物联网设备持续产出的数据中会掺杂部分异常数据,导致物联网通信数据分类的质量与效率下降。因此,提出一种基于集成学习的物联网通信数据快速分类方法。从物联网设备收集通信数据,利用孤立森林算法确定物联网通信数据样本的异常分值,并...物联网设备持续产出的数据中会掺杂部分异常数据,导致物联网通信数据分类的质量与效率下降。因此,提出一种基于集成学习的物联网通信数据快速分类方法。从物联网设备收集通信数据,利用孤立森林算法确定物联网通信数据样本的异常分值,并去除异常分值较高的数据,通过基于密度的带噪声应用空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法整合去除异常后的数据,结合集成学习算法实现物联网通信数据快速分类。实验结果表明,所提方法的物联网通信数据分类准确率始终在97.2%以上,物联网通信数据分类时间均值约为1.55 s,具有良好的应用潜力。展开更多
为提高集群资源使用效率,管理员需要对用户进行分类,从而对不同用户提出资源使用策略。DBSCAN(Density Based Spatial Clustering of Applications with Noise)聚类算法可对用户进行分类,但对初始参数敏感。为此,提出改进算法,首先将密...为提高集群资源使用效率,管理员需要对用户进行分类,从而对不同用户提出资源使用策略。DBSCAN(Density Based Spatial Clustering of Applications with Noise)聚类算法可对用户进行分类,但对初始参数敏感。为此,提出改进算法,首先将密度进行层次划分,由此得出各层次的密度阈值,在每种阈值下采用DBSCAN算法,解决全局参数问题。在此基础上,创新地使用一个直接可达距离排序队列,将排序信息作为可变参数,减小初始参数对结果的影响。通过高性能计算中心用户数据的实例验证了其可行性。实验结果表明,改进后的算法提高了用户分类的准确性和全面性。展开更多
文摘物联网设备持续产出的数据中会掺杂部分异常数据,导致物联网通信数据分类的质量与效率下降。因此,提出一种基于集成学习的物联网通信数据快速分类方法。从物联网设备收集通信数据,利用孤立森林算法确定物联网通信数据样本的异常分值,并去除异常分值较高的数据,通过基于密度的带噪声应用空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)算法整合去除异常后的数据,结合集成学习算法实现物联网通信数据快速分类。实验结果表明,所提方法的物联网通信数据分类准确率始终在97.2%以上,物联网通信数据分类时间均值约为1.55 s,具有良好的应用潜力。
文摘为提高集群资源使用效率,管理员需要对用户进行分类,从而对不同用户提出资源使用策略。DBSCAN(Density Based Spatial Clustering of Applications with Noise)聚类算法可对用户进行分类,但对初始参数敏感。为此,提出改进算法,首先将密度进行层次划分,由此得出各层次的密度阈值,在每种阈值下采用DBSCAN算法,解决全局参数问题。在此基础上,创新地使用一个直接可达距离排序队列,将排序信息作为可变参数,减小初始参数对结果的影响。通过高性能计算中心用户数据的实例验证了其可行性。实验结果表明,改进后的算法提高了用户分类的准确性和全面性。