期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于YOLOv8改进的跌倒检测算法:CASL-YOLO
1
作者 徐慧英 赵蕊 +1 位作者 朱信忠 黄晓 《浙江师范大学学报(自然科学版)》 CAS 2025年第1期36-44,共9页
跌倒对老年人危害极大,是我国65岁以上老年人致残和伤害死亡的首要原因.然而,目前主流的跌倒检测技术受环境的干扰较大,在物体遮挡、光照变化等复杂场景下的检测准确率较低,且模型的参数量和计算量较高,导致成本居高不下,不能很好地部... 跌倒对老年人危害极大,是我国65岁以上老年人致残和伤害死亡的首要原因.然而,目前主流的跌倒检测技术受环境的干扰较大,在物体遮挡、光照变化等复杂场景下的检测准确率较低,且模型的参数量和计算量较高,导致成本居高不下,不能很好地部署应用于实际生活场景.针对上述问题,提出了一种在复杂环境下轻量级的基于YOLOv8模型改进的跌倒检测算法:CASL-YOLO.首先,该模型引入空间深度卷积(SPD-Conv)模块替代传统卷积模块,通过对每个特征映射进行卷积操作,保留通道维度中的全部信息,从而提高模型在低分辨率图像和小物体检测方面的性能;其次,引入基于位置信息的注意力机制,以捕获跨通道、方向和位置感知的信息,从而更准确地定位和识别人体目标;最后,在特征提取模块中引入选择性大卷积核(LSKNet)动态调整感受野,以有效处理跌倒检测场景中的复杂环境信息,提高网络的感知能力和检测精度.实验结果表明,在公开的Human Fall数据集上,CASL-YOLO的mAP@0.5达到96.8%,优于基线YOLOv8n,同时模型仅有3.4×MiB的参数量和11.7×10^(9)的计算量.相比其他检测算法,CASL-YOLO在参数量和计算量小幅增加的情况下,实现了更高的精度和性能,同时满足实际场景的部署要求. 展开更多
关键词 跌倒检测 YOLOv8 注意力机制 空间深度卷积 选择性大卷积核
在线阅读 下载PDF
基于SASK和双分支结构的服装图像识别方法 被引量:1
2
作者 周啸辉 余磊 +2 位作者 张睿婷 熊邦书 欧巧凤 《应用科学学报》 CAS CSCD 北大核心 2023年第6期967-977,共11页
服装图像具有明暗不一、尺度各异的特性,这使得已有识别方法表现不佳。为解决此问题,本文基于空间注意力选择核(space attention selective kernel, SASK)模块和双分支结构搭建神经网络模型对服装图像进行识别。首先,结合跳跃连接、稠... 服装图像具有明暗不一、尺度各异的特性,这使得已有识别方法表现不佳。为解决此问题,本文基于空间注意力选择核(space attention selective kernel, SASK)模块和双分支结构搭建神经网络模型对服装图像进行识别。首先,结合跳跃连接、稠密连接和多尺度、通道拆分的思想,设计双分支神经网络,充分提取服装对象的整体特征。其次,基于空间注意力机制,设计SASK模块,使网络可以更多地关注服装对象的形态特征信息,从而提升识别效果。实验结果表明,本文所提方法不但在典型服装数据集上能够取得优于现有主流方法的识别精度,而且在具有明暗不一、尺度各异特性的其他图像数据集上同样表现良好。 展开更多
关键词 服装图像识别 空间注意力选择核 双分支神经网络 明暗不一 尺度各异
在线阅读 下载PDF
嵌入空间位置信息和多视角特征提取的红外小目标检测
3
作者 何自芬 薛金生 +1 位作者 张印辉 陈光晨 《红外与激光工程》 CSCD 北大核心 2024年第12期185-197,共13页
针对红外小目标图像的低分辨率、特征信息少、识别准确率低等问题,提出嵌入空间位置信息和多视角特征提取(Embedded Spatial Location Information and Multi-view Feature Extraction,ESLIMFE)的红外小目标检测模型。首先,随着网络深... 针对红外小目标图像的低分辨率、特征信息少、识别准确率低等问题,提出嵌入空间位置信息和多视角特征提取(Embedded Spatial Location Information and Multi-view Feature Extraction,ESLIMFE)的红外小目标检测模型。首先,随着网络深度的增加导致特征图分辨率逐渐减小从而丢失细节信息,因此在骨干网络中嵌入空间位置信息融合注意力机制(Spatial Location Information Fusion,SLIF)弥补小目标特征信息。其次,结合C3模块和动态蛇形卷积提出多视角特征提取(Multi-view Feature Extraction,MVFE)模块,通过在不同视角下提取同一特征来增强小目标的特征表达能力。采用大选择核(Large Selection Kernel,LSK)模块,通过使用不同大小的卷积核提取小目标多尺度信息,以提高对红外小目标定位能力。最后,引入基于注意力的尺度内特征交互(Attention-based Intrascale Feature Interaction,AIFI)模块增强特征之间的交互性。在对空红外小目标数据集上进行实验,实验结果表明,mAP75的检测精度为90.5%,mAP50~95检测精度为74.5%,文中模型能够较好地实现对红外小目标精确检测。 展开更多
关键词 空间位置信息 多视角特征提取 动态蛇形卷积 大选择核 基于注意力的尺度内特征交互 红外小目标
在线阅读 下载PDF
基于半监督空间-通道选择性卷积核网络的极化SAR图像地物分类 被引量:3
4
作者 王睿川 王岩飞 《雷达学报(中英文)》 CSCD 北大核心 2021年第4期516-530,共15页
针对极化合成孔径雷达(极化SAR)图像地物分类中标注样本数量少的问题,该文提出一种基于空间-通道选择性卷积核全卷积网络(SCSKFCN)和预选-联合优化半监督学习(SPUO)的极化SAR图像地物分类方法。SCSKFCN通过使用空间和通道注意力机制,对... 针对极化合成孔径雷达(极化SAR)图像地物分类中标注样本数量少的问题,该文提出一种基于空间-通道选择性卷积核全卷积网络(SCSKFCN)和预选-联合优化半监督学习(SPUO)的极化SAR图像地物分类方法。SCSKFCN通过使用空间和通道注意力机制,对不同感受野的特征进行自适应加权融合,有效提升了模型的分类性能。SPUO能够高效地利用标注样本,挖掘无标注样本中蕴含的信息。它采用K-Wishart距离进行样本预选并生成伪标签,然后在联合优化阶段使用真实标注样本和伪标注样本同时对模型进行优化。在模型优化过程中,SPUO对伪标注样本进行两步验证并筛选可靠的伪标注样本参与优化。实验结果表明,该方法能够在只使用少量标注样本的条件下实现高精度、高效率的极化SAR图像地物分类。 展开更多
关键词 极化SAR图像地物分类 全卷积网络 注意力机制 半监督学习 空间-通道选择性卷积核网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部