The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Mar...This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Markovian jumping parameters. The time delays are assumed to be dependent on the system modes. Delay-dependent conditions for the solvability of these problems are obtained via parameter-dependent Lyapunov functionals. Furthermore, it is shown that the desired state feedback controller can be designed by solving a set of linear matrix inequalities. Finally, the simulation is provided to demonstrate the effectiveness of the proposed methods.展开更多
In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The ...In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.展开更多
This paper investigates the robust stochastic stability and H∞ analysis for stochastic systems with time-varying delay and Markovian jump. By using the freeweighting matrix technique, i.e., He's technique, and a sto...This paper investigates the robust stochastic stability and H∞ analysis for stochastic systems with time-varying delay and Markovian jump. By using the freeweighting matrix technique, i.e., He's technique, and a stochastic Lyapunov-Krasovskii functional, new delay-dependent criteria in terms of linear matrix inequalities are derived for the the robust stochastic stability and the H∞ disturbance attenuation. Three numerical examples axe given. The results show that the proposed method is efficient and much less conservative than the existing results in the literature.展开更多
This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix i...This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix inequalities that are independent of the delay size. When it is applied to linear stochastic time-delay systems, sufficient conditions for the state-feedback stabilization are presented via linear matrix inequalities. Several previous results are extended to more general systems with both state and control-dependent noise, and easy computation algorithms are also given.展开更多
To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the ...To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the Mittag-Lefler function,Laplace transform and Gronwall inequality,a linear stabilizing controller is derived,which uses the fractional order of the delayed system and the upper bound of system nonlinear functions.In the second method,at first a sufficient stability condition for the delayed system is given in the form of a simple linear matrix inequality(LMI)which can easily be solved.Then,on the basis of this result,a stabilizing pseudo-state feedback controller is designed in which the controller gain matrix is easily computed by solving an LMI in terms of delay bounds.Simulation results show the effectiveness of the proposed methods.展开更多
The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii function...The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii functional method, a sufficient delaydependent condition for asymptotic stability of nonlinear systems is offered. Then, this condition is used to design a new efficient delayed state feedback controller(DSFC) for stabilization of such systems. These conditions are in the linear matrix inequality(LMI) framework. Illustrative examples confirm the improvement of the proposed approach over the similar cases. Furthermore, the obtained stability and stabilization conditions will be extended to uncertain discrete time delayed systems(UDTDS) with polytopic parameter uncertainties and also with norm-bounded parameter uncertainties.展开更多
The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discusse...The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discussed by several authors, few works have been done on delay-dependent exponential stability of impulsive stochastic delay systems. Firstly, the Lyapunov-Krasovskii functional method combing the free-weighting matrix approach is applied to investigate this problem. Some delay-dependent mean square exponential stability criteria are derived in terms of linear matrix inequalities. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive effects. The obtained results show that the system will stable if the impulses' frequency and amplitude are suitably related to the increase or decrease of the continuous flows, and impulses may be used as controllers to stabilize the underlying stochastic system. Numerical examples are given to show the effectiveness of the results.展开更多
The mean-square exponential stability problem is investigated for a class of stochastic time-varying delay systems with Markovian jumping parameters. By decomposing the delay interval into multiple equidistant subinte...The mean-square exponential stability problem is investigated for a class of stochastic time-varying delay systems with Markovian jumping parameters. By decomposing the delay interval into multiple equidistant subintervals, a new delay-dependent and decay-rate-dependent criterion is presented based on constructing a novel Lyapunov functional and employing stochastic analysis technique. Besides, the decay rate has no conventional constraint and can be selected according to different practical conditions. Finally, two numerical examples are provided to show that the obtained result has less conservatism than some existing ones in the literature.展开更多
The problems of robust exponential stability in mean square and delayed state feedback stabilization for uncertain stochastic systems with time-varying delay are studied. By using Jensen's integral inequality and com...The problems of robust exponential stability in mean square and delayed state feedback stabilization for uncertain stochastic systems with time-varying delay are studied. By using Jensen's integral inequality and combining with the free weighting matrix approach, new delay-dependent stability conditions and delayed state feedback stabilization criteria are obtained in terms of linear matrix inequalities. Meanwhile, the proposed delayed state feedback stabilization criteria are more convenient in application than the existing ones since fewer tuning parameters are involved. Numerical examples are given to illustrate the effectiveness of the proposed methods.展开更多
This paper investigates the problem of delay-dependent robust stability analysis for a class of neutral systems with interval time-varying delays and nonlinear perturbations. Such nonlinear perturbations are with time...This paper investigates the problem of delay-dependent robust stability analysis for a class of neutral systems with interval time-varying delays and nonlinear perturbations. Such nonlinear perturbations are with time-varying but norm-bounded characteristics. Based on a new Lyapunov-Krasovskii functional, together ,sith a free-weighting matrices technique, improved delay-dependent stability criteria are established. It is shown that less conservative results can be obtained in terms of linear matrix inequalities (LMIs). Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed approach.展开更多
This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli...This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli distribution are employed to model the randomly occurring communication delays which could be different for different state variables. A discrete switching function that is different from those in the existing literature is first proposed. Then, expressed as the feasibility of a linear matrix inequality (LMI) with an equality constraint, sufficient conditions are derived in order to ensure the globally mean-square asymptotic stability of the system dynamics on the sliding surface. A discrete-time SMC controller is then synthesized to guarantee the discrete-time sliding mode reaching condition with the specified sliding surface. Finally, a simulation example is given to show the effectiveness of the proposed method.展开更多
Identification of nonlinear systems with unknown piecewise time-varying delay is concerned in this paper.Multiple auto regressive exogenous(ARX) models are identified at different process operating points,and the comp...Identification of nonlinear systems with unknown piecewise time-varying delay is concerned in this paper.Multiple auto regressive exogenous(ARX) models are identified at different process operating points,and the complete dynamics of the nonlinear system is represented by using a combination of a normalized exponential function as the probability density function with each of the local models.The parameters of the local ARX models and the exponential functions as well as the unknown piecewise time-varying delays are estimated simultaneously under the framework of the expectation maximization(EM) algorithm.A simulation example is applied to demonstrating the proposed identification method.展开更多
This paper studies the distributed synchronization control problem of a class of stochastic dynamical systems with time-varying delays and random noise via randomly occurring control. The activation of the distributed...This paper studies the distributed synchronization control problem of a class of stochastic dynamical systems with time-varying delays and random noise via randomly occurring control. The activation of the distributed adaptive controller and the update of the control gain designed in this paper all happen randomly. Based on the Lyapunov stability theory, LaSalle invariance principle, combined with the use of the properties of the matrix Kronecker product, stochastic differential equation theory and other related tools, by constructing the appropriate Lyapunov functional, the criterion for the distributed synchronization of this type of stochastic complex networks in mean square is obtained.展开更多
A new method for identifying nonlinear time varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning ...A new method for identifying nonlinear time varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning and nonlinear approximating ability of neural networks to model the non linearity of the system, characterize time varying dynamics of the system by the time varying parametric vector of the network, then the parametric vector of the network is approximated by a weighted sum of known basis sequences. Because of black box modeling ability of neural networks, the presented method can identify nonlinear time varying systems with unknown structure. In order to improve the real time capability of the algorithm, the neural network is trained by a simple fast learning algorithm based on local least squares presented by the authors. The effectiveness and the performance of the method are demonstrated by some simulation results.展开更多
Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems wit...Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems with varying time delays. The time delay is assumed bounded and the upper bound is known. In the technique we propose, the delay affecting the plant to be controlled is treated as an unmodeled uncertainty(in form of multiplicative uncertainty). That uncertainty is approximated and then an H∞based controller, for the plant represented by the multiplicative uncertainty and the nominal model, is calculated. The obtained H∞controller is used to control the LTI systems with varying time delays. Simulation examples are given to illustrate the effectiveness of the proposed method.展开更多
This paper investigates the flocking problem in multi-agent system with time-varying delay and a virtual leader. Each agent here is subject to nonlinear dynamics. For the system, the corresponding algorithm with time-...This paper investigates the flocking problem in multi-agent system with time-varying delay and a virtual leader. Each agent here is subject to nonlinear dynamics. For the system, the corresponding algorithm with time-varying delay is proposed. Under the assumption that the initial network is connected, it is proved that the distance between agents is in the desired distance. The theoretical deduction shows that the stable flocking motion is achieved.展开更多
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金the National Natural Science Foundation of China (No.60074007).
文摘This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Markovian jumping parameters. The time delays are assumed to be dependent on the system modes. Delay-dependent conditions for the solvability of these problems are obtained via parameter-dependent Lyapunov functionals. Furthermore, it is shown that the desired state feedback controller can be designed by solving a set of linear matrix inequalities. Finally, the simulation is provided to demonstrate the effectiveness of the proposed methods.
基金partially supported by National Natural Science Foundation of China(61290322,61273222,61322303,61473248,61403335)Hebei Province Applied Basis Research Project(15967629D)Top Talents Project of Hebei Province and Yanshan University Project(13LGA020)
基金Supported by National Natural Science Foundation of China (60425310, 60574014), the Doctor Subject Foundation of China (20050533015, 200805330004), the Program for New Century Excellent Talents in University (NCET-06-0679), and the Natural Science Foundation of Hunan Province (08JJ1010)
基金supported by National Natural Science Foundationof China (No. 60774017 and No. 60874045)
文摘In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.
基金Project supported by the National Natural Science Foundation of China (No. 60874027)
文摘This paper investigates the robust stochastic stability and H∞ analysis for stochastic systems with time-varying delay and Markovian jump. By using the freeweighting matrix technique, i.e., He's technique, and a stochastic Lyapunov-Krasovskii functional, new delay-dependent criteria in terms of linear matrix inequalities are derived for the the robust stochastic stability and the H∞ disturbance attenuation. Three numerical examples axe given. The results show that the proposed method is efficient and much less conservative than the existing results in the literature.
基金This work was supported by the National Natural Science Foundation of China(No.60474013)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050424002)the Doctoral Foundation of Shandong Province (No. 2004BS01010)
文摘This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix inequalities that are independent of the delay size. When it is applied to linear stochastic time-delay systems, sufficient conditions for the state-feedback stabilization are presented via linear matrix inequalities. Several previous results are extended to more general systems with both state and control-dependent noise, and easy computation algorithms are also given.
文摘To deal with stabilizing of nonlinear affine fractional order systems subject to time varying delays,two methods for finding an appropriate pseudo state feedback controller are discussed.In the first method,using the Mittag-Lefler function,Laplace transform and Gronwall inequality,a linear stabilizing controller is derived,which uses the fractional order of the delayed system and the upper bound of system nonlinear functions.In the second method,at first a sufficient stability condition for the delayed system is given in the form of a simple linear matrix inequality(LMI)which can easily be solved.Then,on the basis of this result,a stabilizing pseudo-state feedback controller is designed in which the controller gain matrix is easily computed by solving an LMI in terms of delay bounds.Simulation results show the effectiveness of the proposed methods.
文摘The stability and stabilization of a class of nonlinear discrete time delayed systems(NDTDS) with time-varying delay and norm-bounded nonlinearity are investigated. Based on discrete time Lyapunov–Krasovskii functional method, a sufficient delaydependent condition for asymptotic stability of nonlinear systems is offered. Then, this condition is used to design a new efficient delayed state feedback controller(DSFC) for stabilization of such systems. These conditions are in the linear matrix inequality(LMI) framework. Illustrative examples confirm the improvement of the proposed approach over the similar cases. Furthermore, the obtained stability and stabilization conditions will be extended to uncertain discrete time delayed systems(UDTDS) with polytopic parameter uncertainties and also with norm-bounded parameter uncertainties.
基金supported by the National Natural Science Foundation of China (60874114)the Fundamental Research Funds for the Central Universities, South China University of Technology (SCUT)(2009ZM0140)
文摘The problem of delay-dependent exponential stability is investigated for impulsive stochastic systems with time-varying delay. Although the exponential stability of impulsive stochastic delay systems has been discussed by several authors, few works have been done on delay-dependent exponential stability of impulsive stochastic delay systems. Firstly, the Lyapunov-Krasovskii functional method combing the free-weighting matrix approach is applied to investigate this problem. Some delay-dependent mean square exponential stability criteria are derived in terms of linear matrix inequalities. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive effects. The obtained results show that the system will stable if the impulses' frequency and amplitude are suitably related to the increase or decrease of the continuous flows, and impulses may be used as controllers to stabilize the underlying stochastic system. Numerical examples are given to show the effectiveness of the results.
基金supported by the Program for New Century Excellent Talents in University, the Graduate Innovation Program of Jiangsu Province (CX06B-051Z)the Scientific Research Foundation of Graduate School of Southeast University (YBJJ0929)
文摘The mean-square exponential stability problem is investigated for a class of stochastic time-varying delay systems with Markovian jumping parameters. By decomposing the delay interval into multiple equidistant subintervals, a new delay-dependent and decay-rate-dependent criterion is presented based on constructing a novel Lyapunov functional and employing stochastic analysis technique. Besides, the decay rate has no conventional constraint and can be selected according to different practical conditions. Finally, two numerical examples are provided to show that the obtained result has less conservatism than some existing ones in the literature.
基金supported by the National Natural Science Foundation of China(10971232)the Natural Science Foundation of Guangdong Province(101510090010000398351009001000002)
文摘The problems of robust exponential stability in mean square and delayed state feedback stabilization for uncertain stochastic systems with time-varying delay are studied. By using Jensen's integral inequality and combining with the free weighting matrix approach, new delay-dependent stability conditions and delayed state feedback stabilization criteria are obtained in terms of linear matrix inequalities. Meanwhile, the proposed delayed state feedback stabilization criteria are more convenient in application than the existing ones since fewer tuning parameters are involved. Numerical examples are given to illustrate the effectiveness of the proposed methods.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61004038)
文摘This paper investigates the problem of delay-dependent robust stability analysis for a class of neutral systems with interval time-varying delays and nonlinear perturbations. Such nonlinear perturbations are with time-varying but norm-bounded characteristics. Based on a new Lyapunov-Krasovskii functional, together ,sith a free-weighting matrices technique, improved delay-dependent stability criteria are established. It is shown that less conservative results can be obtained in terms of linear matrix inequalities (LMIs). Numerical examples are provided to demonstrate the effectiveness and less conservatism of the proposed approach.
基金supported by the Engineering and Physical Sciences Research Council(EPSRC)of the UK(No.GR/S27658/01)the Royal Society of the UK and the Alexander von Humboldt Foundation of Germany
文摘This paper deals with the robust control problem for a class of uncertain nonlinear networked systems with stochastic communication delays via sliding mode conception (SMC). A sequence of variables obeying Bernoulli distribution are employed to model the randomly occurring communication delays which could be different for different state variables. A discrete switching function that is different from those in the existing literature is first proposed. Then, expressed as the feasibility of a linear matrix inequality (LMI) with an equality constraint, sufficient conditions are derived in order to ensure the globally mean-square asymptotic stability of the system dynamics on the sliding surface. A discrete-time SMC controller is then synthesized to guarantee the discrete-time sliding mode reaching condition with the specified sliding surface. Finally, a simulation example is given to show the effectiveness of the proposed method.
基金Supported by National High Technology Research and Development Program of China(863 Program)(2009AA04Z139) National Natural Science Foundation of China(60904011)+1 种基金 Natural Science Foundation of Zhejiang Province(Y1090834) Science Foundation of Zhejiang Sci-Tech University(ZSTU0803817-Y)
基金Key Project of the National Nature Science Foundation of China(No.61134009)National Nature Science Foundations of China(Nos.61473077,61473078,61503075)+5 种基金Program for Changjiang Scholars from the Ministry of Education,ChinaSpecialized Research Fund for Shanghai Leading Talents,ChinaProject of the Shanghai Committee of Science and Technology,China(No.13JC1407500)Innovation Program of Shanghai Municipal Education Commission,China(No.14ZZ067)Shanghai Pujiang Program,China(No.15PJ1400100)Fundamental Research Funds for the Central Universities,China(Nos.15D110423,2232015D3-32)
文摘Identification of nonlinear systems with unknown piecewise time-varying delay is concerned in this paper.Multiple auto regressive exogenous(ARX) models are identified at different process operating points,and the complete dynamics of the nonlinear system is represented by using a combination of a normalized exponential function as the probability density function with each of the local models.The parameters of the local ARX models and the exponential functions as well as the unknown piecewise time-varying delays are estimated simultaneously under the framework of the expectation maximization(EM) algorithm.A simulation example is applied to demonstrating the proposed identification method.
文摘This paper studies the distributed synchronization control problem of a class of stochastic dynamical systems with time-varying delays and random noise via randomly occurring control. The activation of the distributed adaptive controller and the update of the control gain designed in this paper all happen randomly. Based on the Lyapunov stability theory, LaSalle invariance principle, combined with the use of the properties of the matrix Kronecker product, stochastic differential equation theory and other related tools, by constructing the appropriate Lyapunov functional, the criterion for the distributed synchronization of this type of stochastic complex networks in mean square is obtained.
文摘A new method for identifying nonlinear time varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning and nonlinear approximating ability of neural networks to model the non linearity of the system, characterize time varying dynamics of the system by the time varying parametric vector of the network, then the parametric vector of the network is approximated by a weighted sum of known basis sequences. Because of black box modeling ability of neural networks, the presented method can identify nonlinear time varying systems with unknown structure. In order to improve the real time capability of the algorithm, the neural network is trained by a simple fast learning algorithm based on local least squares presented by the authors. The effectiveness and the performance of the method are demonstrated by some simulation results.
文摘Designing a robust controller for a system with timevarying delays poses a major challenge. In this paper, we propose a method based on mixed sensitivity H∞ for the control of linear time invariant(LTI) systems with varying time delays. The time delay is assumed bounded and the upper bound is known. In the technique we propose, the delay affecting the plant to be controlled is treated as an unmodeled uncertainty(in form of multiplicative uncertainty). That uncertainty is approximated and then an H∞based controller, for the plant represented by the multiplicative uncertainty and the nominal model, is calculated. The obtained H∞controller is used to control the LTI systems with varying time delays. Simulation examples are given to illustrate the effectiveness of the proposed method.
文摘This paper investigates the flocking problem in multi-agent system with time-varying delay and a virtual leader. Each agent here is subject to nonlinear dynamics. For the system, the corresponding algorithm with time-varying delay is proposed. Under the assumption that the initial network is connected, it is proved that the distance between agents is in the desired distance. The theoretical deduction shows that the stable flocking motion is achieved.