In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristi...In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.展开更多
In this paper, the phase characteristic disturbance model for baseband direct sequence spread spectrum (DSSS) signal in additive white Gaussian noise (AWGN) environment is established, and the probability density func...In this paper, the phase characteristic disturbance model for baseband direct sequence spread spectrum (DSSS) signal in additive white Gaussian noise (AWGN) environment is established, and the probability density function (PDF) of phase characteristic disturbance is obtained. Then a novel receiver model for baseband DSSS signal based on maximum likelihood (ML) criterion is proposed. The simulation results show that, comparing with correlation scheme, the performance of the proposed method for baseband DSSS signal is 1dB worse in AWGN environment. However, if there is narrow interference in the AWGN environment, the proposed method will show better performance up to 2.5dB, and it has good adaptive resistance to narrowband interference located in different frequency points. This method could be used as an alterative communication scheme for military circumstance when existing strong narrowband interference of various frequencies.展开更多
The construction and specifications of a surface acoustic wave storage correlator are described. A time domain processing mode spread spectrum system is presented. An analysis of the interference rejection for this sy...The construction and specifications of a surface acoustic wave storage correlator are described. A time domain processing mode spread spectrum system is presented. An analysis of the interference rejection for this system is provided. The formula for calculating the probability of error of the system is given. The experimental results agree with the theoretical analysis.展开更多
The paper presents the microwave signal processing method using MATLAB based on the result of microwave imaging system simulation developed using Computer Simulation Technology (CST). The simulation system contains a ...The paper presents the microwave signal processing method using MATLAB based on the result of microwave imaging system simulation developed using Computer Simulation Technology (CST). The simulation system contains a transmitting/receiving antenna, human brain and a tumor inside the brain model. The source signal, microwave signal operates from 1 to 10 GHz. The generated scattering parameters (S-parameters) are in frequency domain form. This paper describes in detail regarding the signal conversion from frequency domain to time domain through proposed Inverse Fast Fourier Transform (IFFT) method as well as the noise filtering process. Peaks detection process was performed in order to identify the time delay of the reflection points at different Y-axis展开更多
Cloud Computing as a disruptive technology, provides a dynamic, elastic and promising computing climate to tackle the challenges of big data processing and analytics. Hadoop and MapReduce are the widely used open sour...Cloud Computing as a disruptive technology, provides a dynamic, elastic and promising computing climate to tackle the challenges of big data processing and analytics. Hadoop and MapReduce are the widely used open source frameworks in Cloud Computing for storing and processing big data in the scalable fashion. Spark is the latest parallel computing engine working together with Hadoop that exceeds MapReduce performance via its in-memory computing and high level programming features. In this paper, we present our design and implementation of a productive, domain-specific big data analytics cloud platform on top of Hadoop and Spark. To increase user’s productivity, we created a variety of data processing templates to simplify the programming efforts. We have conducted experiments for its productivity and performance with a few basic but representative data processing algorithms in the petroleum industry. Geophysicists can use the platform to productively design and implement scalable seismic data processing algorithms without handling the details of data management and the complexity of parallelism. The Cloud platform generates a complete data processing application based on user’s kernel program and simple configurations, allocates resources and executes it in parallel on top of Spark and Hadoop.展开更多
Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a C...Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control(NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.展开更多
In the distributed synthetic aperture radar (SAR), the alternating bistatic mode can perform phase reference without a synchronization link between two satellites compared with the pulsed alternate synchronization m...In the distributed synthetic aperture radar (SAR), the alternating bistatic mode can perform phase reference without a synchronization link between two satellites compared with the pulsed alternate synchronization method. The key of the phase synchronization processing is to extract the oscillator phase differences from the bistatic echoes. A signal model of phase synchronization in the alternating bistatic mode is presented. The phase synchronization processing method is then studied. To reduce the phase errors introduced by SAR imaging, a sub-aperture processing method is proposed. To generalize the sub-aperture processing method, an echo-domain processing method using correlation of bistatic echoes is proposed. Finally, the residual phase errors of the both proposed processing methods are analyzed. Simulation experiments validate the proposed phase synchronization processing method and its phase error analysis results.展开更多
Human physiological(biological)systems function in such a way that their complexity requires mathematical analysis.The functioning of the brain,heart and other parts are so complex to be easily comprehended.Under cond...Human physiological(biological)systems function in such a way that their complexity requires mathematical analysis.The functioning of the brain,heart and other parts are so complex to be easily comprehended.Under conditions of rest or work,the temporal distances of successive heartbeats are subject to fluctuations,thereby forming the basis of Heart Rate Variability(HRV).In normal conditions,the human is persistently exposed to highly changing and dynamic situational demands.With these demands in mind,HRV can,therefore,be considered as the human organism’s ability to cope with and adapt to continuous situational requirements,both physiologically and emotionally.Fast Fourier Transform(FFT)is used in various physiological signal processing,such as heart rate variability.FFT allows a spectral analysis of HRV and is great help in HRV analysis and interpretation.展开更多
Microarray data is inherently noisy due to the noise contaminated from various sources during the preparation of microarray slide and thus it greatly affects the accuracy of the gene expression. How to eliminate the e...Microarray data is inherently noisy due to the noise contaminated from various sources during the preparation of microarray slide and thus it greatly affects the accuracy of the gene expression. How to eliminate the effect of the noise constitutes a challenging problem in microarray analysis. Efficient denoising is often a necessary and the first step to be taken before the image data is analyzed to compensate for data corruption and for effective utilization for these data. Hence preprocessing of microarray image is an essential to eliminate the background noise in order to enhance the image quality and effective quantification. Existing denoising techniques based on transformed domain have been utilized for microarray noise reduction with their own limitations. The objective of this paper is to introduce novel preprocessing techniques such as optimized spatial resolution (OSR) and spatial domain filtering (SDF) for reduction of noise from microarray data and reduction of error during quantification process for estimating the microarray spots accurately to determine expression level of genes. Besides combined optimized spatial resolution and spatial filtering is proposed and found improved denoising of microarray data with effective quantification of spots. The proposed method has been validated in microarray images of gene expression profiles of Myeloid Leukemia using Stanford Microarray Database with various quality measures such as signal to noise ratio, peak signal to noise ratio, image fidelity, structural content, absolute average difference and correlation quality. It was observed by quantitative analysis that the proposed technique is more efficient for denoising the microarray image which enables to make it suitable for effective quantification.展开更多
In order to describe pavement roughness more intuitively and effectively, a method of pavement roughness simulation, i.e., the stochastic sinusoidal wave, is introduced. The method is based on the primary idea that pa...In order to describe pavement roughness more intuitively and effectively, a method of pavement roughness simulation, i.e., the stochastic sinusoidal wave, is introduced. The method is based on the primary idea that pavement roughness is denoted as the sum of numerous sines or cosines with stochastic phases, and uses the discrete spectrum to approach the target stochastic process. It is a discrete numerical method used to simulate pavement roughness. According to a given pavement power spectral density (PSD) coefficient, under the condition that the character of displacement frequency based on the time domain model is in accordance with the given pavement surface spectrum, the pavement roughness is optimized to stochastic equivalent vibrations by computer simulation, and the curves that describe pavement roughness under each grade are obtained. The results show that the stochastic sinusoidal wave is suitable for simulation of measured pavement surface spectra based on the time domain model. The method of the stochastic sinusoidal wave is important to the research on vehicle ride comfort due to its rigorous mathematical derivation, extensive application range and intuitive simulation curve. Finally, a roughness index defined as the nominal roughness index (NRI) is introduced, and it has correlation with the PSD coefficient.展开更多
文摘In non-homogeneous environment, traditional space-time adaptive processing doesn't effectively suppress interference and detect target, because the secondary data don' t exactly reflect the statistical characteristic of the range cell under test. A ravel methodology utilizing the direct data domain approach to space-time adaptive processing ( STAP ) in airbome radar non-homogeneous environments is presented. The deterministic least squares adaptive signal processing technique operates on a "snapshot-by-snapshot" basis to dethrone the adaptive adaptive weights for nulling interferences and estimating signal of interest (SOI). Furthermore, this approach eliminates the requirement for estimating the covariance through the data of neighboring range cell, which eliminates calculating the inverse of covariance, and can be implemented to operate in real-time. Simulation results illustrate the efficiency of interference suppression in non-homogeneous environment.
基金supported by the National Basic Research Program (973 Program) of China under Grant No.2007CB310606National Key Technologies R&D Program under Grant No.2009ZX03004-001
文摘In this paper, the phase characteristic disturbance model for baseband direct sequence spread spectrum (DSSS) signal in additive white Gaussian noise (AWGN) environment is established, and the probability density function (PDF) of phase characteristic disturbance is obtained. Then a novel receiver model for baseband DSSS signal based on maximum likelihood (ML) criterion is proposed. The simulation results show that, comparing with correlation scheme, the performance of the proposed method for baseband DSSS signal is 1dB worse in AWGN environment. However, if there is narrow interference in the AWGN environment, the proposed method will show better performance up to 2.5dB, and it has good adaptive resistance to narrowband interference located in different frequency points. This method could be used as an alterative communication scheme for military circumstance when existing strong narrowband interference of various frequencies.
基金Supported by the National Postdoctoral Science Fund of China
文摘The construction and specifications of a surface acoustic wave storage correlator are described. A time domain processing mode spread spectrum system is presented. An analysis of the interference rejection for this system is provided. The formula for calculating the probability of error of the system is given. The experimental results agree with the theoretical analysis.
文摘The paper presents the microwave signal processing method using MATLAB based on the result of microwave imaging system simulation developed using Computer Simulation Technology (CST). The simulation system contains a transmitting/receiving antenna, human brain and a tumor inside the brain model. The source signal, microwave signal operates from 1 to 10 GHz. The generated scattering parameters (S-parameters) are in frequency domain form. This paper describes in detail regarding the signal conversion from frequency domain to time domain through proposed Inverse Fast Fourier Transform (IFFT) method as well as the noise filtering process. Peaks detection process was performed in order to identify the time delay of the reflection points at different Y-axis
文摘Cloud Computing as a disruptive technology, provides a dynamic, elastic and promising computing climate to tackle the challenges of big data processing and analytics. Hadoop and MapReduce are the widely used open source frameworks in Cloud Computing for storing and processing big data in the scalable fashion. Spark is the latest parallel computing engine working together with Hadoop that exceeds MapReduce performance via its in-memory computing and high level programming features. In this paper, we present our design and implementation of a productive, domain-specific big data analytics cloud platform on top of Hadoop and Spark. To increase user’s productivity, we created a variety of data processing templates to simplify the programming efforts. We have conducted experiments for its productivity and performance with a few basic but representative data processing algorithms in the petroleum industry. Geophysicists can use the platform to productively design and implement scalable seismic data processing algorithms without handling the details of data management and the complexity of parallelism. The Cloud platform generates a complete data processing application based on user’s kernel program and simple configurations, allocates resources and executes it in parallel on top of Spark and Hadoop.
基金support of the studies is from the National Major Scientific and Technological Special Project for "Development and comprehensive verification of complete products of open high-end CNC system, servo device and motor" (2012ZX04001012)
文摘Building cyber-physical system(CPS) models of machine tools is a key technology for intelligent manufacturing. The massive electronic data from a computer numerical control(CNC) system during the work processes of a CNC machine tool is the main source of the big data on which a CPS model is established. In this work-process model, a method based on instruction domain is applied to analyze the electronic big data, and a quantitative description of the numerical control(NC) processes is built according to the G code of the processes. Utilizing the instruction domain, a work-process CPS model is established on the basis of the accurate, real-time mapping of the manufacturing tasks, resources, and status of the CNC machine tool. Using such models, case studies are conducted on intelligent-machining applications, such as the optimization of NC processing parameters and the health assurance of CNC machine tools.
基金supported by the National Natural Science Foundation of China(6100203161101187)
文摘In the distributed synthetic aperture radar (SAR), the alternating bistatic mode can perform phase reference without a synchronization link between two satellites compared with the pulsed alternate synchronization method. The key of the phase synchronization processing is to extract the oscillator phase differences from the bistatic echoes. A signal model of phase synchronization in the alternating bistatic mode is presented. The phase synchronization processing method is then studied. To reduce the phase errors introduced by SAR imaging, a sub-aperture processing method is proposed. To generalize the sub-aperture processing method, an echo-domain processing method using correlation of bistatic echoes is proposed. Finally, the residual phase errors of the both proposed processing methods are analyzed. Simulation experiments validate the proposed phase synchronization processing method and its phase error analysis results.
文摘Human physiological(biological)systems function in such a way that their complexity requires mathematical analysis.The functioning of the brain,heart and other parts are so complex to be easily comprehended.Under conditions of rest or work,the temporal distances of successive heartbeats are subject to fluctuations,thereby forming the basis of Heart Rate Variability(HRV).In normal conditions,the human is persistently exposed to highly changing and dynamic situational demands.With these demands in mind,HRV can,therefore,be considered as the human organism’s ability to cope with and adapt to continuous situational requirements,both physiologically and emotionally.Fast Fourier Transform(FFT)is used in various physiological signal processing,such as heart rate variability.FFT allows a spectral analysis of HRV and is great help in HRV analysis and interpretation.
文摘Microarray data is inherently noisy due to the noise contaminated from various sources during the preparation of microarray slide and thus it greatly affects the accuracy of the gene expression. How to eliminate the effect of the noise constitutes a challenging problem in microarray analysis. Efficient denoising is often a necessary and the first step to be taken before the image data is analyzed to compensate for data corruption and for effective utilization for these data. Hence preprocessing of microarray image is an essential to eliminate the background noise in order to enhance the image quality and effective quantification. Existing denoising techniques based on transformed domain have been utilized for microarray noise reduction with their own limitations. The objective of this paper is to introduce novel preprocessing techniques such as optimized spatial resolution (OSR) and spatial domain filtering (SDF) for reduction of noise from microarray data and reduction of error during quantification process for estimating the microarray spots accurately to determine expression level of genes. Besides combined optimized spatial resolution and spatial filtering is proposed and found improved denoising of microarray data with effective quantification of spots. The proposed method has been validated in microarray images of gene expression profiles of Myeloid Leukemia using Stanford Microarray Database with various quality measures such as signal to noise ratio, peak signal to noise ratio, image fidelity, structural content, absolute average difference and correlation quality. It was observed by quantitative analysis that the proposed technique is more efficient for denoising the microarray image which enables to make it suitable for effective quantification.
文摘In order to describe pavement roughness more intuitively and effectively, a method of pavement roughness simulation, i.e., the stochastic sinusoidal wave, is introduced. The method is based on the primary idea that pavement roughness is denoted as the sum of numerous sines or cosines with stochastic phases, and uses the discrete spectrum to approach the target stochastic process. It is a discrete numerical method used to simulate pavement roughness. According to a given pavement power spectral density (PSD) coefficient, under the condition that the character of displacement frequency based on the time domain model is in accordance with the given pavement surface spectrum, the pavement roughness is optimized to stochastic equivalent vibrations by computer simulation, and the curves that describe pavement roughness under each grade are obtained. The results show that the stochastic sinusoidal wave is suitable for simulation of measured pavement surface spectra based on the time domain model. The method of the stochastic sinusoidal wave is important to the research on vehicle ride comfort due to its rigorous mathematical derivation, extensive application range and intuitive simulation curve. Finally, a roughness index defined as the nominal roughness index (NRI) is introduced, and it has correlation with the PSD coefficient.