期刊文献+
共找到697篇文章
< 1 2 35 >
每页显示 20 50 100
Spatial-temporal evolution of gas migration pathways in coal during shear loading 被引量:2
1
作者 Peng Shoujian Xu Jiang +2 位作者 Yin Guangzhi Liu Dong Wang Weizhong 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期769-773,共5页
Custom designed and built meso shear test equipment was used to examine the shear crack propagation in gassy coal under different gas pressures.The spatial-temporal evolution of gas migration pathways in the coal duri... Custom designed and built meso shear test equipment was used to examine the shear crack propagation in gassy coal under different gas pressures.The spatial-temporal evolution of gas migration pathways in the coal during shear loading was also researched.The results show that gas pressure can hasten crack growth at the shear fracture surface,can reduce the shear strength of gassy coal,and can accelerate the shear failure process.Shear failure in gassy coal exhibits five stages:the pre-crack stage;the stable crack growth stage;the unsteady crack growth stage;the fracture stage;and,finally,the friction crack stage.The shear breaking creates two kinds of crack,shear cracks and tensile cracks.Cracks first appear in the shear plane at both ends and then extend toward the center until a shear fracture surface forms.The direction of shear crack propagation diverges from the predetermined shear plane by an angle of about 5°-10°. 展开更多
关键词 COAL Gas MIGRATION PATHWAY SHEAR loading spatial-temporal EVOLUTION
在线阅读 下载PDF
Hyperspectral remote sensing identification of marine oil emulsions based on the fusion of spatial and spectral features
2
作者 Xinyue Huang Yi Ma +1 位作者 Zongchen Jiang Junfang Yang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期139-154,共16页
Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protectio... Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection. 展开更多
关键词 oil emulsions IDENTIFICATION hyperspectral remote sensing feature selection convolutional neural network(CNN) spatial-temporal transferability
在线阅读 下载PDF
Advanced 3D ordered electrodes for PEMFC applications: From structural features and fabrication methods to the controllable design of catalyst layers
3
作者 Kaili Wang Tingting Zhou +4 位作者 Zhen Cao Zhimin Yuan Hongyan He Maohong Fan Zaiyong Jiang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1336-1365,共30页
The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, iono... The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, ionomer, and Pt nanoparticles, all immersed together and sprayed with a micron-level thickness of CLs. They have a performance trade-off where increasing the Pt loading leads to higher performance of abundant triple-phase boundary areas but increases the electrode cost. Major challenges must be overcome before realizing its wide commercialization. Literature research revealed that it is impossible to achieve performance and durability targets with only high-performance catalysts, so the controllable design of CLs architecture in MEAs for PEMFCs must now be the top priority to meet industry goals. From this perspective, a 3D ordered electrode circumvents this issue with a support-free architecture and ultrathin thickness while reducing noble metal Pt loadings. Herein, we discuss the motivation in-depth and summarize the necessary CLs structural features for designing ultralow Pt loading electrodes. Critical issues that remain in progress for 3D ordered CLs must be studied and characterized. Furthermore, approaches for 3D ordered CLs architecture electrode development, involving material design, structure optimization, preparation technology, and characterization techniques, are summarized and are expected to be next-generation CLs for PEMFCs. Finally, the review concludes with perspectives on possible research directions of CL architecture to address the significant challenges in the future. 展开更多
关键词 PEMFC 3D ordered electrode Structural features Preparation technology Ultralow Pt loading
在线阅读 下载PDF
Non-Intrusive Load Identification Model Based on 3D Spatial Feature and Convolutional Neural Network 被引量:1
4
作者 Jiangyong Liu Ning Liu +3 位作者 Huina Song Ximeng Liu Xingen Sun Dake Zhang 《Energy and Power Engineering》 2021年第4期30-40,共11页
<div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I t... <div style="text-align:justify;"> Load identification method is one of the major technical difficulties of non-intrusive composite monitoring. Binary V-I trajectory image can reflect the original V-I trajectory characteristics to a large extent, so it is widely used in load identification. However, using single binary V-I trajectory feature for load identification has certain limitations. In order to improve the accuracy of load identification, the power feature is added on the basis of the binary V-I trajectory feature in this paper. We change the initial binary V-I trajectory into a new 3D feature by mapping the power feature to the third dimension. In order to reduce the impact of imbalance samples on load identification, the SVM SMOTE algorithm is used to balance the samples. Based on the deep learning method, the convolutional neural network model is used to extract the newly produced 3D feature to achieve load identification in this paper. The results indicate the new 3D feature has better observability and the proposed model has higher identification performance compared with other classification models on the public data set PLAID. </div> 展开更多
关键词 Non-Intrusive load Identification Binary V-I Trajectory feature Three-Dimensional feature Convolutional Neural Network Deep Learning
在线阅读 下载PDF
Regional Evolution Features and Coordinated Development Strategies for Northeast China 被引量:3
5
作者 MEI Lin XU Xiaopo CHEN Mingxiu 《Chinese Geographical Science》 SCIE CSCD 2006年第4期378-382,共5页
Northeast China, as the most important production base of agriculture, forestry, and livestock-breeding as well as the old industrial base in the whole country, has been playin a key role in the construction and deve... Northeast China, as the most important production base of agriculture, forestry, and livestock-breeding as well as the old industrial base in the whole country, has been playin a key role in the construction and development of China's economy. However, after the policy of reform and open-up was taken in China. the economic development speed and efficiency ofthis area have turned to be evidently lower than those of coastal area and the national average level as well, which is so-called 'Northeast Phenomenon' and 'Neo-Northeast Phenomenon'. In terms of those phenomena, this paper firstly reviews the spatial and temporal features of the regional evolution of this area so as to unveil the profound forming causes of 'Northeast Phenomena' and 'Neo-Northeast Phenomena'. And then the paper makes a further exploration into the status quo of this region and its forming causes by analyzing its economy gross, industrial structure, product structure, regional eco-categories, etc. At the end of the paper, the authors put forward the basic coordinated development strategies for Northeast China. namely we can revitalize this area by means of adjustment of economic structure, regional coordination, planning urban and rural areas as a whole, institutional innovation, etc. 展开更多
关键词 regional evolution spatial-temporal feature coordinated development strategy Northeast China
在线阅读 下载PDF
STGSA:A Novel Spatial-Temporal Graph Synchronous Aggregation Model for Traffic Prediction 被引量:2
6
作者 Zebing Wei Hongxia Zhao +5 位作者 Zhishuai Li Xiaojie Bu Yuanyuan Chen Xiqiao Zhang Yisheng Lv Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期226-238,共13页
The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most exi... The success of intelligent transportation systems relies heavily on accurate traffic prediction,in which how to model the underlying spatial-temporal information from traffic data has come under the spotlight.Most existing frameworks typically utilize separate modules for spatial and temporal correlations modeling.However,this stepwise pattern may limit the effectiveness and efficiency in spatial-temporal feature extraction and cause the overlook of important information in some steps.Furthermore,it is lacking sufficient guidance from prior information while modeling based on a given spatial adjacency graph(e.g.,deriving from the geodesic distance or approximate connectivity),and may not reflect the actual interaction between nodes.To overcome those limitations,our paper proposes a spatial-temporal graph synchronous aggregation(STGSA)model to extract the localized and long-term spatial-temporal dependencies simultaneously.Specifically,a tailored graph aggregation method in the vertex domain is designed to extract spatial and temporal features in one graph convolution process.In each STGSA block,we devise a directed temporal correlation graph to represent the localized and long-term dependencies between nodes,and the potential temporal dependence is further fine-tuned by an adaptive weighting operation.Meanwhile,we construct an elaborated spatial adjacency matrix to represent the road sensor graph by considering both physical distance and node similarity in a datadriven manner.Then,inspired by the multi-head attention mechanism which can jointly emphasize information from different r epresentation subspaces,we construct a multi-stream module based on the STGSA blocks to capture global information.It projects the embedding input repeatedly with multiple different channels.Finally,the predicted values are generated by stacking several multi-stream modules.Extensive experiments are constructed on six real-world datasets,and numerical results show that the proposed STGSA model significantly outperforms the benchmarks. 展开更多
关键词 Deep learning graph neural network(GNN) multistream spatial-temporal feature extraction temporal graph traffic prediction
在线阅读 下载PDF
Spatial-Temporal Characteristics of Regional Extreme Low Temperature Events in China during 1960-2009 被引量:1
7
作者 WANG Xiao-Juan GONG Zhi-Qiang +1 位作者 REN Fu-Min FENG Guo-Lin 《Advances in Climate Change Research》 SCIE 2012年第4期186-194,共9页
An objective identification technique is used to detect regional extreme low temperature events (RELTE) in China during 1960-2009. Their spatial-temporal characteristics are analyzed. The results indicate that the l... An objective identification technique is used to detect regional extreme low temperature events (RELTE) in China during 1960-2009. Their spatial-temporal characteristics are analyzed. The results indicate that the lowest temperatures of RELTE, together with the frequency distribution of the geometric latitude center, exhibit a double-peak feature. The RELTE frequently happen near the geometric area of 30°N and 42°N before the mid-1980s, but shifted afterwards to 30°N. During 1960-2009, the frequency~ intensity, and the maximum impacted area of RELTE show overall decreasing trends. Due to the contribution of RELTE, with long duratioh and large spatial range, which account for 10% of the total RELTE, there is a significant turning point in the late 1980s. A change to a much more steady state after the late 1990s is identified. In addition, the integrated indices of RELTE are classified and analyzed. 展开更多
关键词 regional extreme low temperature events spatial-temporal features turning point frequency distribution
在线阅读 下载PDF
Online identification and extraction method of regional large-scale adjustable load-aggregation characteristics
8
作者 Siwei Li Liang Yue +1 位作者 Xiangyu Kong Chengshan Wang 《Global Energy Interconnection》 EI CSCD 2024年第3期313-323,共11页
This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online ide... This article introduces the concept of load aggregation,which involves a comprehensive analysis of loads to acquire their external characteristics for the purpose of modeling and analyzing power systems.The online identification method is a computer-involved approach for data collection,processing,and system identification,commonly used for adaptive control and prediction.This paper proposes a method for dynamically aggregating large-scale adjustable loads to support high proportions of new energy integration,aiming to study the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction methods.The experiment selected 300 central air conditioners as the research subject and analyzed their regulation characteristics,economic efficiency,and comfort.The experimental results show that as the adjustment time of the air conditioner increases from 5 minutes to 35 minutes,the stable adjustment quantity during the adjustment period decreases from 28.46 to 3.57,indicating that air conditioning loads can be controlled over a long period and have better adjustment effects in the short term.Overall,the experimental results of this paper demonstrate that analyzing the aggregation characteristics of regional large-scale adjustable loads using online identification techniques and feature extraction algorithms is effective. 展开更多
关键词 load aggregation Regional large-scale Online recognition feature extraction method
在线阅读 下载PDF
基于动态融合注意力机制的电力负荷缺失数据填充模型
9
作者 赵冬 李亚瑞 +1 位作者 王文相 宋伟 《郑州大学学报(工学版)》 北大核心 2025年第2期111-118,共8页
为了提高电力负荷数据的缺失值填充精度,保障后续数据分析与应用的高效进行,首先,提出一种基于动态融合注意力机制的填充模型(DFAIM),该模型由注意力机制模块和动态加权融合模块构成,通过注意力机制模块的两种不同注意力机制挖掘特征与... 为了提高电力负荷数据的缺失值填充精度,保障后续数据分析与应用的高效进行,首先,提出一种基于动态融合注意力机制的填充模型(DFAIM),该模型由注意力机制模块和动态加权融合模块构成,通过注意力机制模块的两种不同注意力机制挖掘特征与时间戳之间的深层关联;其次,通过动态加权融合模块将可学习的权重赋予注意力机制模块的两个输出以得到特征表示;最后,利用特征表示来替换缺失位置的值,从而得到准确的填充结果。使用纽约市某地区的气象及负荷数据集及UCI电力负荷数据集对提出的模型进行验证,实验结果表明:相较于统计学、机器学习和深度学习填充模型,DFAIM在评价指标MAE、RMSE和MRE上均具有一定优势。 展开更多
关键词 缺失值填充 注意力机制 电力负荷 时序特征
在线阅读 下载PDF
基于特征优选与自适应三支密度峰值法的多元负荷聚类及用能行为刻画
10
作者 赵振宇 郭丽宣 《科学技术与工程》 北大核心 2025年第5期1944-1953,共10页
随着向新型能源体系的转型加速,亟待开展对多元负荷用户的复杂用能特性分析的深入研究。提出了一种综合考量电、冷、热多元负荷耦合特性的用户用能特性标签库构建技术及用户画像方法。首先运用快速相关性滤波算法剔除高冗余低相关特征,... 随着向新型能源体系的转型加速,亟待开展对多元负荷用户的复杂用能特性分析的深入研究。提出了一种综合考量电、冷、热多元负荷耦合特性的用户用能特性标签库构建技术及用户画像方法。首先运用快速相关性滤波算法剔除高冗余低相关特征,并通过随机森林和递归式特征消除算法精选出具有强区分能力的用能特征。在聚类阶段,改进的自适应三支密度峰值聚类算法(three-way adaptive density peak clustering,3W-ADPC)通过结合自适应近邻搜索和三支聚类算法提升负荷聚类效果。实证结果表明,所提方法具备在计算效率和聚类精度上的双重优势,能够精准揭示多元负荷用户综合用能特性和深层次信息,证实所提方法在多元负荷用户行为研究中的实用价值。 展开更多
关键词 负荷聚类 多元负荷 用能行为特性 特征优选 用户画像
在线阅读 下载PDF
一种基于数据驱动的空调负荷预测方法
11
作者 周孟然 周光耀 +6 位作者 胡锋 朱梓伟 张奇奇 王玲 孔伟乐 吴长臻 崔恩汉 《河南师范大学学报(自然科学版)》 北大核心 2025年第3期128-134,共7页
空调负荷预测是空调负荷潜力分析和电网空调负荷调控的基础,为了精确地对空调负荷进行预测,文中提出了一种考虑到外界影响因素以及集成优化的空调负荷预测方法.首先,拟定好实验运行方案并采集影响因素数据.其次,使用近邻成分分析(NCA)... 空调负荷预测是空调负荷潜力分析和电网空调负荷调控的基础,为了精确地对空调负荷进行预测,文中提出了一种考虑到外界影响因素以及集成优化的空调负荷预测方法.首先,拟定好实验运行方案并采集影响因素数据.其次,使用近邻成分分析(NCA)方法进行特征选择,剔除重要度小的特征.然后使用白鲨优化算法(white shark optimizer,WSO)对支持向量回归(support vector regression,SVR)的正则化参数和核函数的宽度参数进行优化,最后,结合自适应提升算法(adaptive boosting,Adaboost)构建Adaboost-WSO-SVR主模型,检验其精度并与其他方法进行比较.结果表明,提出的Adaboost-WSO-SVR主模型相比于集成优化后的BP,ELM模型精度更高.可知提出的方法在负荷预测方面效果更好,为空调节能优化控制策略提供依据. 展开更多
关键词 空调负荷 负荷预测 特征选择 白鲨优化算法 自适应提升算法 支持向量回归
在线阅读 下载PDF
基于边缘计算的非侵入式居民负荷监测关键技术研究
12
作者 刘静 《移动信息》 2025年第1期268-270,283,共4页
针对非侵入式居民负荷检测技术存在的非侵入负荷分解对未识别设备负荷事件的检测准确性问题,文中基于边缘计算技术设计了一种云—边协作计算系统。该系统可以通过挖掘边缘侧采集的负荷数据行为特征,实现电力负荷信号的高效分解。同时,... 针对非侵入式居民负荷检测技术存在的非侵入负荷分解对未识别设备负荷事件的检测准确性问题,文中基于边缘计算技术设计了一种云—边协作计算系统。该系统可以通过挖掘边缘侧采集的负荷数据行为特征,实现电力负荷信号的高效分解。同时,考虑非侵入式负荷检测系统控制平台存在的存储资源、功耗等指标的限制,提出了一种轻量化粒子群优化算法,实现了动态聚类算法与暂态功率、谐波分量等特征的结合。该算法可以有效提升监测系统的负荷检测效率和识别准确率,有效解决了传统方法在识别未知电力负荷方面的问题。为检验该系统的准确性及有效性,文中以S小区382户居民的日用电数据为对象,进行了实验测试。实验结果表明,该系统对海量用户的电力负荷数据的识别准确率高于98.36%,有效实现了非侵入式居民负荷监测。 展开更多
关键词 边缘计算 非侵入式 负荷分解 负荷监测 特征聚类
在线阅读 下载PDF
基于贝叶斯优化XGBoost的燃煤电厂负荷预测
13
作者 汪繁荣 刘宇航 胡雨千 《电工技术》 2025年第1期33-37,共5页
在众多的燃煤电厂耗能系统中,制粉系统是最主要的耗能系统之一,想要达到燃煤电厂发电时节约能源并降低消耗的预期目标,最重要的方式便是高质量、高效能地运转制粉系统。由于负荷的多样性与波动性显著增加,对预测模型提出了更高的泛化能... 在众多的燃煤电厂耗能系统中,制粉系统是最主要的耗能系统之一,想要达到燃煤电厂发电时节约能源并降低消耗的预期目标,最重要的方式便是高质量、高效能地运转制粉系统。由于负荷的多样性与波动性显著增加,对预测模型提出了更高的泛化能力和精度要求,因此急需一种预测精度高、稳定性突出的预测模型。为此提出了一种基于贝叶斯优化的XGBoost预测模型,以当前大型燃煤电厂发电机组普遍采用的中速磨冷一次风机正压直吹式制粉系统为研究对象,通过特征重要程度得分再排序和特征相关性分析降低了特征维度,使输入特征变量和输出制粉单耗具有较好的映射关系。模型能很好地挖掘输入与输出之间的映射关系,预测精度达到99.4%,在实际负荷预测中效果较好,可为节能降耗的方案制定提供参考。 展开更多
关键词 制粉系统 XGBoost算法 负荷预测 特征分析 贝叶斯优化
在线阅读 下载PDF
基于特征选取与TSO-BP短期电力负荷预测研究
14
作者 高昕 郑前东 《安徽理工大学学报(自然科学版)》 2025年第1期57-63,共7页
目的为降低环境因素对电力负荷预测的影响以及提高短期负荷预测精度。方法提出一种结合皮尔逊相关系数(PCC)、主成分分析(PCA)、金枪鱼群优化算法(TSO)改进BP神经网络的短期电力负荷预测模型。首先,为消除无关变量的影响,利用PCC进行特... 目的为降低环境因素对电力负荷预测的影响以及提高短期负荷预测精度。方法提出一种结合皮尔逊相关系数(PCC)、主成分分析(PCA)、金枪鱼群优化算法(TSO)改进BP神经网络的短期电力负荷预测模型。首先,为消除无关变量的影响,利用PCC进行特征选取,挑选出与负荷预测有关的气象属性;其次,利用PCA提取气象特征序列中的关键影响因子,消除原始序列的相关性和冗余性,降低模型输入维度,提高训练效率;最后,为解决传统BP神经网络在初始权重和阈值参数上具有随机性的问题,采用TSO来搜寻最优解代替随机参数,获得改进的模型。结果利用某一地区的电力负荷数据进行仿真分析,结果表明所构建模型预测平均绝对百分比误差达到了0.52%。结论证明了经特征选取与TSO优化后模型具有更高的预测精度。 展开更多
关键词 特征选取 电力负荷预测 金枪鱼群算法 最优参数
在线阅读 下载PDF
融合卷积神经网络和注意力机制的负荷识别方法 被引量:1
15
作者 赵毅涛 李钊 +3 位作者 刘兴龙 骆钊 王钢 沈鑫 《电力工程技术》 北大核心 2025年第1期227-235,共9页
对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境... 对居民住宅进行非侵入式负荷监测(non-intrusive load monitoring,NILM)是智能电网用户需求侧的重要研究内容,居民负荷的能耗分析和用电管理是实现节能减排、可持续发展的关键环节。针对传统算法识别性能差、难以适应当下复杂用电环境的问题,文中从增强分类算法特征提取性能的优化思路出发,提出融合卷积神经网络(convolutional neural network,CNN)和自注意力机制的NILM负荷识别方法。首先,采集8种不同家用电器的电力数据,建立U-I轨迹曲线数据库;其次,采用挤压-激励网络(squeeze-and-excitation network,SENet)注意力机制提升CNN的特征聚合能力,完成对不同电器U-I轨迹曲线的特征提取和负荷识别;最后,对私有数据集和PLAID数据集进行测试,算例结果表明,所提方法在不同运行场景下均具有较高的识别准确率和较好的泛化性能。 展开更多
关键词 非侵入式负荷监测(NILM) 负荷识别 卷积神经网络(CNN) 挤压-激励网络(SENet) 注意力机制 特征提取 U-I轨迹
在线阅读 下载PDF
基于特征匹配和灵敏度辅助决策的配电网优化调控技术
16
作者 严晗 徐晓春 +5 位作者 张毅 袁洲茂 汤同峰 周鑫 戴晖 窦晓波 《电力系统保护与控制》 北大核心 2025年第2期112-124,共13页
分布式电源、电动汽车和储能等高比例接入配电网,提高了配电网的智能性、可控性,同时也对配电网的优化调控提出了更复杂的经济安全要求。针对实时量测缺失的配电网在线优化调控问题,提出一种基于特征匹配和灵敏度辅助决策的配电网优化... 分布式电源、电动汽车和储能等高比例接入配电网,提高了配电网的智能性、可控性,同时也对配电网的优化调控提出了更复杂的经济安全要求。针对实时量测缺失的配电网在线优化调控问题,提出一种基于特征匹配和灵敏度辅助决策的配电网优化调控方案。首先,构建了考虑不同运行特性下的配电网历史特征库与策略库,提高特征匹配的精度和速度,通过源网荷储协调优化有效降低了网络损耗和电压波动。其次,提出了基于特征匹配的配电网匹配策略生成方法,摆脱了潮流模型的限制,大幅提升了实时优化效率。最后,为了修正特征匹配偏差引起的策略误差,提出了计及部分实时量测的配电网在线优化调控辅助决策方法,设计基于系统匹配偏差率的指令权重系数,提高了在线调控指令的精度。通过算例仿真验证了所提方案的准确性和可行性。 展开更多
关键词 配电网 源网荷储 数据驱动 特征匹配 辅助决策
在线阅读 下载PDF
基于特征组合的机械臂视觉伺服协作抓取系统
17
作者 李韵辰 胡晓兵 +2 位作者 杜玲羽 张哲源 陈海军 《组合机床与自动化加工技术》 北大核心 2025年第3期15-20,共6页
当前视觉伺服抓取策略大多注重工件自身的图像特征构建及复杂的控制模型设计,导致机械臂抓取系统设计困难,适用性和灵活性低。针对以上问题提出了基于图像特征组合的机械臂视觉伺服协作抓取系统。首先,利用姿态矫正台上装载的四边形平... 当前视觉伺服抓取策略大多注重工件自身的图像特征构建及复杂的控制模型设计,导致机械臂抓取系统设计困难,适用性和灵活性低。针对以上问题提出了基于图像特征组合的机械臂视觉伺服协作抓取系统。首先,利用姿态矫正台上装载的四边形平面光源的顶点特征,根据工件的质心位置和主方向,在工件位置处组合机械臂视觉伺服特征点,保证工件具有稳定的视觉特征;其次,搭建了机械臂和姿态矫正台的闭环协作控制回路,并设计姿态矫正位置补偿环节,用于减少运动复杂度,加快系统收敛速度。实验结果表明,所提出的视觉伺服协作抓取方案,能够快速稳定地完成工件的位姿矫正工作,视觉伺服最大像素误差为6个像素点,最大姿态角度误差为3.74°,协作运动均在40次迭代内完成,具有良好的抓取准确度和适用性。 展开更多
关键词 特征组合 多机协作 上下料抓取 视觉伺服 机械臂
在线阅读 下载PDF
基于MPFA内嵌物理神经网络的园区空调负荷短期预测
18
作者 温茂林 邓汉钧 +3 位作者 杨帅 余敏琪 孟珺遐 许刚 《电网与清洁能源》 北大核心 2025年第4期1-11,共11页
提出一种基于多参数特征关联(multi parameter feature association,MPFA)内嵌物理神经网络(physics-informed neural network,PINN)的园区空调负荷短期预测模型。通过MPFA方法对多维数据进行聚类标记,提取特征向量作为模型输入。基于... 提出一种基于多参数特征关联(multi parameter feature association,MPFA)内嵌物理神经网络(physics-informed neural network,PINN)的园区空调负荷短期预测模型。通过MPFA方法对多维数据进行聚类标记,提取特征向量作为模型输入。基于空调热力学物理方程和深度神经网络构建PINN模型,在模型中嵌入物理约束,实现对园区空调负荷的预测。以商业园区空调负荷数据为例,验证了所提方法的有效性。 展开更多
关键词 园区建筑空调 物理神经网络 多参数特征关联 负荷预测
在线阅读 下载PDF
基于特征细分的电动汽车充电站负荷预测方法
19
作者 董宸 霍超 +1 位作者 姚伟 黄天罡 《计算机仿真》 2025年第1期137-141,166,共6页
电动汽车充电站负荷在时空分布上的具有间歇性、随机性等不确定性特点,准确预测充电站充电负荷是保证新型电力系统安全经济运行的关键。基于知识图谱技术和杰卡德相似度,提出了特征相似度指标,并将其应用于电动汽车充电站负荷预测问题,... 电动汽车充电站负荷在时空分布上的具有间歇性、随机性等不确定性特点,准确预测充电站充电负荷是保证新型电力系统安全经济运行的关键。基于知识图谱技术和杰卡德相似度,提出了特征相似度指标,并将其应用于电动汽车充电站负荷预测问题,提出一种基于特征细分的电动汽车充电站负荷预测方法,以较少的历史数据样本和训练时长,获得较好的预测精度。最后,以某城区电动汽车充电站负荷预测为例进行验证,结果表明,针对同一历史数据样本集,采用所提方法的预测精度更高的同时训练速度也更快。 展开更多
关键词 特征细分 知识图谱 杰卡德指数 负荷预测
在线阅读 下载PDF
UHPC中GFRP筋的粘结性能试验研究
20
作者 万祥 胡惠琳 +2 位作者 刘玉擎 徐骁青 王彬 《结构工程师》 2025年第1期102-108,共7页
GFRP筋-UHPC构件拥有优异的力学性能和耐久性,具有广阔的应用前景。GFRP筋在UHPC中的粘结性能是两种材料协同工作的关键。分别对12个和4个GFRP筋-UHPC试件进行了单调和低周循环加载,研究表面处理方式、粘结长度和周期加载对破坏模式、... GFRP筋-UHPC构件拥有优异的力学性能和耐久性,具有广阔的应用前景。GFRP筋在UHPC中的粘结性能是两种材料协同工作的关键。分别对12个和4个GFRP筋-UHPC试件进行了单调和低周循环加载,研究表面处理方式、粘结长度和周期加载对破坏模式、粘结强度等力学性能的影响。试验结果表明,所有试件均发生了GFRP筋拔出破坏;相比表面喷砂试件,绕线试件的粘结应力-滑移曲线在应力峰值后具有更明显的上下波动现象;粘结强度随着粘结长度的增加略有减小;带肋试件的粘结强度比喷砂试件略高;低周循环加载对GFRP筋在UHPC中的粘结性能影响不大。最后,通过修正Yoo学者的粘结强度模型,得到了考虑GFRP筋表面特征的粘结强度预测公式。 展开更多
关键词 GFRP筋 UHPC 粘结强度 循环加载 表面特征
在线阅读 下载PDF
上一页 1 2 35 下一页 到第
使用帮助 返回顶部