physical constraints on the generation of data, resulting in the generation of data that do not have realistic physical consistency. To address this problem, this paper proposes a physical consistency-based WGAN, designs a loss function containing physical constraints for industrial processes, and validates the effectiveness of the method using a common dataset in the field of industrial process fault diagnosis. The experimental results show that the proposed method not only makes the generated data consistent with the physical constraints of the industrial process, but also has better fault diagnosis performance than the existing GAN-based methods.展开更多
Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input...Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input of RBFNN and mine the rules. The mined rules whose “confidence” and “support” is higher than requirement are used to offer fault diagnosis service for power transformer directly. On the other hand the mining samples corresponding to the mined rule, whose “confidence and support” is lower than requirement, are used to be training samples set of RBFNN and these samples are clustered by rough set. The center of each clustering set is used to be center of radial basis function, i.e., as the hidden layer neuron. The RBFNN is structured with above base, which is used to diagnose the case that can not be diagnosed by mined simplified valuable rules based on rough set. The advantages and effectiveness of this method are verified by testing.展开更多
In this paper, a robust sensor fault diagnosis observer with non-singular structure is proposed for a class of linear sampled-data descriptor system with state time-vary delay. Firstly, a sampled-data descriptor model...In this paper, a robust sensor fault diagnosis observer with non-singular structure is proposed for a class of linear sampled-data descriptor system with state time-vary delay. Firstly, a sampled-data descriptor model with time-vary delay is proposed and transformed into a discrete-time non-singular one. Then, a robust sensor fault diagnosis observer is proposed based on the state estimation error and the measurement residual, this observer can guarantee the robustness of the residual against the augmented disturbance and the sensor fault, which means the H∞ performance index is satisfied. As the confining matrix of the designed observer parameters does not meet the Linear Matrix Inequality (LMI), a cone complementary linearization (CCL) algorithm is proposed to solve this problem. The decision logic of the residual is obtained by the residual evaluation function. Simulation results show the effectiveness of the method.展开更多
There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fa...There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fault diagnosis for a rotary machine based on information entropy theory and rough set theory is presented in this paper. The model has clear mathematical definition and can dispose both complete unification information and complete inconsistent information of vibration faults. By using the model, decision rules of six typical vibration faults of a steam turbine and electric generating set are deduced from experiment samples. Finally, the decision rules are validated by selected samples and good identification results are acquired.展开更多
Fault diagnosis of 5G networks faces the challenges of heavy reliance on human experience and insufficient fault samples and relevant monitoring data.The digital twin technology can realize the interaction between vir...Fault diagnosis of 5G networks faces the challenges of heavy reliance on human experience and insufficient fault samples and relevant monitoring data.The digital twin technology can realize the interaction between virtual space and physical space through the fusion of model and data,providing a new paradigm for fault diagnosis.In this paper,we first propose a network digital twin model and apply it to 5G network diagnosis.We then use an improved Average Wasserstein GAN with Gradient Penalty(AWGAN-GP)method to discover and predict failures in the twin network.Finally,we use XGBoost algorithm to locate the faults in physical network in real time.Extensive simulation results show that the proposed approach can significantly increase fault prediction and diagnosis accuracy in the case of a small number of labeled failure samples in 5G networks.展开更多
Effective fault diagnosis has a crucial impact on the safety and cost of complex manufacturing systems.However,the complex structure of the collected multisource data and scarcity of fault samples make it difficult to...Effective fault diagnosis has a crucial impact on the safety and cost of complex manufacturing systems.However,the complex structure of the collected multisource data and scarcity of fault samples make it difficult to accurately identify multiple fault conditions.To address this challenge,this paper proposes a novel deep-learning model for multisource data augmentation and small sample fault diagnosis.The raw multisource data are first converted into two-dimensional images using the Gramian Angular Field,and a generator is built to transform random noise into images through transposed convolution operations.Then,two discriminators are constructed to evaluate the authenticity of input images and the fault diagnosis ability.The Vision Transformer network is built to diagnose faults and obtain the classification error for the discriminator.Furthermore,a global optimization strategy is designed to upgrade parameters in the model.The discriminators and generator compete with each other until Nash equilibrium is achieved.A real-world multistep forging machine is adopted to compare and validate the performance of different methods.The experimental results indicate that the proposed method has multisource data augmentation and minority sample fault diagnosis capabilities.Compared with other state-of-the-art models,the proposed approach has better fault diagnosis accuracy in various scenarios.展开更多
In data-driven fault diagnosis for turbo-generator sets,the fault samples are usually expensive to obtain,and inevitably with noise,which will both lead to an unsatisfying identification performance of diagnosis model...In data-driven fault diagnosis for turbo-generator sets,the fault samples are usually expensive to obtain,and inevitably with noise,which will both lead to an unsatisfying identification performance of diagnosis models.To address these issues,this paper proposes a fault diagnosis model for turbo-generator sets based on Weighted Extension Neural Network(W-ENN).WENN is a novel neural network which has three types of connection weights and an improved correlation function.The performance of the proposed model is validated against Extension Neural Network(ENN),Support Vector Machine(SVM),Relevance Vector Machine(RVM)and Extreme Learning Machine(ELM)based models.The results indicate that,on noisy small sample sets,the proposed model is superior to the other models in terms of higher identification accuracy with fewer samples and strong noise-tolerant ability.The findings of this study may serve as a powerful fault diagnosis model for turbo-generator sets on noisy small sample sets.展开更多
文摘In real industrial scenarios, equipment cannot be operated in a faulty state for a long time, resulting in a very limited number of available fault samples, and the method of data augmentation using generative adversarial networks for smallsample data has achieved a wide range of applications. However, the current generative adversarial networks applied in industrial processes do not impose realistic physical constraints on the generation of data, resulting in the generation of data that do not have realistic physical consistency. To address this problem, this paper proposes a physical consistency-based WGAN, designs a loss function containing physical constraints for industrial processes, and validates the effectiveness of the method using a common dataset in the field of industrial process fault diagnosis. The experimental results show that the proposed method not only makes the generated data consistent with the physical constraints of the industrial process, but also has better fault diagnosis performance than the existing GAN-based methods.
基金the National Natural Science Foundation of China (Grant No. 50128706).
文摘Rough set (RS) and radial basis function neural network (RBFNN) based insulation data mining fault diagnosis for power transformer is proposed. On the one hand rough set is used as front of RBFNN to simplify the input of RBFNN and mine the rules. The mined rules whose “confidence” and “support” is higher than requirement are used to offer fault diagnosis service for power transformer directly. On the other hand the mining samples corresponding to the mined rule, whose “confidence and support” is lower than requirement, are used to be training samples set of RBFNN and these samples are clustered by rough set. The center of each clustering set is used to be center of radial basis function, i.e., as the hidden layer neuron. The RBFNN is structured with above base, which is used to diagnose the case that can not be diagnosed by mined simplified valuable rules based on rough set. The advantages and effectiveness of this method are verified by testing.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61021002)
文摘In this paper, a robust sensor fault diagnosis observer with non-singular structure is proposed for a class of linear sampled-data descriptor system with state time-vary delay. Firstly, a sampled-data descriptor model with time-vary delay is proposed and transformed into a discrete-time non-singular one. Then, a robust sensor fault diagnosis observer is proposed based on the state estimation error and the measurement residual, this observer can guarantee the robustness of the residual against the augmented disturbance and the sensor fault, which means the H∞ performance index is satisfied. As the confining matrix of the designed observer parameters does not meet the Linear Matrix Inequality (LMI), a cone complementary linearization (CCL) algorithm is proposed to solve this problem. The decision logic of the residual is obtained by the residual evaluation function. Simulation results show the effectiveness of the method.
基金The paper is supported by the 863 Program of China under Grant No 2006AA04A110
文摘There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fault diagnosis for a rotary machine based on information entropy theory and rough set theory is presented in this paper. The model has clear mathematical definition and can dispose both complete unification information and complete inconsistent information of vibration faults. By using the model, decision rules of six typical vibration faults of a steam turbine and electric generating set are deduced from experiment samples. Finally, the decision rules are validated by selected samples and good identification results are acquired.
基金supported by Natural Science Foundation of China(61871237,92067101)Program to Cultivate Middle-aged and Young Science Leaders of Universities of Jiangsu Province+1 种基金Key R&D plan of Jiangsu Province(BE2021013-3)。
文摘Fault diagnosis of 5G networks faces the challenges of heavy reliance on human experience and insufficient fault samples and relevant monitoring data.The digital twin technology can realize the interaction between virtual space and physical space through the fusion of model and data,providing a new paradigm for fault diagnosis.In this paper,we first propose a network digital twin model and apply it to 5G network diagnosis.We then use an improved Average Wasserstein GAN with Gradient Penalty(AWGAN-GP)method to discover and predict failures in the twin network.Finally,we use XGBoost algorithm to locate the faults in physical network in real time.Extensive simulation results show that the proposed approach can significantly increase fault prediction and diagnosis accuracy in the case of a small number of labeled failure samples in 5G networks.
基金supported by“the Fundamental Research Funds for the Central Universities,”Grant/Award Number 30923011008.
文摘Effective fault diagnosis has a crucial impact on the safety and cost of complex manufacturing systems.However,the complex structure of the collected multisource data and scarcity of fault samples make it difficult to accurately identify multiple fault conditions.To address this challenge,this paper proposes a novel deep-learning model for multisource data augmentation and small sample fault diagnosis.The raw multisource data are first converted into two-dimensional images using the Gramian Angular Field,and a generator is built to transform random noise into images through transposed convolution operations.Then,two discriminators are constructed to evaluate the authenticity of input images and the fault diagnosis ability.The Vision Transformer network is built to diagnose faults and obtain the classification error for the discriminator.Furthermore,a global optimization strategy is designed to upgrade parameters in the model.The discriminators and generator compete with each other until Nash equilibrium is achieved.A real-world multistep forging machine is adopted to compare and validate the performance of different methods.The experimental results indicate that the proposed method has multisource data augmentation and minority sample fault diagnosis capabilities.Compared with other state-of-the-art models,the proposed approach has better fault diagnosis accuracy in various scenarios.
基金the National Natural Science Foundation of China(No.51775272,No.51005114)The Fundamental Research Funds for the Central Universities,China(No.NS2014050)。
文摘In data-driven fault diagnosis for turbo-generator sets,the fault samples are usually expensive to obtain,and inevitably with noise,which will both lead to an unsatisfying identification performance of diagnosis models.To address these issues,this paper proposes a fault diagnosis model for turbo-generator sets based on Weighted Extension Neural Network(W-ENN).WENN is a novel neural network which has three types of connection weights and an improved correlation function.The performance of the proposed model is validated against Extension Neural Network(ENN),Support Vector Machine(SVM),Relevance Vector Machine(RVM)and Extreme Learning Machine(ELM)based models.The results indicate that,on noisy small sample sets,the proposed model is superior to the other models in terms of higher identification accuracy with fewer samples and strong noise-tolerant ability.The findings of this study may serve as a powerful fault diagnosis model for turbo-generator sets on noisy small sample sets.