Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commo...Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures.展开更多
In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clu...In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay.展开更多
Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caus...Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caused by node loads,which affects network performance.Methods To improve the overall performance and efficiency of wireless sensor networks,a new method for optimizing the wireless sensor network topology based on K-means clustering and firefly algorithms is proposed.The K-means clustering algorithm partitions nodes by minimizing the within-cluster variance,while the firefly algorithm is an optimization algorithm based on swarm intelligence that simulates the flashing interaction between fireflies to guide the search process.The proposed method first introduces the K-means clustering algorithm to cluster nodes and then introduces a firefly algorithm to dynamically adjust the nodes.Results The results showed that the average clustering accuracies in the Wine and Iris data sets were 86.59%and 94.55%,respectively,demonstrating good clustering performance.When calculating the node mortality rate and network load balancing standard deviation,the proposed algorithm showed dead nodes at approximately 50 iterations,with an average load balancing standard deviation of 1.7×10^(4),proving its contribution to extending the network lifespan.Conclusions This demonstrates the superiority of the proposed algorithm in significantly improving the energy efficiency and load balancing of wireless sensor networks to extend the network lifespan.The research results indicate that wireless sensor networks have theoretical and practical significance in fields such as monitoring,healthcare,and agriculture.展开更多
Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic ...Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained.展开更多
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu...Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use.展开更多
In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in ...In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in each phase of the localization process and fully use the detective information in the network to improve the positioning precision and robustness.In the ranging period,the power attenuation factor is obtained through the wireless channel modeling,and the RSSI value is transformed into distance.In the positioning period,the preferred reference nodes are used to calculate coordinates.In the position optimization period,Taylor expansion and least-squared iterative update algorithms are used to further improve the location precision.In the positioning,the notion of cooperative localization is introduced,in which the located node satisfying certain demands will be upgraded to a reference node so that it can participate in the positioning of other nodes,and improve the coverage and positioning precision.The results show that on the same network conditions,the proposed algorithm in this paper is similar to the Taylor series expansion algorithm based on the actual coordinates,but much higher than the basic least square algorithm,and the positioning precision is improved rapidly with the reduce of the range error.展开更多
The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few hav...The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.展开更多
Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).I...Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.展开更多
Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vul...Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.展开更多
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
The networks of wireless sensors provide the ground for a range of applications,including environmental moni-toring and industrial operations.Ensuring the networks can overcome obstacles like power and communication r...The networks of wireless sensors provide the ground for a range of applications,including environmental moni-toring and industrial operations.Ensuring the networks can overcome obstacles like power and communication reliability and sensor coverage is the crux of network optimization.Network infrastructure planning should be focused on increasing performance,and it should be affected by the detailed data about node distribution.This work recommends the creation of each sensor’s specs and radius of influence based on a particular geographical location,which will contribute to better network planning and design.By using the ARIMA model for time series forecasting and the Al-Biruni Earth Radius algorithm for optimization,our approach bridges the gap between successive terrains while seeking the equilibrium between exploration and exploitation.Through implementing adaptive protocols according to varying environments and sensor constraints,our study aspires to improve overall network operation.We compare the Al-Biruni Earth Radius algorithm along with Gray Wolf Optimization,Particle Swarm Optimization,Genetic Algorithms,and Whale Optimization about performance on real-world problems.Being the most efficient in the optimization process,Biruni displays the lowest error rate at 0.00032.The two other statistical techniques,like ANOVA,are also useful in discovering the factors influencing the nature of sensor data and network-specific problems.Due to the multi-faceted support the comprehensive approach promotes,there is a chance to understand the dynamics that affect the optimization outcomes better so decisions about network design can be made.Through delivering better performance and reliability for various in-situ applications,this research leads to a fusion of time series forecasters and a customized optimizer algorithm.展开更多
Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For...Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.展开更多
This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable th...This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.展开更多
In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and tra...In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and transmission.Existing methods often rely on prior information such as low-rank characteristics or spatiotemporal correlation when recovering missing WSNs data.However,in realistic application scenarios,it is very difficult to obtain these prior information from incomplete data sets.Therefore,we aim to recover the missing WSNs data effectively while getting rid of the perplexity of prior information.By designing the corresponding measurement matrix that can capture the position of missing data and sparse representation matrix,a compressive sensing(CS)based missing data recovery model is established.Then,we design a comparison standard to select the best sparse representation basis and introduce average cross-correlation to examine the rationality of the established model.Furthermore,an improved fast matching pursuit algorithm is proposed to solve the model.Simulation results show that the proposed method can effectively recover the missing WSNs data.展开更多
Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacki...Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacking communication infrastructure.Unmanned aerial vehicle(UAV)offers a novel solution for WSN data collection,leveraging their high mobility.In this paper,we present an efficient UAV-assisted data collection algorithm aimed at minimizing the overall power consumption of the WSN.Firstly,a two-layer UAV-assisted data collection model is introduced,including the ground and aerial layers.The ground layer senses the environmental data by the cluster members(CMs),and the CMs transmit the data to the cluster heads(CHs),which forward the collected data to the UAVs.The aerial network layer consists of multiple UAVs that collect,store,and forward data from the CHs to the data center for analysis.Secondly,an improved clustering algorithm based on K-Means++is proposed to optimize the number and locations of CHs.Moreover,an Actor-Critic based algorithm is introduced to optimize the UAV deployment and the association with CHs.Finally,simulation results verify the effectiveness of the proposed algorithms.展开更多
Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, w...Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, we studythe recharging of sensors in wireless rechargeable sensor networks (WRSNs) by scheduling two mobile chargers(MCs) to collaboratively charge sensors. We first formulate a novel sensor charging scheduling problem with theobjective of maximizing the number of surviving sensors, and further propose a collaborative charging schedulingalgorithm(CCSA) for WRSNs. In the scheme, the sensors are divided into important sensors and ordinary sensors.TwoMCs can adaptively collaboratively charge the sensors based on the energy limit ofMCs and the energy demandof sensors. Finally, we conducted comparative simulations. The simulation results show that the proposed algorithmcan effectively reduce the death rate of the sensor. The proposed algorithm provides a solution to the uncertaintyof node charging tasks and the collaborative challenges posed by multiple MCs in practical scenarios.展开更多
Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present ...Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.展开更多
Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach ess...Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.展开更多
In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET...In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET)phase first and then cooperatively transmit information to a hybrid access point(AP)in the wireless information transmission(WIT)phase,following which the IRS is deployed to enhance the system performance of theWET andWIT.We maximized the weighted sum-rate problem by jointly optimizing the transmit time slots,power allocations,and the phase shifts of the IRS.Due to the non-convexity of the original problem,a semidefinite programming relaxation-based approach is proposed to convert the formulated problem to a convex optimization framework,which can obtain the optimal global solution.Simulation results demonstrate that the weighted sum throughput of the proposed UC scheme outperforms the non-UC scheme whether equipped with IRS or not.展开更多
With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated...With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.展开更多
文摘Wireless Sensor Network(WSN)comprises a set of interconnected,compact,autonomous,and resource-constrained sensor nodes that are wirelessly linked to monitor and gather data from the physical environment.WSNs are commonly used in various applications such as environmental monitoring,surveillance,healthcare,agriculture,and industrial automation.Despite the benefits of WSN,energy efficiency remains a challenging problem that needs to be addressed.Clustering and routing can be considered effective solutions to accomplish energy efficiency in WSNs.Recent studies have reported that metaheuristic algorithms can be applied to optimize cluster formation and routing decisions.This study introduces a new Northern Goshawk Optimization with boosted coati optimization algorithm for cluster-based routing(NGOBCO-CBR)method for WSN.The proposed NGOBCO-CBR method resolves the hot spot problem,uneven load balancing,and energy consumption in WSN.The NGOBCO-CBR technique comprises two major processes such as NGO based clustering and BCO-based routing.In the initial phase,the NGObased clustering method is designed for cluster head(CH)selection and cluster construction using five input variables such as residual energy(RE),node proximity,load balancing,network average energy,and distance to BS(DBS).Besides,the NGOBCO-CBR technique applies the BCO algorithm for the optimum selection of routes to BS.The experimental results of the NGOBCOCBR technique are studied under different scenarios,and the obtained results showcased the improved efficiency of the NGOBCO-CBR technique over recent approaches in terms of different measures.
基金partially supported by the National Natural Science Foundation of China(62161016)the Key Research and Development Project of Lanzhou Jiaotong University(ZDYF2304)+1 种基金the Beijing Engineering Research Center of Highvelocity Railway Broadband Mobile Communications(BHRC-2022-1)Beijing Jiaotong University。
文摘In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay.
基金Supported by 2021 Zhanjiang University of Science and Technology"Brand Enhancement Plan"Project:Network Series Course Teaching Team(PPJH202102JXTD)2022 Zhanjiang University of Science and Technology"Brand Enhancement Plan"Project:Network Engineering(PPJHKCSZ-2022301)+1 种基金2023 Zhanjiang Science and Technology Bureau Project:Design and Simulation of Zhanjiang Mangrove Wetland Monitoring Network System(2023B01017)2022 Zhanjiang University of Science and Technology Quality Engineering Project:Audiovisual Language Teaching and Research Office(ZLGC202203).
文摘Background With the development of the Internet,the topology optimization of wireless sensor networks has received increasing attention.However,traditional optimization methods often overlook the energy imbalance caused by node loads,which affects network performance.Methods To improve the overall performance and efficiency of wireless sensor networks,a new method for optimizing the wireless sensor network topology based on K-means clustering and firefly algorithms is proposed.The K-means clustering algorithm partitions nodes by minimizing the within-cluster variance,while the firefly algorithm is an optimization algorithm based on swarm intelligence that simulates the flashing interaction between fireflies to guide the search process.The proposed method first introduces the K-means clustering algorithm to cluster nodes and then introduces a firefly algorithm to dynamically adjust the nodes.Results The results showed that the average clustering accuracies in the Wine and Iris data sets were 86.59%and 94.55%,respectively,demonstrating good clustering performance.When calculating the node mortality rate and network load balancing standard deviation,the proposed algorithm showed dead nodes at approximately 50 iterations,with an average load balancing standard deviation of 1.7×10^(4),proving its contribution to extending the network lifespan.Conclusions This demonstrates the superiority of the proposed algorithm in significantly improving the energy efficiency and load balancing of wireless sensor networks to extend the network lifespan.The research results indicate that wireless sensor networks have theoretical and practical significance in fields such as monitoring,healthcare,and agriculture.
基金supported by the National Natural Science Foundation of China under Grant Nos.U21A20464,62066005Innovation Project of Guangxi Graduate Education under Grant No.YCSW2024313.
文摘Wireless sensor network deployment optimization is a classic NP-hard problem and a popular topic in academic research.However,the current research on wireless sensor network deployment problems uses overly simplistic models,and there is a significant gap between the research results and actual wireless sensor networks.Some scholars have now modeled data fusion networks to make them more suitable for practical applications.This paper will explore the deployment problem of a stochastic data fusion wireless sensor network(SDFWSN),a model that reflects the randomness of environmental monitoring and uses data fusion techniques widely used in actual sensor networks for information collection.The deployment problem of SDFWSN is modeled as a multi-objective optimization problem.The network life cycle,spatiotemporal coverage,detection rate,and false alarm rate of SDFWSN are used as optimization objectives to optimize the deployment of network nodes.This paper proposes an enhanced multi-objective mongoose optimization algorithm(EMODMOA)to solve the deployment problem of SDFWSN.First,to overcome the shortcomings of the DMOA algorithm,such as its low convergence and tendency to get stuck in a local optimum,an encircling and hunting strategy is introduced into the original algorithm to propose the EDMOA algorithm.The EDMOA algorithm is designed as the EMODMOA algorithm by selecting reference points using the K-Nearest Neighbor(KNN)algorithm.To verify the effectiveness of the proposed algorithm,the EMODMOA algorithm was tested at CEC 2020 and achieved good results.In the SDFWSN deployment problem,the algorithm was compared with the Non-dominated Sorting Genetic Algorithm II(NSGAII),Multiple Objective Particle Swarm Optimization(MOPSO),Multi-Objective Evolutionary Algorithm based on Decomposition(MOEA/D),and Multi-Objective Grey Wolf Optimizer(MOGWO).By comparing and analyzing the performance evaluation metrics and optimization results of the objective functions of the multi-objective algorithms,the algorithm outperforms the other algorithms in the SDFWSN deployment results.To better demonstrate the superiority of the algorithm,simulations of diverse test cases were also performed,and good results were obtained.
基金funded by Deanship of Graduate studies and Scientific Research at Jouf University under grant No.(DGSSR-2023-2-02038).
文摘Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use.
基金National Natural Science Foundation of China,grant number 62205120,funded this research.
文摘In the RSSI-based positioning algorithm,regarding the problem of a great conflict between precision and cost,a low-power and low-cost synergic localization algorithm is proposed,where effective methods are adopted in each phase of the localization process and fully use the detective information in the network to improve the positioning precision and robustness.In the ranging period,the power attenuation factor is obtained through the wireless channel modeling,and the RSSI value is transformed into distance.In the positioning period,the preferred reference nodes are used to calculate coordinates.In the position optimization period,Taylor expansion and least-squared iterative update algorithms are used to further improve the location precision.In the positioning,the notion of cooperative localization is introduced,in which the located node satisfying certain demands will be upgraded to a reference node so that it can participate in the positioning of other nodes,and improve the coverage and positioning precision.The results show that on the same network conditions,the proposed algorithm in this paper is similar to the Taylor series expansion algorithm based on the actual coordinates,but much higher than the basic least square algorithm,and the positioning precision is improved rapidly with the reduce of the range error.
文摘The structural optimization of wireless sensor networks is a critical issue because it impacts energy consumption and hence the network’s lifetime.Many studies have been conducted for homogeneous networks,but few have been performed for heterogeneouswireless sensor networks.This paper utilizes Rao algorithms to optimize the structure of heterogeneous wireless sensor networks according to node locations and their initial energies.The proposed algorithms lack algorithm-specific parameters and metaphorical connotations.The proposed algorithms examine the search space based on the relations of the population with the best,worst,and randomly assigned solutions.The proposed algorithms can be evaluated using any routing protocol,however,we have chosen the well-known routing protocols in the literature:Low Energy Adaptive Clustering Hierarchy(LEACH),Power-Efficient Gathering in Sensor Information Systems(PEAGSIS),Partitioned-based Energy-efficient LEACH(PE-LEACH),and the Power-Efficient Gathering in Sensor Information Systems Neural Network(PEAGSIS-NN)recent routing protocol.We compare our optimized method with the Jaya,the Particle Swarm Optimization-based Energy Efficient Clustering(PSO-EEC)protocol,and the hybrid Harmony Search Algorithm and PSO(HSA-PSO)algorithms.The efficiencies of our proposed algorithms are evaluated by conducting experiments in terms of the network lifetime(first dead node,half dead nodes,and last dead node),energy consumption,packets to cluster head,and packets to the base station.The experimental results were compared with those obtained using the Jaya optimization algorithm.The proposed algorithms exhibited the best performance.The proposed approach successfully prolongs the network lifetime by 71% for the PEAGSIS protocol,51% for the LEACH protocol,10% for the PE-LEACH protocol,and 73% for the PEGSIS-NN protocol;Moreover,it enhances other criteria such as energy conservation,fitness convergence,packets to cluster head,and packets to the base station.
基金supported in part by the National Nature Science Foundation of China under Grant 62001168in part by the Foundation and Application Research Grant of Guangzhou under Grant 202102020515.
文摘Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN.
基金supported in part by the Chongqing Electronics Engineering Technology Research Center for Interactive Learningin part by the Chongqing key discipline of electronic informationin part by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202201630)。
文摘Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project.
文摘The networks of wireless sensors provide the ground for a range of applications,including environmental moni-toring and industrial operations.Ensuring the networks can overcome obstacles like power and communication reliability and sensor coverage is the crux of network optimization.Network infrastructure planning should be focused on increasing performance,and it should be affected by the detailed data about node distribution.This work recommends the creation of each sensor’s specs and radius of influence based on a particular geographical location,which will contribute to better network planning and design.By using the ARIMA model for time series forecasting and the Al-Biruni Earth Radius algorithm for optimization,our approach bridges the gap between successive terrains while seeking the equilibrium between exploration and exploitation.Through implementing adaptive protocols according to varying environments and sensor constraints,our study aspires to improve overall network operation.We compare the Al-Biruni Earth Radius algorithm along with Gray Wolf Optimization,Particle Swarm Optimization,Genetic Algorithms,and Whale Optimization about performance on real-world problems.Being the most efficient in the optimization process,Biruni displays the lowest error rate at 0.00032.The two other statistical techniques,like ANOVA,are also useful in discovering the factors influencing the nature of sensor data and network-specific problems.Due to the multi-faceted support the comprehensive approach promotes,there is a chance to understand the dynamics that affect the optimization outcomes better so decisions about network design can be made.Through delivering better performance and reliability for various in-situ applications,this research leads to a fusion of time series forecasters and a customized optimizer algorithm.
基金supported by the Natural Science Foundation under Grant No.61962009Major Scientific and Technological Special Project of Guizhou Province under Grant No.20183001Foundation of Guizhou Provincial Key Laboratory of Public Big Data under Grant No.2018BDKFJJ003,2018BDKFJJ005 and 2019BDKFJJ009.
文摘Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.
基金supported by National Natural Science Foundation of China(No.61901229 and No.62071242)the Project of Jiangsu Engineering Research Center of Novel Optical Fiber Technology and Communication Network(No.SDGC2234)+1 种基金the Open Research Project of Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology(No.NJUZDS2022-008)the Post-Doctoral Research Supporting Program of Jiangsu Province(No.SBH20).
文摘This paper investigates a wireless powered and backscattering enabled sensor network based on the non-linear energy harvesting model, where the power beacon(PB) delivers energy signals to wireless sensors to enable their passive backscattering and active transmission to the access point(AP). We propose an efficient time scheduling scheme for network performance enhancement, based on which each sensor can always harvest energy from the PB over the entire block except its time slots allocated for passive and active information delivery. Considering the PB and wireless sensors are from two selfish service providers, we use the Stackelberg game to model the energy interaction among them. To address the non-convexity of the leader-level problem, we propose to decompose the original problem into two subproblems and solve them iteratively in an alternating manner. Specifically, the successive convex approximation, semi-definite relaxation(SDR) and variable substitution techniques are applied to find a nearoptimal solution. To evaluate the performance loss caused by the interaction between two providers, we further investigate the social welfare maximization problem. Numerical results demonstrate that compared to the benchmark schemes, the proposed scheme can achieve up to 35.4% and 38.7% utility gain for the leader and the follower, respectively.
基金supported by the National Natural Science Foundation of China(No.61871400)the Natural Science Foundation of the Jiangsu Province of China(No.BK20171401)。
文摘In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and transmission.Existing methods often rely on prior information such as low-rank characteristics or spatiotemporal correlation when recovering missing WSNs data.However,in realistic application scenarios,it is very difficult to obtain these prior information from incomplete data sets.Therefore,we aim to recover the missing WSNs data effectively while getting rid of the perplexity of prior information.By designing the corresponding measurement matrix that can capture the position of missing data and sparse representation matrix,a compressive sensing(CS)based missing data recovery model is established.Then,we design a comparison standard to select the best sparse representation basis and introduce average cross-correlation to examine the rationality of the established model.Furthermore,an improved fast matching pursuit algorithm is proposed to solve the model.Simulation results show that the proposed method can effectively recover the missing WSNs data.
基金supported by the National Natural Science Foundation of China(NSFC)(61831002,62001076)the General Program of Natural Science Foundation of Chongqing(No.CSTB2023NSCQ-MSX0726,No.cstc2020jcyjmsxmX0878).
文摘Wireless Sensor Network(WSN)is widely utilized in large-scale distributed unmanned detection scenarios due to its low cost and flexible installation.However,WSN data collection encounters challenges in scenarios lacking communication infrastructure.Unmanned aerial vehicle(UAV)offers a novel solution for WSN data collection,leveraging their high mobility.In this paper,we present an efficient UAV-assisted data collection algorithm aimed at minimizing the overall power consumption of the WSN.Firstly,a two-layer UAV-assisted data collection model is introduced,including the ground and aerial layers.The ground layer senses the environmental data by the cluster members(CMs),and the CMs transmit the data to the cluster heads(CHs),which forward the collected data to the UAVs.The aerial network layer consists of multiple UAVs that collect,store,and forward data from the CHs to the data center for analysis.Secondly,an improved clustering algorithm based on K-Means++is proposed to optimize the number and locations of CHs.Moreover,an Actor-Critic based algorithm is introduced to optimize the UAV deployment and the association with CHs.Finally,simulation results verify the effectiveness of the proposed algorithms.
基金Hubei Provincial Natural Science Foundation of China under Grant No.2017CKB893Wuhan Polytechnic University Reform Subsidy Project Grant No.03220153.
文摘Wireless sensor networks (WSNs) have the trouble of limited battery power, and wireless charging provides apromising solution to this problem, which is not easily affected by the external environment. In this paper, we studythe recharging of sensors in wireless rechargeable sensor networks (WRSNs) by scheduling two mobile chargers(MCs) to collaboratively charge sensors. We first formulate a novel sensor charging scheduling problem with theobjective of maximizing the number of surviving sensors, and further propose a collaborative charging schedulingalgorithm(CCSA) for WRSNs. In the scheme, the sensors are divided into important sensors and ordinary sensors.TwoMCs can adaptively collaboratively charge the sensors based on the energy limit ofMCs and the energy demandof sensors. Finally, we conducted comparative simulations. The simulation results show that the proposed algorithmcan effectively reduce the death rate of the sensor. The proposed algorithm provides a solution to the uncertaintyof node charging tasks and the collaborative challenges posed by multiple MCs in practical scenarios.
文摘Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs.
文摘Energy efficiency is the prime concern in Wireless Sensor Networks(WSNs) as maximized energy consumption without essentially limits the energy stability and network lifetime. Clustering is the significant approach essential for minimizing unnecessary transmission energy consumption with sustained network lifetime. This clustering process is identified as the Non-deterministic Polynomial(NP)-hard optimization problems which has the maximized probability of being solved through metaheuristic algorithms.This adoption of hybrid metaheuristic algorithm concentrates on the identification of the optimal or nearoptimal solutions which aids in better energy stability during Cluster Head(CH) selection. In this paper,Hybrid Seagull and Whale Optimization Algorithmbased Dynamic Clustering Protocol(HSWOA-DCP)is proposed with the exploitation benefits of WOA and exploration merits of SEOA to optimal CH selection for maintaining energy stability with prolonged network lifetime. This HSWOA-DCP adopted the modified version of SEagull Optimization Algorithm(SEOA) to handle the problem of premature convergence and computational accuracy which is maximally possible during CH selection. The inclusion of SEOA into WOA improved the global searching capability during the selection of CH and prevents worst fitness nodes from being selected as CH, since the spiral attacking behavior of SEOA is similar to the bubble-net characteristics of WOA. This CH selection integrates the spiral attacking principles of SEOA and contraction surrounding mechanism of WOA for improving computation accuracy to prevent frequent election process. It also included the strategy of levy flight strategy into SEOA for potentially avoiding premature convergence to attain better trade-off between the rate of exploration and exploitation in a more effective manner. The simulation results of the proposed HSWOADCP confirmed better network survivability rate, network residual energy and network overall throughput on par with the competitive CH selection schemes under different number of data transmission rounds.The statistical analysis of the proposed HSWOA-DCP scheme also confirmed its energy stability with respect to ANOVA test.
基金This work was supported in part by the open research fund of National Mobile Communications Research Laboratory,Southeast University(No.2023D11)in part by Sponsored by program for Science&Technology Innovation Talents in Universities of Henan Province(23HASTIT019)+2 种基金in part by Natural Science Foundation of Henan Province(20232300421097)in part by the project funded by China Postdoctoral Science Foundation(2020M682345)in part by the Henan Postdoctoral Foundation(202001015).
文摘In this paper,we investigate IRS-aided user cooperation(UC)scheme in millimeter wave(mmWave)wirelesspowered sensor networks(WPSN),where two single-antenna users are wireless powered in the wireless energy transfer(WET)phase first and then cooperatively transmit information to a hybrid access point(AP)in the wireless information transmission(WIT)phase,following which the IRS is deployed to enhance the system performance of theWET andWIT.We maximized the weighted sum-rate problem by jointly optimizing the transmit time slots,power allocations,and the phase shifts of the IRS.Due to the non-convexity of the original problem,a semidefinite programming relaxation-based approach is proposed to convert the formulated problem to a convex optimization framework,which can obtain the optimal global solution.Simulation results demonstrate that the weighted sum throughput of the proposed UC scheme outperforms the non-UC scheme whether equipped with IRS or not.
基金supported in part by National Natural Science Foundation of China under Grants 62122069, 62071431, 62072490 and 62301490in part by Science and Technology Development Fund of Macao SAR, China under Grant 0158/2022/A+2 种基金in part by the Guangdong Basic and Applied Basic Research Foundation (2022A1515011287)in part by MYRG202000107-IOTSCin part by FDCT SKL-IOTSC (UM)-2021-2023
文摘With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.