With the development of the integration of production and education,chemical engineering and technology education is facing many new challenges and opportunities.The construction of a chemical virtual simulation pract...With the development of the integration of production and education,chemical engineering and technology education is facing many new challenges and opportunities.The construction of a chemical virtual simulation practice teaching system under the background of integration of production and education aims to improve students’learning efficiency and innovation ability with the help of virtual simulation technology,so as to meet the needs of future industrial development.This paper discusses the significance of the construction of the system,analyzes the difficulties and challenges that may be encountered in the construction process,and evaluates the effective strategies to strengthen the construction of the system.Through the introduction of virtual simulation technology,students can improve their practical skills and innovation ability,and better adapt to the development needs of industrialization and informatization.展开更多
The integrated simulation and optimization technology of reservoir-wellbore-pipe network is developed to reflect the mutual influence and restriction among reservoir engineering,oil production engineering and surface ...The integrated simulation and optimization technology of reservoir-wellbore-pipe network is developed to reflect the mutual influence and restriction among reservoir engineering,oil production engineering and surface engineering,and to obtain the scheme with minimum conflict and optimal benefit in each step.This technology is based on the concept of global optimization to maximize production and profit,reduce costs and increase benefit.This paper elaborates the current situation of integrated simulation technology of reservoir-wellbore-pipe network both at home and abroad,discusses its correlation with the primary business of Sinopec and its development from three aspects of modeling,cloud platform and intellectualization.Suggestions on its future development are put forward from underlying data,software platform,popularization and application,and cross-border integration to provide means and guidance for the construction of intelligent oil and gas fields.The results show that the integrated simulation of reservoir-wellbore-pipe network can better reflect the optimization requirements of each step,avoid the ineffective operation of field equipment,and effectively improve the efficiency of research and management.Coupling solution,global optimization method and pressure fitting,which can make the simulation results reflect the real situation,are the key technologies for the network.The theoretical technology and main function research of integrated simulation technology have been mature,but the large-scale application and local function improvement of oil and gas fields are yet to be promoted.In the future,the integrated simulation of reservoir-wellbore-pipe network will develop from digitalization to modeling and intellectualization,from local simulation to cloud computing,and from manual intervention to intelligent decision-making.We suggest speeding up the construction of the unified database and model base of the whole underlying platform,strengthening the construction of software integration and integration platform with independent intellectual property rights,speeding up the popularization and application of intelligent oil and gas field demonstration projects,and strengthening the integration of oil and gas industry with artificial intelligence(AI),big data and block chain for its development.展开更多
Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale...Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.展开更多
Multidisciplinary collaborative simulation (MCS) is an important area of research in the domain of multidisciplinary design optimization (MDO).Although previous research for MCS has to some extent addressed some i...Multidisciplinary collaborative simulation (MCS) is an important area of research in the domain of multidisciplinary design optimization (MDO).Although previous research for MCS has to some extent addressed some issues like using of multiple tools,integration stability,control of step size,data synchronization,etc,further work is still necessary to study how to achieve improved precision.A theoretical model is formulated to describe and analyze the integration process of MCS.A basic algorithm with equal major steps is proposed based on the model,along with two methods of implementation for the model,namely the serial method and the parallel method.A further algorithm based on convergent integration step is proposed,which has a more flexible strategy for run-time integration.The influence of interpolation techniques on simulation performance is studied as well.Simulations of the performance of various algorithms with different interpolation techniques are performed for both a simple numerical example and a complex mechatronic product.The novel algorithm based on convergent integration step,when used with a high-order interpolation technique,has better performance in terms of precision and efficiency.The innovation of this paper is mainly on the validation of high precision of the proposed convergent integration step algorithm.展开更多
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not ...This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highly- nonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model ofa 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.展开更多
Large quantities of blast furnace(BF) slag and CO_2 are discharged annually from iron and steel industries, along with a large amount of waste heat.The mineral carbonation of BF slag can not only reduce emissions of s...Large quantities of blast furnace(BF) slag and CO_2 are discharged annually from iron and steel industries, along with a large amount of waste heat.The mineral carbonation of BF slag can not only reduce emissions of solid waste but also realize the in-situ fixation of CO_2 with low energy consumption if integrated with the waste heat utilization.In this study, based on our previous works, Aspen Plus was employed to simulate and optimize the carbonation process and integrate the process energy.The effects of gehlenite extraction, MgSO_4 carbonation,and aluminum ammonium sulfate crystallization were studied systematically.The simulation results demonstrate that 2.57 kg of BF slag can sequester 1 kg of CO_2, requiring 5.34 MJ of energy(3.3 MJ heat and 2.04 MJ electricity), and this energy includes the capture of CO_2 from industrial flue gases.Approximately 60 kg net CO_2 emission reduction could be achieved for the disposal of one ton of BF slag.In addition, the by-product,aluminum ammonium sulfate, is a high value-added product.Preliminary economic analysis indicates that the profit for the whole process is 1127 CNY per ton of BF slag processed.展开更多
Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy...Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.展开更多
Hybrid simulation is a powerful test method for evaluating the seismic performance of structural systems. This method makes it feasible that only critical components of a structure be experimentally tested. This paper...Hybrid simulation is a powerful test method for evaluating the seismic performance of structural systems. This method makes it feasible that only critical components of a structure be experimentally tested. This paper presents a newly proposed integration algorithm for seismic hybrid simulation which is aimed to extend its capabilities to a wide range of systems where existing methods encounter some limitations. In the proposed method, which is termed the variable time step (VTS) integration method, an implicit scheme is employed for hybrid simulation by eliminating the iterative phase on experimental element, the phase which is necessary in regular implicit applications. In order to study the effectiveness of the VTS method, a series of numerical investigations are conducted which show the successfulness of the VTS method in obtaining accurate, stable and converged responses. Then, in a comparative approach, the improved accuracy of the VTS method over commonly used integration methods is demonstrated. The stability of the VTS method is also studied and the results show that it provides conditional stability; however, its stability limit is well beyond the accuracy limit. The effect of time delay on the VTS method results is also investigated and it is shown that the VTS method is quite successful in handling this experimental error.展开更多
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi...In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.展开更多
This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integrati...This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council(WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methods presented.展开更多
The development of complex products is essentially concerned with multidisciplinary knowledge. Running on Internet, integration based on muhilayer federation architecture and dynamic reuse of simulation resources are ...The development of complex products is essentially concerned with multidisciplinary knowledge. Running on Internet, integration based on muhilayer federation architecture and dynamic reuse of simulation resources are the major difficulties for complex product collaborative design and simulation. Since the traditional Run-Time Infrastructure (RTI) is not good at supporting these new requirements, an extended high level architecture (HLA) multilayer federation integration architecture (MLFIA), based on the resource management federation (RMF) and its supporting environment based Service-oriented architecture (SOA) and HLA (SOHLA) are proposed, The idea and realization of two key technologies, the dynamic creation of simulation federation based on RMF, TH RTI, an extensible HLA runtime infrastructure (RTI), used at Internet are emphasized. Finally, an industry case about multiple unit (MU) is given.展开更多
With the combination between system simulation and virtual reality,we have established an integrated virtual refinery simulation platform,and analyzed the overall design and principal architecture.This paper introduce...With the combination between system simulation and virtual reality,we have established an integrated virtual refinery simulation platform,and analyzed the overall design and principal architecture.This paper introduces a simulation algorithm about a refinery based on virtual reality,and explains how the algorithm can be applied to the virtual refinery integrated simulation platform in detail.The virtual refinery simulation platform,which consists of a three-dimensional scene system,an integrated database system and a dynamic-static simulation system,has many applications,such as dynamic-static simulation of key process unit used as process control and oil tank blending simulation for scheduling.With the visualization and human-computer interaction for acquiring production and process data,this platform can provide effective supports on staff training related with monitoring,control and operation in refinery.Virtual refinery can also be web published through the internet and it is helpful for the distance training and education.展开更多
---Double data rate synchronous dynamic random access memory (DDR3) has become one of the most mainstream applications in current server and computer systems. In order to quickly set up a system-level signal integri...---Double data rate synchronous dynamic random access memory (DDR3) has become one of the most mainstream applications in current server and computer systems. In order to quickly set up a system-level signal integrity (SI) simulation flow for the DDR3 interface, two system-level SI simulation methodologies, which are board-level S-parameter extraction in the frequency-domain and system-level simulation assumptions in the time domain, are introduced in this paper. By comparing the flow of Speed2000 and PowerSI/Hspice, PowerSI is chosen for the printed circuit board (PCB) board-level S-parameter extraction, while Tektronix oscilloscope (TDS7404) is used for the DDR3 waveform measurement. The lab measurement shows good agreement between simulation and measurement. The study shows that the combination of PowerSI and Hspice is recommended for quick system-level DDR3 SI simulation.展开更多
With deep development of state grid’s system of "Three Sets of Five [1]", China is in urgent need of establishing an appropriate type of simulation system to rapidly improve operation efficiency and the lev...With deep development of state grid’s system of "Three Sets of Five [1]", China is in urgent need of establishing an appropriate type of simulation system to rapidly improve operation efficiency and the level of maintainers, which aim at the integrated operation of substation operation and maintenance service. This article gives an introduction of a simulation training system which is designed for operation-skills training in electrical systems. By the composition of the multiple subjects and skills training for operations staff, this system can provide human guarantee and intellectual support for the "Big-Centralized Overhal".展开更多
An integrated simulation system for solar sail spacecraft with individually controllable elements(SSICE)is investigated in this paper,including the modelling of power management,thermal control,attitude control,umbra ...An integrated simulation system for solar sail spacecraft with individually controllable elements(SSICE)is investigated in this paper,including the modelling of power management,thermal control,attitude control,umbra prediction,and orbit prediction subsystems.Considering the self-control and reactivity subsystems,an agent based method is applied to develop the subsystem models.Each subsystem is an individual agent component,which manages itself autonomously and reacts to the requirements from other agents.To reduce computing burden on a specified computer and improve the suitability and flexibility of the integrated simulation system,a distributed framework is employed in the system by deploying agent components on different computers.The data transmission among agents is based on the transmission control protocol/Internet protocol(TCP/IP).A practical example of sun pointing is used to test the operating effect of the integrated system and the working condition of subsystems.The simulation results verify that the integrated system has higher sun pointing accuracy,quicker dynamical response to variations of the lighting,attitude and temperature and fewer computing resources with effective and accurate subsystems.The integrated system proposed in this paper can be applied to solar sail design,operation,and mission planning.展开更多
A double-effect reactive distillation(DERD)process was proposed for the production of propylene glycol methyl ether from propylene oxide and methanol to overcome the shortcoming of low selectivity and high-energy cons...A double-effect reactive distillation(DERD)process was proposed for the production of propylene glycol methyl ether from propylene oxide and methanol to overcome the shortcoming of low selectivity and high-energy consumption in the tubular plug-flow reactor.A single-column reactive distillation(RD)process was conducted under optimized operating conditions based on sensitivity analysis as a reference.The results demonstrated that the proposed DERD process is able to achieve more than 95%selectivity of the desired product.After that,a design approach of the DERD process with an objective of the minimum operating cost was proposed to achieve further energy savings in the RD process.The proposed DERD configuration can provide a large energy-savings by totally utilization of the overhead vapor steam in the high-pressure RD column.A comparison of the single-column RD process revealed that the proposed DERD process can reduce the operating cost and the total annual cost of 25.3%and 30.7%,respectively,even though the total capital cost of DERD process is larger than that of the RD process.展开更多
This paper presents an integrated protection technique for power distribution systems. A novel integrated protection scheme based on overcurrent protection technique for distribution system is described, in which a sp...This paper presents an integrated protection technique for power distribution systems. A novel integrated protection scheme based on overcurrent protection technique for distribution system is described, in which a specially designed protection relay is installed at each substation of a network and responsible for the protection of every line sections connected to the substation busbar The conventional directional overcurrent and the new adaptive accelerated protection algorithms with multiple settings are implemented into the relay to cover all the protected line sections. The paper includes studies of a typical multi section distribution network to demonstrate the principle of the scheme. Studies show that the new scheme not only offer the new protection features for individual power line section, but also provide the characteristics of integrated protection.展开更多
In this paper, a new concept of simulation operating system (SIMOS) is described. A detailed definition of SIMOS is given, and two integrated simulation software (IPSOS and IMSS) are introduced based on SIMOS.
This paper uses the component-based technology and the object oriented simulation technology to analyze the UUV navigation and control integration simulation system. We divide the system into components based on its s...This paper uses the component-based technology and the object oriented simulation technology to analyze the UUV navigation and control integration simulation system. We divide the system into components based on its structure, and describe every component using active diagram. By using the component-based technology, the system described here is easier to extended and be reused. At last, it realizes the whole UUV integrated navigation simulation course using the system to validate the availability.展开更多
基金Jiangsu Province Vocational Education Teaching Reform Research Project“Construction and Application of Digital Teaching Factory Under the Background of Integration of Production and Education-A Case Study of Chemical Engineering Majors in Vocational Colleges”(ZYB141)Center for Scientific Research and Development in Higher Education Institutes,Ministry of Education 2022“Virtual Simulation Technology in Vocational Education and Teaching Innovation Application”Special Project(ZJXF2022320)。
文摘With the development of the integration of production and education,chemical engineering and technology education is facing many new challenges and opportunities.The construction of a chemical virtual simulation practice teaching system under the background of integration of production and education aims to improve students’learning efficiency and innovation ability with the help of virtual simulation technology,so as to meet the needs of future industrial development.This paper discusses the significance of the construction of the system,analyzes the difficulties and challenges that may be encountered in the construction process,and evaluates the effective strategies to strengthen the construction of the system.Through the introduction of virtual simulation technology,students can improve their practical skills and innovation ability,and better adapt to the development needs of industrialization and informatization.
基金funded by the SINOPEC Science and Technology Project(No.P18080).
文摘The integrated simulation and optimization technology of reservoir-wellbore-pipe network is developed to reflect the mutual influence and restriction among reservoir engineering,oil production engineering and surface engineering,and to obtain the scheme with minimum conflict and optimal benefit in each step.This technology is based on the concept of global optimization to maximize production and profit,reduce costs and increase benefit.This paper elaborates the current situation of integrated simulation technology of reservoir-wellbore-pipe network both at home and abroad,discusses its correlation with the primary business of Sinopec and its development from three aspects of modeling,cloud platform and intellectualization.Suggestions on its future development are put forward from underlying data,software platform,popularization and application,and cross-border integration to provide means and guidance for the construction of intelligent oil and gas fields.The results show that the integrated simulation of reservoir-wellbore-pipe network can better reflect the optimization requirements of each step,avoid the ineffective operation of field equipment,and effectively improve the efficiency of research and management.Coupling solution,global optimization method and pressure fitting,which can make the simulation results reflect the real situation,are the key technologies for the network.The theoretical technology and main function research of integrated simulation technology have been mature,but the large-scale application and local function improvement of oil and gas fields are yet to be promoted.In the future,the integrated simulation of reservoir-wellbore-pipe network will develop from digitalization to modeling and intellectualization,from local simulation to cloud computing,and from manual intervention to intelligent decision-making.We suggest speeding up the construction of the unified database and model base of the whole underlying platform,strengthening the construction of software integration and integration platform with independent intellectual property rights,speeding up the popularization and application of intelligent oil and gas field demonstration projects,and strengthening the integration of oil and gas industry with artificial intelligence(AI),big data and block chain for its development.
基金Supported by the National Natural Science Foundation of China(52374043)Key Program of the National Natural Science Foundation of China(52234003).
文摘Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.
基金supported by National Natural Science Foundation of China (Grant No. 61074110)National Defense Pre-Research Foundation of China (Grant No. B0420060524)
文摘Multidisciplinary collaborative simulation (MCS) is an important area of research in the domain of multidisciplinary design optimization (MDO).Although previous research for MCS has to some extent addressed some issues like using of multiple tools,integration stability,control of step size,data synchronization,etc,further work is still necessary to study how to achieve improved precision.A theoretical model is formulated to describe and analyze the integration process of MCS.A basic algorithm with equal major steps is proposed based on the model,along with two methods of implementation for the model,namely the serial method and the parallel method.A further algorithm based on convergent integration step is proposed,which has a more flexible strategy for run-time integration.The influence of interpolation techniques on simulation performance is studied as well.Simulations of the performance of various algorithms with different interpolation techniques are performed for both a simple numerical example and a complex mechatronic product.The novel algorithm based on convergent integration step,when used with a high-order interpolation technique,has better performance in terms of precision and efficiency.The innovation of this paper is mainly on the validation of high precision of the proposed convergent integration step algorithm.
基金National Science Foundation(NSF)under grant No.CMMI-0748111
文摘This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highly- nonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model ofa 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.
基金Supported by the National Key Projects for Fundamental Research and Development of China(2016YFB0600904)
文摘Large quantities of blast furnace(BF) slag and CO_2 are discharged annually from iron and steel industries, along with a large amount of waste heat.The mineral carbonation of BF slag can not only reduce emissions of solid waste but also realize the in-situ fixation of CO_2 with low energy consumption if integrated with the waste heat utilization.In this study, based on our previous works, Aspen Plus was employed to simulate and optimize the carbonation process and integrate the process energy.The effects of gehlenite extraction, MgSO_4 carbonation,and aluminum ammonium sulfate crystallization were studied systematically.The simulation results demonstrate that 2.57 kg of BF slag can sequester 1 kg of CO_2, requiring 5.34 MJ of energy(3.3 MJ heat and 2.04 MJ electricity), and this energy includes the capture of CO_2 from industrial flue gases.Approximately 60 kg net CO_2 emission reduction could be achieved for the disposal of one ton of BF slag.In addition, the by-product,aluminum ammonium sulfate, is a high value-added product.Preliminary economic analysis indicates that the profit for the whole process is 1127 CNY per ton of BF slag processed.
基金National Natural Science Foundation of China under Grant Nos.51639006 and 51725901
文摘Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
文摘Hybrid simulation is a powerful test method for evaluating the seismic performance of structural systems. This method makes it feasible that only critical components of a structure be experimentally tested. This paper presents a newly proposed integration algorithm for seismic hybrid simulation which is aimed to extend its capabilities to a wide range of systems where existing methods encounter some limitations. In the proposed method, which is termed the variable time step (VTS) integration method, an implicit scheme is employed for hybrid simulation by eliminating the iterative phase on experimental element, the phase which is necessary in regular implicit applications. In order to study the effectiveness of the VTS method, a series of numerical investigations are conducted which show the successfulness of the VTS method in obtaining accurate, stable and converged responses. Then, in a comparative approach, the improved accuracy of the VTS method over commonly used integration methods is demonstrated. The stability of the VTS method is also studied and the results show that it provides conditional stability; however, its stability limit is well beyond the accuracy limit. The effect of time delay on the VTS method results is also investigated and it is shown that the VTS method is quite successful in handling this experimental error.
文摘In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation.
文摘This paper collects and synthesizes the technical requirements, implementation, and validation methods for quasi-steady agent-based simulations of interconnectionscale models with particular attention to the integration of renewable generation and controllable loads. Approaches for modeling aggregated controllable loads are presented and placed in the same control and economic modeling framework as generation resources for interconnection planning studies. Model performance is examined with system parameters that are typical for an interconnection approximately the size of the Western Electricity Coordinating Council(WECC) and a control area about 1/100 the size of the system. These results are used to demonstrate and validate the methods presented.
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA04Z160).
文摘The development of complex products is essentially concerned with multidisciplinary knowledge. Running on Internet, integration based on muhilayer federation architecture and dynamic reuse of simulation resources are the major difficulties for complex product collaborative design and simulation. Since the traditional Run-Time Infrastructure (RTI) is not good at supporting these new requirements, an extended high level architecture (HLA) multilayer federation integration architecture (MLFIA), based on the resource management federation (RMF) and its supporting environment based Service-oriented architecture (SOA) and HLA (SOHLA) are proposed, The idea and realization of two key technologies, the dynamic creation of simulation federation based on RMF, TH RTI, an extensible HLA runtime infrastructure (RTI), used at Internet are emphasized. Finally, an industry case about multiple unit (MU) is given.
基金supported by The National High Technology Research and Development Program of China (2009AA044701)
文摘With the combination between system simulation and virtual reality,we have established an integrated virtual refinery simulation platform,and analyzed the overall design and principal architecture.This paper introduces a simulation algorithm about a refinery based on virtual reality,and explains how the algorithm can be applied to the virtual refinery integrated simulation platform in detail.The virtual refinery simulation platform,which consists of a three-dimensional scene system,an integrated database system and a dynamic-static simulation system,has many applications,such as dynamic-static simulation of key process unit used as process control and oil tank blending simulation for scheduling.With the visualization and human-computer interaction for acquiring production and process data,this platform can provide effective supports on staff training related with monitoring,control and operation in refinery.Virtual refinery can also be web published through the internet and it is helpful for the distance training and education.
基金supported by the National Natural Science Foundation of China under Grant No.61161001
文摘---Double data rate synchronous dynamic random access memory (DDR3) has become one of the most mainstream applications in current server and computer systems. In order to quickly set up a system-level signal integrity (SI) simulation flow for the DDR3 interface, two system-level SI simulation methodologies, which are board-level S-parameter extraction in the frequency-domain and system-level simulation assumptions in the time domain, are introduced in this paper. By comparing the flow of Speed2000 and PowerSI/Hspice, PowerSI is chosen for the printed circuit board (PCB) board-level S-parameter extraction, while Tektronix oscilloscope (TDS7404) is used for the DDR3 waveform measurement. The lab measurement shows good agreement between simulation and measurement. The study shows that the combination of PowerSI and Hspice is recommended for quick system-level DDR3 SI simulation.
文摘With deep development of state grid’s system of "Three Sets of Five [1]", China is in urgent need of establishing an appropriate type of simulation system to rapidly improve operation efficiency and the level of maintainers, which aim at the integrated operation of substation operation and maintenance service. This article gives an introduction of a simulation training system which is designed for operation-skills training in electrical systems. By the composition of the multiple subjects and skills training for operations staff, this system can provide human guarantee and intellectual support for the "Big-Centralized Overhal".
基金This work was supported by the National Natural Science Foundation of China(11772024).
文摘An integrated simulation system for solar sail spacecraft with individually controllable elements(SSICE)is investigated in this paper,including the modelling of power management,thermal control,attitude control,umbra prediction,and orbit prediction subsystems.Considering the self-control and reactivity subsystems,an agent based method is applied to develop the subsystem models.Each subsystem is an individual agent component,which manages itself autonomously and reacts to the requirements from other agents.To reduce computing burden on a specified computer and improve the suitability and flexibility of the integrated simulation system,a distributed framework is employed in the system by deploying agent components on different computers.The data transmission among agents is based on the transmission control protocol/Internet protocol(TCP/IP).A practical example of sun pointing is used to test the operating effect of the integrated system and the working condition of subsystems.The simulation results verify that the integrated system has higher sun pointing accuracy,quicker dynamical response to variations of the lighting,attitude and temperature and fewer computing resources with effective and accurate subsystems.The integrated system proposed in this paper can be applied to solar sail design,operation,and mission planning.
基金supported by the National Nature Science Foundation of China(21878315 and 21808223)National Key Research and Development Program of China(2017YFA0206803)+3 种基金Innovation Academy for Green ManufactureCAS(IAGM2020C17)K.C.Wong Education Foundation(GJTD-2018-04)。
文摘A double-effect reactive distillation(DERD)process was proposed for the production of propylene glycol methyl ether from propylene oxide and methanol to overcome the shortcoming of low selectivity and high-energy consumption in the tubular plug-flow reactor.A single-column reactive distillation(RD)process was conducted under optimized operating conditions based on sensitivity analysis as a reference.The results demonstrated that the proposed DERD process is able to achieve more than 95%selectivity of the desired product.After that,a design approach of the DERD process with an objective of the minimum operating cost was proposed to achieve further energy savings in the RD process.The proposed DERD configuration can provide a large energy-savings by totally utilization of the overhead vapor steam in the high-pressure RD column.A comparison of the single-column RD process revealed that the proposed DERD process can reduce the operating cost and the total annual cost of 25.3%and 30.7%,respectively,even though the total capital cost of DERD process is larger than that of the RD process.
文摘This paper presents an integrated protection technique for power distribution systems. A novel integrated protection scheme based on overcurrent protection technique for distribution system is described, in which a specially designed protection relay is installed at each substation of a network and responsible for the protection of every line sections connected to the substation busbar The conventional directional overcurrent and the new adaptive accelerated protection algorithms with multiple settings are implemented into the relay to cover all the protected line sections. The paper includes studies of a typical multi section distribution network to demonstrate the principle of the scheme. Studies show that the new scheme not only offer the new protection features for individual power line section, but also provide the characteristics of integrated protection.
文摘In this paper, a new concept of simulation operating system (SIMOS) is described. A detailed definition of SIMOS is given, and two integrated simulation software (IPSOS and IMSS) are introduced based on SIMOS.
文摘This paper uses the component-based technology and the object oriented simulation technology to analyze the UUV navigation and control integration simulation system. We divide the system into components based on its structure, and describe every component using active diagram. By using the component-based technology, the system described here is easier to extended and be reused. At last, it realizes the whole UUV integrated navigation simulation course using the system to validate the availability.