期刊文献+
共找到207篇文章
< 1 2 11 >
每页显示 20 50 100
Imputing missing values using cumulative linear regression 被引量:2
1
作者 Samih M. Mostafa 《CAAI Transactions on Intelligence Technology》 2019年第3期182-200,共19页
The concept of missing data is important to apply statistical methods on the dataset. Statisticians and researchers may end up to an inaccurate illation about the data if the missing data are not handled properly. Of ... The concept of missing data is important to apply statistical methods on the dataset. Statisticians and researchers may end up to an inaccurate illation about the data if the missing data are not handled properly. Of late, Python and R provide diverse packages for handling missing data. In this study, an imputation algorithm, cumulative linear regression, is proposed. The proposed algorithm depends on the linear regression technique. It differs from the existing methods, in that it cumulates the imputed variables;those variables will be incorporated in the linear regression equation to filling in the missing values in the next incomplete variable. The author performed a comparative study of the proposed method and those packages. The performance was measured in terms of imputation time, root-mean-square error, mean absolute error, and coefficient of determination (R^2). On analysing on five datasets with different missing values generated from different mechanisms, it was observed that the performances vary depending on the size, missing percentage, and the missingness mechanism. The results showed that the performance of the proposed method is slightly better. 展开更多
关键词 Imputing MISSING VALUES CUMULATIVE linear regression statistical METHODS
在线阅读 下载PDF
Application of Multiple Linear Regression and Manova to Evaluate Health Impacts Due to Changing River Water Quality 被引量:2
2
作者 Sudevi Basu K. S. Lokesh 《Applied Mathematics》 2014年第5期799-807,共9页
Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated wa... Rivers are important systems which provide water to fulfill human needs. However, excessive human uses over the years have led to deterioration in quality of river causing, causing health problems from contaminated water. This study focuses on the application of statistical techniques, Multiple Linear Regression model and MANOVA to assess health impacts due to pollution in Cauvery river stretch in Srirangapatna. In this study, using Multiple Linear Regression, it is found that health impact level is 60.8% dependent on water quality parameters of BOD, COD, TDS, TC and FC. The t-statistics and their associated 2-tailed p-values indicate that COD and TDS produces health impacts compared to BOD, TC and FC, when their effects are put together across all the six sampling stations in Srirangapatna. Further Pearson correlation Matrix shows highly significant positive correlation amongst parameters across all stations indicating possibility of common sources of origin that might be anthropogenic. Also graphs are plotted for individual parameters across all stations and it reveals that COD and TDS values are significant across all sampling stations, though their values are higher in impact stations, causing health impacts. 展开更多
关键词 Multiple linear regression Model MANOVA t-statistics BOD COD TDS TC FC
在线阅读 下载PDF
Statistical Approach to Basketball Players’Skill Level
3
作者 Jiajun Wu 《Journal of Applied Mathematics and Physics》 2024年第4期1352-1363,共12页
In basketball, each player’s skill level is the key to a team’s success or failure, the skill level is affected by many personal and environmental factors. A physics-informed AI statistics has become extremely impor... In basketball, each player’s skill level is the key to a team’s success or failure, the skill level is affected by many personal and environmental factors. A physics-informed AI statistics has become extremely important. In this article, a complex non-linear process is considered by taking into account the average points per game of each player, playing time, shooting percentage, and others. This physics-informed statistics is to construct a multiple linear regression model with physics-informed neural networks. Based on the official data provided by the American Basketball League, and combined with specific methods of R program analysis, the regression model affecting the player’s average points per game is verified, and the key factors affecting the player’s average points per game are finally elucidated. The paper provides a novel window for coaches to make meaningful in-game adjustments to team members. 展开更多
关键词 Physics-Informed statistics Multiple linear regression Average Score per Game R Program Analysis
在线阅读 下载PDF
On Diagnostics in Stochastic Restricted Linear Regression Models
4
作者 Shuling Wang Man Liu Xiaohong Deng 《Open Journal of Statistics》 2014年第9期757-764,共8页
The aim of this paper is to propose some diagnostic methods in stochastic restricted linear regression models. A review of stochastic restricted linear regression models is given. For the model, this paper studies the... The aim of this paper is to propose some diagnostic methods in stochastic restricted linear regression models. A review of stochastic restricted linear regression models is given. For the model, this paper studies the method and application of the diagnostic mostly. Firstly, review the estimators of this model. Secondly, show that the case deletion model is equivalent to the mean shift outlier model for diagnostic purpose. Then, some diagnostic statistics are given. At last, example is given to illustrate our results. 展开更多
关键词 STOCHASTIC RESTRICTED linear regression Model STOCHASTIC RESTRICTED RIDGE ESTIMATOR statistical DIAGNOSTICS
在线阅读 下载PDF
Simple and Multi Linear Regression Model of Verbs in Quran
5
作者 Abdelkrim El Mouatasim 《American Journal of Computational Mathematics》 2018年第1期68-77,共10页
This paper mainly presented a good simple and multi-linear regression model of verbs in the Quran book. This model, gives an analysis for the influence to frequency of words with the form (—un, ---) made by the frequ... This paper mainly presented a good simple and multi-linear regression model of verbs in the Quran book. This model, gives an analysis for the influence to frequency of words with the form (—un, ---) made by the frequency of plural present verbs (t—un, ---) or (y—un, ---), and models, and the relationship between independent variables and dependent variable by fitting a linear equation to the observed data with simple linear regression model. The matlab function is used for finding the parameters of the linear regression model and plotting the fits. The results show that the parameters of the model are one vector (1, 1) and mean of dataset is (6, 7). Its corresponding to the verb with input is frequency of the verb they enter and the frequency of enter (yadkolun ?dakilun), also other 17 points exist in the line and in the dataset of 387 verbs and their derivate verbs in Quran. The name of Allah () showed when we use tree variables and plot it in 3D with option “Show Text” for a multi regression model. 展开更多
关键词 linear regression TEXT Mining Quran statistICS Matlab ARABIC GRAMMAR Optimization Computation LINGUISTICS
在线阅读 下载PDF
Statistical Prediction of Heavy Rain in South Korea 被引量:3
6
作者 Keon Tae SOHN Jeong Hyeong LEE +1 位作者 Soon Hwan LEE Chan Su RYU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第5期703-710,共8页
This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul,... This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul, Daejeon, Gangreung, (Jwangju, Busan, and Jeju) in South Korea are used. And the corresponding 45 synoptic factors generated by the numerical model are used as potential predictors. Four statistical forecast models (linear regression model, logistic regression model, neural network model and decision tree model) for the occurrence of heavy rain are based on the model output statistics (MOS) method. They are separately estimated by the same training data. The thresholds are considered to forecast the occurrence of heavy rain because the distribution of estimated values that are generated by each model is too skewed. The results of four models are compared via Heidke skill scores. As a result, the logistic regression model is recommended. 展开更多
关键词 heavy rain model output statistics linear regression logistic regression neural networks decision tree
在线阅读 下载PDF
Statistical Studies of the Physicochemical Analytic Results of a Series of Synthetic Calcium Hydroxyapatite Containing Carbonate and Sodium 被引量:1
7
作者 Faouzia Rockh B. Hadj Yahia Ismail Khattech 《American Journal of Analytical Chemistry》 2014年第5期343-357,共15页
The objective of this study is to present a simple method of statistical calculation that allowed us to determine the relationship between the different data obtained from the characterization of the synthetic carbona... The objective of this study is to present a simple method of statistical calculation that allowed us to determine the relationship between the different data obtained from the characterization of the synthetic carbonated apatites containing sodium, in order to find the fundamental substitution mechanism(s) for incorporation of Na+ and?CO32- and to establish the general formula. For that, a series of hydroxyapatites containing carbonate and sodium (Na-CO3HAps) has been obtained by the precipitation method. All the compounds were characterized by infrared spectra (IR), powder X-ray diffraction (PXRD) and elemental analysis. The statistical treatment of the experiment result allows us to determine the relationship between one variable and the change in the other and to found the fundamental substitution mechanism(s) for incorporation of Na+ and?CO32- . Analysis of variance (ANOVA) allows us to test the models proposed. 展开更多
关键词 Carbonated Calcium Hydroxyapatite CONTAINING SODIUM Na-CO3HAps statistical STUDIES Multiple linear regression Analysis of Variance (ANOVA)
在线阅读 下载PDF
Prediction and setup of phytoplankton statistical model of Qiandaohu Lake
8
作者 严力蛟 全为民 赵晓慧 《Journal of Zhejiang University Science》 EI CSCD 2004年第10期1206-1210,共5页
This research considers the mathematical relationship between concentration of Chla and seven environmental factors, i.e. Lake water temperature (T), Secci-depth (SD), pH, DO, CODMn, Total Nitrogen (TN), Total Phospho... This research considers the mathematical relationship between concentration of Chla and seven environmental factors, i.e. Lake water temperature (T), Secci-depth (SD), pH, DO, CODMn, Total Nitrogen (TN), Total Phosphorus (TP). Stepwise linear regression of 1997 to 1999 monitoring data at each sampling point of Qiandaohu Lake yielded the multivariate regression models presented in this paper. The concentration of Chla as simulation for the year 2000 by the regression model was similar to the observed value. The suggested mathematical relationship could be used to predict changes in the lakewater environment at any point in time. The results showed that SD, TP and pH were the most significant factors affecting Chla concentration. 展开更多
关键词 Qiandaohu Lake Stepwise linear regression statistical model Chla
在线阅读 下载PDF
Comparison of Different Regularized and Shrinkage Regression Methods to Predict Daily Tropospheric Ozone Concentration in the Grand Casablanca Area
9
作者 Halima Oufdou Lise Bellanger +3 位作者 Amal Bergam Angélina El Ghaziri Kenza Khomsi El Mostafa Qannari 《Advances in Pure Mathematics》 2018年第10期793-812,共20页
Tropospheric ozone (O3) is one of the pollutants that have a significant impact on human health. It can increase the rate of asthma crises, cause permanent lung infections and death. Predicting its concentration level... Tropospheric ozone (O3) is one of the pollutants that have a significant impact on human health. It can increase the rate of asthma crises, cause permanent lung infections and death. Predicting its concentration levels is therefore important for planning atmospheric protection strategies. The aim of this study is to predict the daily mean O3 concentration one day ahead in the Grand Casablanca area of Morocco using primary pollutants and meteorological variables. Since the available explanatory variables are multicollinear, multiple linear regressions are likely to lead to unstable models. To counteract the multicollinearity problem, we compared several alternative regression methods: 1) Continuum Regression;2) Ridge & Lasso Regressions;3) Principal component regression (PCR);4) Partial least Square regression & sparse PLS and;5) Biased Power Regression. The aim is to set up a good prediction model of the daily ozone in the Grand Casablanca area. These models are fitted on a training data set (from the years 2013 and 2014), tested on a data set (from 2015) and validated on yet another data set data (from 2015). The Lasso model showed a better performance for the prediction of ozone concentrations compared to multiple linear regression and its other alternative methods. 展开更多
关键词 Multiple linear regression MULTICOLlinearITY Penalized regression statistical Forecasting TROPOSPHERIC Ozone
在线阅读 下载PDF
基于SLR-ANN的地应力场三维智能反演方法研究 被引量:15
10
作者 张社荣 胡安奎 +1 位作者 王超 彭振辉 《岩土力学》 EI CAS CSCD 北大核心 2017年第9期2737-2745,共9页
基于黄登引水发电系统区域地应力实测结果及建立的三维数值仿真计算模型,揭示了工程所在区域的三维地应力场分布特征,为地下工程的开挖加固设计提供更加准确的基础资料。分别采用传统多元线性回归方法、人工神经网络方法与考虑地质历史... 基于黄登引水发电系统区域地应力实测结果及建立的三维数值仿真计算模型,揭示了工程所在区域的三维地应力场分布特征,为地下工程的开挖加固设计提供更加准确的基础资料。分别采用传统多元线性回归方法、人工神经网络方法与考虑地质历史过程的基于逐步回归原理耦合人工神经网络(SLR-ANN)的非线性智能方法获得黄登水电站厂址区域的地应力场,再将地应力的实测值与反演数值解进行对比。结果表明:3种方法下反演所得引水发电系统区域内三维地应力场均与实测结果相一致,表明3种方法较为真实地模拟了整个地下洞室群区域三维地应力场的分布规律及特征。但采用SLR-ANN二次智能反演方法进行地应力反演,模拟效果更加接近监测值,且因减少了反演参数的个数而大幅度地提高了反演效率,可将反演计算结果应用于后续洞室开挖及锚固仿真分析中。 展开更多
关键词 水利水电工程 地应力场 逐步回归 人工神经网络 二次反演分析
在线阅读 下载PDF
基于线性回归和阈值统计法的铁路既有车站站线恢复软件设计与实现
11
作者 魏召 霍磊 杨文成 《铁道勘察》 2025年第2期92-97,共6页
为了快速准确地将铁路既有车站的测量数据成图,研发一套基于线性回归算法和阈值统计法的AutoCAD的二次开发软件。该软件针对铁路车站改建和扩建项目的实际需求,可实现对站线散点的自动识别、数据提取及自动处理计算等功能。在方法实现上... 为了快速准确地将铁路既有车站的测量数据成图,研发一套基于线性回归算法和阈值统计法的AutoCAD的二次开发软件。该软件针对铁路车站改建和扩建项目的实际需求,可实现对站线散点的自动识别、数据提取及自动处理计算等功能。在方法实现上,首先通过AutoCAD平台对图纸中的站线散点进行精确识别并提取关键测量数据;然后利用线性回归算法深入分析数据间的内在关联和线性关系,并通过阈值统计法对数据进行筛选和优化,从而确保数据的准确性和可靠性;最终输出既有车站平面和纵断面的最优解,为车站改建和扩建提供精确的设计基础。研究结果表明,该软件在恢复精度和效率上均达到预期目标,充分满足铁路车站改、扩建设计需求,可为铁路工程建设提供有力的技术支撑。 展开更多
关键词 铁路 线性回归 阈值统计 既有车站 站线恢复 软件
在线阅读 下载PDF
基于OMP-SLR的多跳频信号参数估计方法 被引量:1
12
作者 张伟 王宇 +1 位作者 乔玉龙 张朝柱 《无线电工程》 2018年第10期871-875,共5页
现有多跳频信号参数估计方法稀疏线性回归(Sparse Linear Regression,SLR)存在计算量大、内存消耗大的缺点。事实上,频率跳变只在少数几个数据点上发生,大部分数据不包含跳变信息。基于此,提出一种基于正交匹配追踪(Orthogonal Matching... 现有多跳频信号参数估计方法稀疏线性回归(Sparse Linear Regression,SLR)存在计算量大、内存消耗大的缺点。事实上,频率跳变只在少数几个数据点上发生,大部分数据不包含跳变信息。基于此,提出一种基于正交匹配追踪(Orthogonal Matching Pursuit,OMP)和SLR相结合的跳频信号参数估计方法。该方法将接收到的样本数据均匀分段,对每段数据用OMP算法预处理,检测出发生频率跳变的数据段以及估计出没有发生跳变的数据段的频率;对这些发生跳变的数据段分别用SLR算法估计得到各段的跳时和频率;拼接可以得到整个样本的跳时、跳频图案等。仿真结果表明,该方法在在保持SLR精确估计性能的同时,能有效减少计算量。 展开更多
关键词 信号处理 跳频信号 正交匹配追踪 稀疏线性回归
在线阅读 下载PDF
基于气象因子的谷子品质预测模型构建及应用
13
作者 李海涛 李燕 +7 位作者 常清 左小瑞 张鑫磊 米晓楠 马雅丽 张娜 班胜林 赵斯楠 《山西农业科学》 2024年第6期145-155,共11页
基于2019—2021年山西省10个谷子主产区主要品质指标(直链淀粉、粗蛋白、粗脂肪、维生素B1、胶稠度和碱消值)和同期气象资料,利用线性回归统计学方法,分析不同生长阶段多种气象因子对谷子品质的影响,并构建谷子品质的预测模型,旨在为谷... 基于2019—2021年山西省10个谷子主产区主要品质指标(直链淀粉、粗蛋白、粗脂肪、维生素B1、胶稠度和碱消值)和同期气象资料,利用线性回归统计学方法,分析不同生长阶段多种气象因子对谷子品质的影响,并构建谷子品质的预测模型,旨在为谷子气候品质认证提供科学依据。结果表明,影响谷子品质指标的气象因子不是单一的,且不同生长阶段的气象因子对品质的影响也不尽相同;生殖生长阶段尤其是抽穗—乳熟阶段的气象因子决定了谷子的品质,影响谷子品质的主要气象因子为平均气温、平均最高气温、≥10℃活动积温、累计降水量、累计日照时数和气温日较差。其中,限制谷子品质提升的主要气象因子是抽穗—乳熟阶段的气温日较差和累计降水量。利用构建的谷子品质指标预测模型,对晋北、晋中、晋南和晋东南进行谷子品质拟合检验,结果显示,6个谷子品质指标预测模型拟合系数为0.63~0.89,尤其对直链淀粉、粗蛋白和粗脂肪含量的预测效果较好,拟合系数均达到0.8以上。 展开更多
关键词 谷子 气象因子 品质评价 线性回归统计学 相关性分析 山西
在线阅读 下载PDF
基于离差平方和分解式的线性回归检验统计量的构建
14
作者 赵云 张虹 《甘肃高师学报》 2024年第5期1-6,共6页
文章基于样本数据离差平方和分解式,分析影响变量之间相关关系的因素.将离差平方和分解成回归平方和与残差平方和两部分,呈现出数据变异的根源在于变量自身取值的差异性和存在不可控制的随机因素两方面叠加的结果.建立线性回归数学模型... 文章基于样本数据离差平方和分解式,分析影响变量之间相关关系的因素.将离差平方和分解成回归平方和与残差平方和两部分,呈现出数据变异的根源在于变量自身取值的差异性和存在不可控制的随机因素两方面叠加的结果.建立线性回归数学模型,应用最小二乘估计法先求出回归方程参数的估计值,由估计值的数学期望、方差的性质,得到回归平方和、残差平方和服从正态分布、χ2分布的结论,再依据F分布、t分布的结构模式,构造回归分析显著性检验的F统计量、t统计量.文章理清了从离差平方和分解式、回归分析模型到选择检验统计量的思维线索. 展开更多
关键词 离差平方和分解式 线性回归 显著性检验 统计量的构建
在线阅读 下载PDF
纸张抗张强度相关因素的数学统计分析方法
15
作者 杨艳琦 姚杰 《造纸科学与技术》 2024年第6期21-23,共3页
为实现对纸张抗张强度的自动化检测,提高纸张产品的生产质量和生产效率,对造纸企业实际生产数据实施标准化预处理,并通过灰色关联度算法对纸张抗张强度与其他因素之间的相关性进行分析。在此基础上,采用线性回归模型对灰色关联度算法进... 为实现对纸张抗张强度的自动化检测,提高纸张产品的生产质量和生产效率,对造纸企业实际生产数据实施标准化预处理,并通过灰色关联度算法对纸张抗张强度与其他因素之间的相关性进行分析。在此基础上,采用线性回归模型对灰色关联度算法进行求解。为验证该模型的有效性,通过拟合优度指标对模型进行验证,发现该模型相较于Xgboost-SVM、Lasso回归以及逐步回归等模型,体现出了更加理想的拟合效果。最终得到检测厚度、检测定量、喂料泵电流等15个与纸张抗张强度高度相关的影响因素,可用于指导现场工作人员对纸张抗张强度的合理化控制,具有一定的应用价值。 展开更多
关键词 制浆造纸工艺 影响因素分析 线性回归模型 相关度统计
在线阅读 下载PDF
Statistical Diagnosis and Gross Error Test for Semiparametric Linear Model 被引量:1
16
作者 DING Shijun ZHANG Songlin JIANG Weiping WANG Shouchun 《Geo-Spatial Information Science》 2009年第4期296-302,共7页
This paper systematically studies the statistical diagnosis and hypothesis testing for the semiparametric linear regression model according to the theories and methods of the statistical diagnosis and hypothesis testi... This paper systematically studies the statistical diagnosis and hypothesis testing for the semiparametric linear regression model according to the theories and methods of the statistical diagnosis and hypothesis testing for parametric regression model.Several diagnostic measures and the methods for gross error testing are derived.Especially,the global and local influence analysis of the gross error on the parameter X and the nonparameter s are discussed in detail;at the same time,the paper proves that the data point deletion model is equivalent to the mean shift model for the semiparametric regression model.Finally,with one simulative computing example,some helpful conclusions are drawn. 展开更多
关键词 parametric regression semiparametric linear model influencing analysis statistical diagnosis gross error testing
原文传递
Mathstudio在大学物理实验数据处理中应用
17
作者 周洪亮 《科技资讯》 2024年第3期252-256,共5页
将数学软件Mathstudio应用到大学物理实验数据处理中,进行描述性统计、推断统计、求不确定度、线性回归等运算。Mathstudio具备数值运算和符号运算功能,使用数组和切片(Slice)操作,内置大量数学函数,微积分、统计等功能很强大,作图和动... 将数学软件Mathstudio应用到大学物理实验数据处理中,进行描述性统计、推断统计、求不确定度、线性回归等运算。Mathstudio具备数值运算和符号运算功能,使用数组和切片(Slice)操作,内置大量数学函数,微积分、统计等功能很强大,作图和动画也方便。Mathstudio不用安装、编译,浏览器打开网址即可运行,可逐行调试,命令格式简单。示例结合线性代数理论,使用了雅可比矩阵、海森矩阵、范数、线性回归、作图等命令,实现Mathstudio编程计算空心圆柱体体积的不确定度、铜-康铜热电偶温差电势的线性回归模型,程序简短精练,结构清晰,提高了数据处理效率。Mathstudio编程效率高,难度较低,适合小规模数据快速分析,也能进一步开发更专业的数据处理功能。 展开更多
关键词 描述统计 推断统计 梯度 不确定度 线性回归
在线阅读 下载PDF
特殊教育普惠发展的统计建模
18
作者 王翔宇 王兵 +2 位作者 刘子涵 陈玲珑 黄月晴 《现代特殊教育》 2024年第2期9-16,共8页
特殊教育现代化是教育现代化不可或缺的一部分,强化特殊教育普惠发展是特殊教育现代化的努力方向。从强化特殊教育发展的“普”与“惠”两方面入手,运用TF-IDF算法、主成分分析法以及多元线性回归方法,并与国外构建测量特殊教育普惠发... 特殊教育现代化是教育现代化不可或缺的一部分,强化特殊教育普惠发展是特殊教育现代化的努力方向。从强化特殊教育发展的“普”与“惠”两方面入手,运用TF-IDF算法、主成分分析法以及多元线性回归方法,并与国外构建测量特殊教育普惠发展的统计模型,依据该模型分析我国20多年来的特殊教育普惠发展水平,并与国外进行对比发现,我国特殊教育普惠发展态势向上向好,但仍存在地区发展水平不平衡不充分、特殊教育经费投入占地区教育经费投入较低等问题。针对以上问题,建议保障特殊教育办学经费投入,改善特殊教育资源布局,加强专业化特殊教育教师队伍建设。 展开更多
关键词 特殊教育现代化 主成分分析 多元线性回归 统计模型
在线阅读 下载PDF
Post-J test inference in non-nested linear regression models
19
作者 CHEN XinJie FAN YanQin +1 位作者 WAN Alan ZOU GuoHua 《Science China Mathematics》 SCIE CSCD 2015年第6期1203-1216,共14页
This paper considers the post-J test inference in non-nested linear regression models. Post-J test inference means that the inference problem is considered by taking the first stage J test into account. We first propo... This paper considers the post-J test inference in non-nested linear regression models. Post-J test inference means that the inference problem is considered by taking the first stage J test into account. We first propose a post-J test estimator and derive its asymptotic distribution. We then consider the test problem of the unknown parameters, and a Wald statistic based on the post-J test estimator is proposed. A simulation study shows that the proposed Wald statistic works perfectly as well as the two-stage test from the view of the empirical size and power in large-sample cases, and when the sample size is small, it is even better. As a result,the new Wald statistic can be used directly to test the hypotheses on the unknown parameters in non-nested linear regression models. 展开更多
关键词 non-nested linear regression post-J test Wald statistic
原文传递
分析常用7种统计分布的统一线性回归方法 被引量:19
20
作者 赵永翔 孙亚芳 高庆 《机械强度》 EI CAS CSCD 北大核心 2001年第1期102-106,共5页
发展了分析 7种常用假设分布即三参数Weibull、两参数Weibull、正态、对数正态、极小值、极大值和指数分布的统一线性回归方法。方法中 7种常用分布的统计参量及其置信限 ,以及概率的置信限 ,都采用线性回归方法完成。统计检验采用Pear... 发展了分析 7种常用假设分布即三参数Weibull、两参数Weibull、正态、对数正态、极小值、极大值和指数分布的统一线性回归方法。方法中 7种常用分布的统计参量及其置信限 ,以及概率的置信限 ,都采用线性回归方法完成。统计检验采用Pearson统计参量———线性相关系数r来方便进行。满足假设分布的临界r值采用r—t分布函数变换得到。方法为从 7种常用分布中确定良好假设分布奠定了基础。经工程材料 展开更多
关键词 统计分布 线性回归方法 可靠性 置信限分析
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部