期刊文献+
共找到86,472篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-Scale Dilated Convolution Network for SPECT-MPI Cardiovascular Disease Classification with Adaptive Denoising and Attenuation Correction
1
作者 A.Robert Singh Suganya Athisayamani +1 位作者 Gyanendra Prasad Joshi Bhanu Shrestha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期299-327,共29页
Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronar... Myocardial perfusion imaging(MPI),which uses single-photon emission computed tomography(SPECT),is a well-known estimating tool for medical diagnosis,employing the classification of images to show situations in coronary artery disease(CAD).The automatic classification of SPECT images for different techniques has achieved near-optimal accuracy when using convolutional neural networks(CNNs).This paper uses a SPECT classification framework with three steps:1)Image denoising,2)Attenuation correction,and 3)Image classification.Image denoising is done by a U-Net architecture that ensures effective image denoising.Attenuation correction is implemented by a convolution neural network model that can remove the attenuation that affects the feature extraction process of classification.Finally,a novel multi-scale diluted convolution(MSDC)network is proposed.It merges the features extracted in different scales and makes the model learn the features more efficiently.Three scales of filters with size 3×3 are used to extract features.All three steps are compared with state-of-the-art methods.The proposed denoising architecture ensures a high-quality image with the highest peak signal-to-noise ratio(PSNR)value of 39.7.The proposed classification method is compared with the five different CNN models,and the proposed method ensures better classification with an accuracy of 96%,precision of 87%,sensitivity of 87%,specificity of 89%,and F1-score of 87%.To demonstrate the importance of preprocessing,the classification model was analyzed without denoising and attenuation correction. 展开更多
关键词 SPECT-MPI CAD MSDC DENOISING attenuation correction classification
在线阅读 下载PDF
Three-Stage Transfer Learning with AlexNet50 for MRI Image Multi-Class Classification with Optimal Learning Rate
2
作者 Suganya Athisayamani A.Robert Singh +1 位作者 Gyanendra Prasad Joshi Woong Cho 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期155-183,共29页
In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue... In radiology,magnetic resonance imaging(MRI)is an essential diagnostic tool that provides detailed images of a patient’s anatomical and physiological structures.MRI is particularly effective for detecting soft tissue anomalies.Traditionally,radiologists manually interpret these images,which can be labor-intensive and time-consuming due to the vast amount of data.To address this challenge,machine learning,and deep learning approaches can be utilized to improve the accuracy and efficiency of anomaly detection in MRI scans.This manuscript presents the use of the Deep AlexNet50 model for MRI classification with discriminative learning methods.There are three stages for learning;in the first stage,the whole dataset is used to learn the features.In the second stage,some layers of AlexNet50 are frozen with an augmented dataset,and in the third stage,AlexNet50 with an augmented dataset with the augmented dataset.This method used three publicly available MRI classification datasets:Harvard whole brain atlas(HWBA-dataset),the School of Biomedical Engineering of Southern Medical University(SMU-dataset),and The National Institute of Neuroscience and Hospitals brain MRI dataset(NINS-dataset)for analysis.Various hyperparameter optimizers like Adam,stochastic gradient descent(SGD),Root mean square propagation(RMS prop),Adamax,and AdamW have been used to compare the performance of the learning process.HWBA-dataset registers maximum classification performance.We evaluated the performance of the proposed classification model using several quantitative metrics,achieving an average accuracy of 98%. 展开更多
关键词 MRI TUMORS classification AlexNet50 transfer learning hyperparameter tuning OPTIMIZER
在线阅读 下载PDF
A novel method for clustering cellular data to improve classification
3
作者 Diek W.Wheeler Giorgio A.Ascoli 《Neural Regeneration Research》 SCIE CAS 2025年第9期2697-2705,共9页
Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subse... Many fields,such as neuroscience,are experiencing the vast prolife ration of cellular data,underscoring the need fo r organizing and interpreting large datasets.A popular approach partitions data into manageable subsets via hierarchical clustering,but objective methods to determine the appropriate classification granularity are missing.We recently introduced a technique to systematically identify when to stop subdividing clusters based on the fundamental principle that cells must differ more between than within clusters.Here we present the corresponding protocol to classify cellular datasets by combining datadriven unsupervised hierarchical clustering with statistical testing.These general-purpose functions are applicable to any cellular dataset that can be organized as two-dimensional matrices of numerical values,including molecula r,physiological,and anatomical datasets.We demonstrate the protocol using cellular data from the Janelia MouseLight project to chara cterize morphological aspects of neurons. 展开更多
关键词 cellular data clustering dendrogram data classification Levene's one-tailed statistical test unsupervised hierarchical clustering
在线阅读 下载PDF
Congruent Feature Selection Method to Improve the Efficacy of Machine Learning-Based Classification in Medical Image Processing
4
作者 Mohd Anjum Naoufel Kraiem +2 位作者 Hong Min Ashit Kumar Dutta Yousef Ibrahim Daradkeh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期357-384,共28页
Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify sp... Machine learning(ML)is increasingly applied for medical image processing with appropriate learning paradigms.These applications include analyzing images of various organs,such as the brain,lung,eye,etc.,to identify specific flaws/diseases for diagnosis.The primary concern of ML applications is the precise selection of flexible image features for pattern detection and region classification.Most of the extracted image features are irrelevant and lead to an increase in computation time.Therefore,this article uses an analytical learning paradigm to design a Congruent Feature Selection Method to select the most relevant image features.This process trains the learning paradigm using similarity and correlation-based features over different textural intensities and pixel distributions.The similarity between the pixels over the various distribution patterns with high indexes is recommended for disease diagnosis.Later,the correlation based on intensity and distribution is analyzed to improve the feature selection congruency.Therefore,the more congruent pixels are sorted in the descending order of the selection,which identifies better regions than the distribution.Now,the learning paradigm is trained using intensity and region-based similarity to maximize the chances of selection.Therefore,the probability of feature selection,regardless of the textures and medical image patterns,is improved.This process enhances the performance of ML applications for different medical image processing.The proposed method improves the accuracy,precision,and training rate by 13.19%,10.69%,and 11.06%,respectively,compared to other models for the selected dataset.The mean error and selection time is also reduced by 12.56%and 13.56%,respectively,compared to the same models and dataset. 展开更多
关键词 Computer vision feature selection machine learning region detection texture analysis image classification medical images
在线阅读 下载PDF
Infrared aircraft few-shot classification method based on cross-correlation network
5
作者 HUANG Zhen ZHANG Yong GONG Jin-Fu 《红外与毫米波学报》 北大核心 2025年第1期103-111,共9页
In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This... In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to overfit,a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.This method combines two core modules:a simple parameter-free self-attention and cross-attention.By analyzing the self-correlation and cross-correlation between support images and query images,it achieves effective classification of infrared aircraft under few-shot conditions.The proposed cross-correlation network integrates these two modules and is trained in an end-to-end manner.The simple parameter-free self-attention is responsible for extracting the internal structure of the image while the cross-attention can calculate the cross-correlation between images further extracting and fusing the features between images.Compared with existing few-shot infrared target classification models,this model focuses on the geometric structure and thermal texture information of infrared images by modeling the semantic relevance between the features of the support set and query set,thus better attending to the target objects.Experimental results show that this method outperforms existing infrared aircraft classification methods in various classification tasks,with the highest classification accuracy improvement exceeding 3%.In addition,ablation experiments and comparative experiments also prove the effectiveness of the method. 展开更多
关键词 infrared imaging aircraft classification few-shot learning parameter-free attention cross attention
在线阅读 下载PDF
Audiovisual Art Event Classification and Outreach Based on Web Extracted Data
6
作者 Andreas Giannakoulopoulos Minas Pergantis +1 位作者 Aristeidis Lamprogeorgos Stella Lampoura 《Journal of Software Engineering and Applications》 2025年第1期24-43,共20页
The World Wide Web provides a wealth of information about everything, including contemporary audio and visual art events, which are discussed on media outlets, blogs, and specialized websites alike. This information m... The World Wide Web provides a wealth of information about everything, including contemporary audio and visual art events, which are discussed on media outlets, blogs, and specialized websites alike. This information may become a robust source of real-world data, which may form the basis of an objective data-driven analysis. In this study, a methodology for collecting information about audio and visual art events in an automated manner from a large array of websites is presented in detail. This process uses cutting edge Semantic Web, Web Search and Generative AI technologies to convert website documents into a collection of structured data. The value of the methodology is demonstrated by creating a large dataset concerning audiovisual events in Greece. The collected information includes event characteristics, estimated metrics based on their text descriptions, outreach metrics based on the media that reported them, and a multi-layered classification of these events based on their type, subjects and methods used. This dataset is openly provided to the general and academic public through a Web application. Moreover, each event’s outreach is evaluated using these quantitative metrics, the results are analyzed with an emphasis on classification popularity and useful conclusions are drawn concerning the importance of artistic subjects, methods, and media. 展开更多
关键词 Web Data Extraction Art Events classification Artistic Outreach Online Media
在线阅读 下载PDF
YOLOCSP-PEST for Crops Pest Localization and Classification
7
作者 Farooq Ali Huma Qayyum +2 位作者 Kashif Saleem Iftikhar Ahmad Muhammad Javed Iqbal 《Computers, Materials & Continua》 2025年第2期2373-2388,共16页
Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome... Preservation of the crops depends on early and accurate detection of pests on crops as they cause several diseases decreasing crop production and quality. Several deep-learning techniques have been applied to overcome the issue of pest detection on crops. We have developed the YOLOCSP-PEST model for Pest localization and classification. With the Cross Stage Partial Network (CSPNET) backbone, the proposed model is a modified version of You Only Look Once Version 7 (YOLOv7) that is intended primarily for pest localization and classification. Our proposed model gives exceptionally good results under conditions that are very challenging for any other comparable models especially conditions where we have issues with the luminance and the orientation of the images. It helps farmers working out on their crops in distant areas to determine any infestation quickly and accurately on their crops which helps in the quality and quantity of the production yield. The model has been trained and tested on 2 datasets namely the IP102 data set and a local crop data set on both of which it has shown exceptional results. It gave us a mean average precision (mAP) of 88.40% along with a precision of 85.55% and a recall of 84.25% on the IP102 dataset meanwhile giving a mAP of 97.18% on the local data set along with a recall of 94.88% and a precision of 97.50%. These findings demonstrate that the proposed model is very effective in detecting real-life scenarios and can help in the production of crops improving the yield quality and quantity at the same time. 展开更多
关键词 Deep learning classification of pests YOLOCSP-PEST pest detection
在线阅读 下载PDF
DAFFnet:Seed classification of soybean variety based on dual attention feature fusion networks
8
作者 Lingyu Zhang Laijun Sun +2 位作者 Xiuliang Jin Xiangguang Zhao Shujia Li 《The Crop Journal》 2025年第2期619-629,共11页
Rapid,accurate seed classification of soybean varieties is needed for product quality control.We describe a hyperspectral image-based deep-learning model called Dual Attention Feature Fusion Networks(DAFFnet),which se... Rapid,accurate seed classification of soybean varieties is needed for product quality control.We describe a hyperspectral image-based deep-learning model called Dual Attention Feature Fusion Networks(DAFFnet),which sequentially applies 3D Convolutional Neural Network(CNN)and 2D CNN.A fusion attention mechanism module in 2D CNN permits the model to capture local and global feature information by combining with Convolution Block Attention Module(CBAM)and Mobile Vision Transformer(MViT),outperforming conventional hyperspectral image classification models in seed classification. 展开更多
关键词 Soybean seed classification Deep learning Neural networks Attention mechanisms
在线阅读 下载PDF
Multi-source and multi-temporal remote sensing image classification for flood disaster monitoring
9
作者 LI Zhu JIA Zhenyang +1 位作者 DONG Jing LIU Zhenghong 《Global Geology》 2025年第1期48-57,共10页
Flood disasters can have a serious impact on people's production and lives, and can cause hugelosses in lives and property security. Based on multi-source remote sensing data, this study establisheddecision tree c... Flood disasters can have a serious impact on people's production and lives, and can cause hugelosses in lives and property security. Based on multi-source remote sensing data, this study establisheddecision tree classification rules through multi-source and multi-temporal feature fusion, classified groundobjects before the disaster and extracted flood information in the disaster area based on optical imagesduring the disaster, so as to achieve rapid acquisition of the disaster situation of each disaster bearing object.In the case of Qianliang Lake, which suffered from flooding in 2020, the results show that decision treeclassification algorithms based on multi-temporal features can effectively integrate multi-temporal and multispectralinformation to overcome the shortcomings of single-temporal image classification and achieveground-truth object classification. 展开更多
关键词 MULTI-TEMPORAL decision tree classification flood disaster monitoring
在线阅读 下载PDF
Classification and identification of risk factors for type 2 diabetes
10
作者 Shan-Shan Tang Xue-Fei Zhao +8 位作者 Xue-Dong An Wen-Jie Sun Xiao-Min Kang Yu-Ting Sun Lin-Lin Jiang Qing Gao Ze-Hua Li Hang-Yu Ji Feng-Mei Lian 《World Journal of Diabetes》 2025年第2期5-27,共23页
The risk factors for type 2 diabetes mellitus(T2DM)have been increasingly researched,but the lack of systematic identification and categorization makes it difficult for clinicians to quickly and accurately access and ... The risk factors for type 2 diabetes mellitus(T2DM)have been increasingly researched,but the lack of systematic identification and categorization makes it difficult for clinicians to quickly and accurately access and understand all the risk factors,which are categorized in this paper into five categories:Social determinants,lifestyle,checkable/testable risk factors,history of illness and medication,and other factors,which are discussed in a narrative review.Meanwhile,this paper points out the problems of the current research,helps to improve the systematic categorisation and practicality of T2DM risk factors,and provides a professional research basis for clinical practice and industry decision-making. 展开更多
关键词 Type 2 diabetes mellitus Risk factors classification PREVENTION Narrative synthesis
在线阅读 下载PDF
ET-Net:A Novel Framework for Fine-Grained Traffic Classification in Intelligent Vehicle Applications
11
作者 Wei Wenjie Ji Nan +1 位作者 Gao Feiran Lin Fuhong 《China Communications》 2025年第1期265-276,共12页
Intelligent vehicle applications provide convenience but raise privacy and security concerns.Misuse of sensitive data,including vehicle location,and facial recognition information,poses a threat to user privacy.Hence,... Intelligent vehicle applications provide convenience but raise privacy and security concerns.Misuse of sensitive data,including vehicle location,and facial recognition information,poses a threat to user privacy.Hence,traffic classification is vital for promptly overseeing and controlling applications with sensitive information.In this paper,we propose ETNet,a framework that combines multiple features and leverages self-attention mechanisms to learn deep relationships between packets.ET-Net employs a multisimilarity triplet network to extract features from raw bytes,and exploits self-attention to capture long-range dependencies within packets in a session and contextual information features.Additionally,we utilizing the loss function to more effectively integrate information acquired from both byte sequences and their corresponding lengths.Through simulated evaluations on datasets with similar attributes,ET-Net demonstrates the ability to finely distinguish between nine categories of applications,achieving superior results compared to existing methods. 展开更多
关键词 attention mechanism encrypted traffic classification intelligent vehicles privacy and security
在线阅读 下载PDF
Subclassification scheme for adenocarcinomas of the esophagogastric junction and prognostic analysis based on clinicopathological features
12
作者 Shuo Guo Fang-Fang Liu +3 位作者 Li Yuan Wen-Qian Ma Li-Mian Er Qun Zhao 《World Journal of Gastrointestinal Oncology》 2025年第4期178-192,共15页
BACKGROUND Adenocarcinoma of the esophagogastric junction(AEG)has distinct malignant features compared with other esophageal and gastric cancers.Its management is controversial and largely influenced by tumor location... BACKGROUND Adenocarcinoma of the esophagogastric junction(AEG)has distinct malignant features compared with other esophageal and gastric cancers.Its management is controversial and largely influenced by tumor location and esophageal involve-ment.Hence,understanding the clinicopathological characteristics and prognosis of AEG is essential for optimizing treatment strategies.AIM To evaluate the prognosis and clinicopathological features of patients with AEG,providing insights for management strategies.METHODS This retrospective study analyzed cases with AEG admitted between January 2016 and December 2017.Patients meeting the inclusion criteria were categorized into three groups:Type E[tumors whose center was located within 5 cm above the esophagogastric junction(EGJ)];Type Eg(tumors whose center was situated within 2 cm below the EGJ),with a 2-cm esophageal invasion;Type Ge(tumors whose center was situated within 2 cm below the EGJ),with an esophageal in-vasion of<2 cm,based on tumor location and esophageal involvement.Then,clinicopathological characteristics and survival outcomes of the groups were compared to evaluate the predictive value of the American Joint Committee on Cancer/International Alliance against Cancer 8th edition gastric cancer and eso-phageal adenocarcinoma staging systems.Statistical analysis included survival analysis and Cox regression to assess prognostic factors.RESULTS Totally,153 patients with AEG were included(median follow up:41.1 months;22,31,and 100 patients from type E,Eg,and Ge,respectively),with significant differences in maximum tumor length,esophageal involvement length,tumor type,pathology,differentiation,depth of invasion,and lymph node metastasis between the groups(P<0.05).Lymph node metastasis rates at stations 1,2,3,and 7 were lower in type E than in Eg and Ge(P<0.05).Survival rates for type E(45.5%)were significantly lower than those for Eg(48.4%)and Ge(73.0%)(P=0.001).Type E tumors,vascular infiltration,T3-T4 invasion depth,and lymph node metastasis,were identified as independent prognostic factors(P<0.05).The gastric cancer staging system outperformed the esophageal adenocarcinoma system for type Ge tumors.CONCLUSION Clinicopathological characteristics and prognoses varied between the AEG groups,with type E demonstrating distinct features.The gastric cancer staging system more accurately predicted type Ge AEG prognosis,guiding clinical decision-making. 展开更多
关键词 Adenocarcinoma of esophagogastric junction Siewert classification Survival rate PROGNOSIS Risk factors
在线阅读 下载PDF
Contrast in the Classification of Fujian Folk Dance and the Construction of Textbooks
13
作者 Meigui Huang 《Journal of Contemporary Educational Research》 2025年第2期57-63,共7页
This study first analyzes four distinct forms of Fujian folk dance,highlighting the notable differences in their cultural characteristics and dance qualities.It then categorizes these dance forms to align with textboo... This study first analyzes four distinct forms of Fujian folk dance,highlighting the notable differences in their cultural characteristics and dance qualities.It then categorizes these dance forms to align with textbook construction,discussing in depth the principles guiding the development of textbooks that correspond to these classifications. 展开更多
关键词 Fujian folk dance Dance classification Constructions of textbooks Guiding principles
在线阅读 下载PDF
Research on Emotion Classification Supported by Multimodal Adversarial Autoencoder
14
作者 Jing Yu 《Journal of Electronic Research and Application》 2025年第1期270-275,共6页
In this paper,the sentiment classification method of multimodal adversarial autoencoder is studied.This paper includes the introduction of the multimodal adversarial autoencoder emotion classification method and the e... In this paper,the sentiment classification method of multimodal adversarial autoencoder is studied.This paper includes the introduction of the multimodal adversarial autoencoder emotion classification method and the experiment of the emotion classification method based on the encoder.The experimental analysis shows that the encoder has higher precision than other encoders in emotion classification.It is hoped that this analysis can provide some reference for the emotion classification under the current intelligent algorithm mode. 展开更多
关键词 Artificial intelligence Multimode adversarial encoder Sentiment classification Evaluation criteria Modal Settings
在线阅读 下载PDF
TB-Graph: Enhancing Encrypted Malicious Traffic Classification through Relational Graph Attention Networks
15
作者 Ming Liu Qichao Yang +1 位作者 Wenqing Wang Shengli Liu 《Computers, Materials & Continua》 2025年第2期2985-3004,共20页
The proliferation of internet traffic encryption has become a double-edged sword. While it significantly enhances user privacy, it also inadvertently shields cyber-attacks from detection, presenting a formidable chall... The proliferation of internet traffic encryption has become a double-edged sword. While it significantly enhances user privacy, it also inadvertently shields cyber-attacks from detection, presenting a formidable challenge to cybersecurity. Traditional machine learning and deep learning techniques often fall short in identifying encrypted malicious traffic due to their inability to fully extract and utilize the implicit relational and positional information embedded within data packets. This limitation has led to an unresolved challenge in the cybersecurity community: how to effectively extract valuable insights from the complex patterns of traffic packet transmission. Consequently, this paper introduces the TB-Graph model, an encrypted malicious traffic classification model based on a relational graph attention network. The model is a heterogeneous traffic burst graph that embeds side-channel features, which are unaffected by encryption, into the graph nodes and connects them with three different types of burst edges. Subsequently, we design a relational positional coding that prevents the loss of temporal relationships between the original traffic flows during graph transformation. Ultimately, TB-Graph leverages the powerful graph representation learning capabilities of Relational Graph Attention Network (RGAT) to extract latent behavioral features from the burst graph nodes and edge relationships. Experimental results show that TB-Graph outperforms various state-of-the-art methods in fine-grained encrypted malicious traffic classification tasks on two public datasets, indicating its enhanced capability for identifying encrypted malicious traffic. 展开更多
关键词 Encrypted malicious traffic classification traffic burst graph graph representation learning deep learning
在线阅读 下载PDF
TMC-GCN: Encrypted Traffic Mapping Classification Method Based on Graph Convolutional Networks
16
作者 Baoquan Liu Xi Chen +2 位作者 Qingjun Yuan Degang Li Chunxiang Gu 《Computers, Materials & Continua》 2025年第2期3179-3201,共23页
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based... With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%. 展开更多
关键词 Encrypted traffic classification deep learning graph neural networks multi-layer perceptron graph convolutional networks
在线阅读 下载PDF
Exploratory Research on Defense against Natural Adversarial Examples in Image Classification
17
作者 Yaoxuan Zhu Hua Yang Bin Zhu 《Computers, Materials & Continua》 2025年第2期1947-1968,共22页
The emergence of adversarial examples has revealed the inadequacies in the robustness of image classification models based on Convolutional Neural Networks (CNNs). Particularly in recent years, the discovery of natura... The emergence of adversarial examples has revealed the inadequacies in the robustness of image classification models based on Convolutional Neural Networks (CNNs). Particularly in recent years, the discovery of natural adversarial examples has posed significant challenges, as traditional defense methods against adversarial attacks have proven to be largely ineffective against these natural adversarial examples. This paper explores defenses against these natural adversarial examples from three perspectives: adversarial examples, model architecture, and dataset. First, it employs Class Activation Mapping (CAM) to visualize how models classify natural adversarial examples, identifying several typical attack patterns. Next, various common CNN models are analyzed to evaluate their susceptibility to these attacks, revealing that different architectures exhibit varying defensive capabilities. The study finds that as the depth of a network increases, its defenses against natural adversarial examples strengthen. Lastly, Finally, the impact of dataset class distribution on the defense capability of models is examined, focusing on two aspects: the number of classes in the training set and the number of predicted classes. This study investigates how these factors influence the model’s ability to defend against natural adversarial examples. Results indicate that reducing the number of training classes enhances the model’s defense against natural adversarial examples. Additionally, under a fixed number of training classes, some CNN models show an optimal range of predicted classes for achieving the best defense performance against these adversarial examples. 展开更多
关键词 Image classification convolutional neural network natural adversarial example data set defense against adversarial examples
在线阅读 下载PDF
New classification of gastric polyps:An in-depth analysis and critical evaluation
18
作者 Xiao-Hui Liao Ying-Ming Sun Hong-Bin Chen 《World Journal of Gastroenterology》 2025年第7期149-155,共7页
With the widespread use of upper gastrointestinal endoscopy,more and more gastric polyps(GPs)are being detected.Traditional management strategies often rely on histopathologic examination,which can be time-consuming a... With the widespread use of upper gastrointestinal endoscopy,more and more gastric polyps(GPs)are being detected.Traditional management strategies often rely on histopathologic examination,which can be time-consuming and may not guide immediate clinical decisions.This paper aims to introduce a novel classification system for GPs based on their potential risk of malignant transformation,categorizing them as"good","bad",and"ugly".A review of the literature and clinical case analysis were conducted to explore the clinical implications,management strategies,and the system's application in endoscopic practice.Good polyps,mainly including fundic gland polyps and inflammatory fibrous polyps,have a low risk of malignancy and typically require minimal or no intervention.Bad polyps,mainly including hyperplastic polyps and adenomas,pose an intermediate risk of malignancy,necessitating closer monitoring or removal.Ugly polyps,mainly including type 3 neuroendocrine tumors and early gastric cancer,indicate a high potential for malignancy and require urgent and comprehensive treatment.The new classification system provides a simplified and practical framework for diagnosing and managing GPs,improving diagnostic accuracy,guiding individualized treatment,and promoting advancements in endoscopic techniques.Despite some challenges,such as the risk of misclassification due to similar endoscopic appearances,this system is essential for the standardized management of GPs.It also lays the foundation for future research into biomarkers and the development of personalized medicine. 展开更多
关键词 Gastric polyps classification Fundic gland polyps Inflammatory fibroid polyps Hyperplastic polyps ADENOMAS Neuroendocrine tumors Early gastric cancer Patient management
在线阅读 下载PDF
Clastic facies classification using machine learning-based algorithms: A case study from Rawat Basin, Sudan
19
作者 Anas Mohamed Abaker Babai Olugbenga Ajayi Ehinola +1 位作者 Omer.I.M.Fadul Abul Gebbayin Mohammed Abdalla Elsharif Ibrahim 《Energy Geoscience》 2025年第1期7-23,共17页
Machine learning techniques and a dataset of five wells from the Rawat oilfield in Sudan containing 93,925 samples per feature(seven well logs and one facies log)were used to classify four facies.Data preprocessing an... Machine learning techniques and a dataset of five wells from the Rawat oilfield in Sudan containing 93,925 samples per feature(seven well logs and one facies log)were used to classify four facies.Data preprocessing and preparation involve two processes:data cleaning and feature scaling.Several machine learning algorithms,including Linear Regression(LR),Decision Tree(DT),Support Vector Machine(SVM),Random Forest(RF),and Gradient Boosting(GB)for classification,were tested using different iterations and various combinations of features and parameters.The support vector radial kernel training model achieved an accuracy of 72.49%without grid search and 64.02%with grid search,while the blind-well test scores were 71.01%and 69.67%,respectively.The Decision Tree(DT)Hyperparameter Optimization model showed an accuracy of 64.15%for training and 67.45%for testing.In comparison,the Decision Tree coupled with grid search yielded better results,with a training score of 69.91%and a testing score of 67.89%.The model's validation was carried out using the blind well validation approach,which achieved an accuracy of 69.81%.Three algorithms were used to generate the gradient-boosting model.During training,the Gradient Boosting classifier achieved an accuracy score of 71.57%,and during testing,it achieved 69.89%.The Grid Search model achieved a higher accuracy score of 72.14%during testing.The Extreme Gradient Boosting model had the lowest accuracy score,with only 66.13%for training and 66.12%for testing.For validation,the Gradient Boosting(GB)classifier model achieved an accuracy score of 75.41%on the blind well test,while the Gradient Boosting with Grid Search achieved an accuracy score of 71.36%.The Enhanced Random Forest and Random Forest with Bagging algorithms were the most effective,with validation accuracies of 78.30%and 79.18%,respectively.However,the Random Forest and Random Forest with Grid Search models displayed significant variance between their training and testing scores,indicating the potential for overftting.Random Forest(RF)and Gradient Boosting(GB)are highly effective for facies classification because they handle complex relationships and provide high predictive accuracy.The choice between the two depends on specific project requirements,including interpretability,computational resources,and data nature. 展开更多
关键词 Machine learning Facies classification Gradient Boosting(GB) Support Vector classifier(SVC) Random Forest(RF) Decision Tree(DT)
在线阅读 下载PDF
Experiments on image data augmentation techniques for geological rock type classification with convolutional neural networks
20
作者 Afshin Tatar Manouchehr Haghighi Abbas Zeinijahromi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期106-125,共20页
The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and hist... The integration of image analysis through deep learning(DL)into rock classification represents a significant leap forward in geological research.While traditional methods remain invaluable for their expertise and historical context,DL offers a powerful complement by enhancing the speed,objectivity,and precision of the classification process.This research explores the significance of image data augmentation techniques in optimizing the performance of convolutional neural networks(CNNs)for geological image analysis,particularly in the classification of igneous,metamorphic,and sedimentary rock types from rock thin section(RTS)images.This study primarily focuses on classic image augmentation techniques and evaluates their impact on model accuracy and precision.Results demonstrate that augmentation techniques like Equalize significantly enhance the model's classification capabilities,achieving an F1-Score of 0.9869 for igneous rocks,0.9884 for metamorphic rocks,and 0.9929 for sedimentary rocks,representing improvements compared to the baseline original results.Moreover,the weighted average F1-Score across all classes and techniques is 0.9886,indicating an enhancement.Conversely,methods like Distort lead to decreased accuracy and F1-Score,with an F1-Score of 0.949 for igneous rocks,0.954 for metamorphic rocks,and 0.9416 for sedimentary rocks,exacerbating the performance compared to the baseline.The study underscores the practicality of image data augmentation in geological image classification and advocates for the adoption of DL methods in this domain for automation and improved results.The findings of this study can benefit various fields,including remote sensing,mineral exploration,and environmental monitoring,by enhancing the accuracy of geological image analysis both for scientific research and industrial applications. 展开更多
关键词 Deep learning(DL) Image analysis Image data augmentation Convolutional neural networks(CNNs) Geological image analysis Rock classification Rock thin section(RTS)images
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部