The classical Pauli particle(CPP) serves as a slow manifold, substituting the conventional guiding center dynamics. Based on the CPP, we utilize the averaged vector field(AVF) method in the computations of drift orbit...The classical Pauli particle(CPP) serves as a slow manifold, substituting the conventional guiding center dynamics. Based on the CPP, we utilize the averaged vector field(AVF) method in the computations of drift orbits. Demonstrating significantly higher efficiency, this advanced method is capable of accomplishing the simulation in less than one-third of the time of directly computing the guiding center motion. In contrast to the CPP-based Boris algorithm, this approach inherits the advantages of the AVF method, yielding stable trajectories even achieved with a tenfold time step and reducing the energy error by two orders of magnitude. By comparing these two CPP algorithms with the traditional RK4 method, the numerical results indicate a remarkable performance in terms of both the computational efficiency and error elimination. Moreover, we verify the properties of slow manifold integrators and successfully observe the bounce on both sides of the limiting slow manifold with deliberately chosen perturbed initial conditions. To evaluate the practical value of the methods, we conduct simulations in non-axisymmetric perturbation magnetic fields as part of the experiments,demonstrating that our CPP-based AVF method can handle simulations under complex magnetic field configurations with high accuracy, which the CPP-based Boris algorithm lacks. Through numerical experiments, we demonstrate that the CPP can replace guiding center dynamics in using energy-preserving algorithms for computations, providing a new, efficient, as well as stable approach for applying structure-preserving algorithms in plasma simulations.展开更多
In this paper, the dissipative and the forced terms of the Duffing equation are considered as the perturbations of nonlinear Hamiltonian equations and the perturbational effect is indicated by parameter ε. Firstly, b...In this paper, the dissipative and the forced terms of the Duffing equation are considered as the perturbations of nonlinear Hamiltonian equations and the perturbational effect is indicated by parameter ε. Firstly, based on the gradient- Hamiltonian decomposition theory of vector fields, by using splitting methods, this paper constructs structure-preserving algorithms (SPAs) for the Duffing equation. Then, according to the Liouville formula, it proves that the Jacobian matrix determinants of the SPAs are equal to that of the exact flow of the Duffing equation. However, considering the explicit Runge Kutta methods, this paper finds that there is an error term of order p+l for the Jacobian matrix determinants. The volume evolution law of a given region in phase space is discussed for different algorithms, respectively. As a result, the sum of Lyapunov exponents is exactly invariable for the SPAs proposed in this paper. Finally, through numerical experiments, relative norm errors and absolute energy errors of phase trajectories of the SPAs and the Heun method (a second-order Runge-Kutta method) are compared. Computational results illustrate that the SPAs are evidently better than the Heun method when e is small or equal to zero.展开更多
The variational calculus of time-scale non-shifted systems includes both the traditional continuous and traditional significant discrete variational calculus.Not only can the combination ofand∇derivatives be beneficia...The variational calculus of time-scale non-shifted systems includes both the traditional continuous and traditional significant discrete variational calculus.Not only can the combination ofand∇derivatives be beneficial to obtaining higher convergence order in numerical analysis,but also it prompts the timescale numerical computational scheme to have good properties,for instance,structure-preserving.In this letter,a structure-preserving algorithm for time-scale non-shifted Hamiltonian systems is proposed.By using the time-scale discrete variational method and calculus theory,and taking a discrete time scale in the variational principle of non-shifted Hamiltonian systems,the corresponding discrete Hamiltonian principle can be obtained.Furthermore,the time-scale discrete Hamilton difference equations,Noether theorem,and the symplectic scheme of discrete Hamiltonian systems are obtained.Finally,taking the Kepler problem and damped oscillator for time-scale non-shifted Hamiltonian systems as examples,they show that the time-scale discrete variational method is a structure-preserving algorithm.The new algorithm not only provides a numerical method for solving time-scale non-shifted dynamic equations but can be calculated with variable step sizes to improve the computational speed.展开更多
The Pfaff-Birkhoff variational principle is discretized, and based on the discrete variational principle the discrete Birkhoffian equations are obtained. Taking the discrete equations as an algorithm, the correspondin...The Pfaff-Birkhoff variational principle is discretized, and based on the discrete variational principle the discrete Birkhoffian equations are obtained. Taking the discrete equations as an algorithm, the corresponding discrete flow is proved to be symplectic. That means the algorithm preserves the symplectic structure of Birkhofflan systems. Finally, simulation results of the given example indicate that structure-preserving algorithms have great advantage in stability and energy conserving.展开更多
In this paper, using the concatenating method, a series of local structure-preserving algorithms are obtained for the Klein-Gordon-Zakharov equation, including four multisymplectic algorithms, four local energy-preser...In this paper, using the concatenating method, a series of local structure-preserving algorithms are obtained for the Klein-Gordon-Zakharov equation, including four multisymplectic algorithms, four local energy-preserving algorithms, four local momentumpreserving algorithms;of these, local energy-preserving and momentum-preserving algorithms have not been studied before. The local structure-preserving algorithms mentioned above are more widely used than the global structure-preserving algorithms, since local preservation algorithms can be preserved in any time and space domains, which overcomes the defect that global preservation algorithms are limited to boundary conditions. In particular, under appropriate boundary conditions, local preservation laws are global preservation laws.Numerical experiments conducted can support the theoretical analysis well.展开更多
In this paper, based on the concatenating method, we present a unified framework to construct a series of local structure-preserving algorithms for the Korteweg-de Vries (KdV) equation, including eight multi-symplec...In this paper, based on the concatenating method, we present a unified framework to construct a series of local structure-preserving algorithms for the Korteweg-de Vries (KdV) equation, including eight multi-symplectic algorithms, eight local energy-conserving algo- rithms and eight local momentum-conserving algorithms. Among these algorithms, some have been discussed and widely used while the most are new. The outstanding advantage of these proposed algorithms is that they conserve the local structures in any time-space re- gion exactly. Therefore, the local structure-preserving algorithms overcome the restriction of global structure-preserving algorithms on the boundary conditions. Numerical experiments are conducted to show the performance of the proposed methods. Moreover, the unified framework can be easily applied to many other equations.展开更多
This paper introduces two novel conformal structure-preserving algorithms for solving the coupled damped nonlinear Schr¨odinger(CDNLS)system,which are based on the conformal multi-symplectic Hamiltonian formulati...This paper introduces two novel conformal structure-preserving algorithms for solving the coupled damped nonlinear Schr¨odinger(CDNLS)system,which are based on the conformal multi-symplectic Hamiltonian formulation and its conformal conservation laws.The proposed algorithms can preserve corresponding conformal multi-symplectic conservation lawand conformalmomentum conservation lawin any local time-space region,respectively.Moreover,it is further shown that the algorithms admit the conformal charge conservation law,and exactly preserve the dissipation rate of charge under appropriate boundary conditions.Numerical experiments are presented to demonstrate the conformal properties and effectiveness of the proposed algorithms during long-time numerical simulations and validate the analysis.展开更多
Presents a study which examined the structure-preserving algorithms to phase space volume for linear dynamical systems. Preservation of phase space volume for source-free dynamical systems; Description of a volume-pre...Presents a study which examined the structure-preserving algorithms to phase space volume for linear dynamical systems. Preservation of phase space volume for source-free dynamical systems; Description of a volume-preserving scheme for linear system with canonical form; Information on structure-preserving schemes for linear dynamical systems.展开更多
In this paper,we study the nonlinear matrix equation X-A^(H)X^(-1)A=Q,where A,Q∈C^(n×n),Q is a Hermitian positive definite matrix and X∈C^(n×n)is an unknown matrix.We prove that the equation always has a u...In this paper,we study the nonlinear matrix equation X-A^(H)X^(-1)A=Q,where A,Q∈C^(n×n),Q is a Hermitian positive definite matrix and X∈C^(n×n)is an unknown matrix.We prove that the equation always has a unique Hermitian positive definite solution.We present two structure-preserving-doubling like algorithms to find the Hermitian positive definite solution of the equation,and the convergence theories are established.Finally,we show the effectiveness of the algorithms by numerical experiments.展开更多
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t...In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.展开更多
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol...Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.展开更多
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base...In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.展开更多
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o...The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.展开更多
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr...Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.展开更多
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th...Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.展开更多
Smallholder farming in West Africa faces various challenges, such as limited access to seeds, fertilizers, modern mechanization, and agricultural climate services. Crop productivity obtained under these conditions var...Smallholder farming in West Africa faces various challenges, such as limited access to seeds, fertilizers, modern mechanization, and agricultural climate services. Crop productivity obtained under these conditions varies significantly from one farmer to another, making it challenging to accurately estimate crop production through crop models. This limitation has implications for the reliability of using crop models as agricultural decision-making support tools. To support decision making in agriculture, an approach combining a genetic algorithm (GA) with the crop model AquaCrop is proposed for a location-specific calibration of maize cropping. In this approach, AquaCrop is used to simulate maize crop yield while the GA is used to derive optimal parameters set at grid cell resolution from various combinations of cultivar parameters and crop management in the process of crop and management options calibration. Statistics on pairwise simulated and observed yields indicate that the coefficient of determination varies from 0.20 to 0.65, with a yield deviation ranging from 8% to 36% across Burkina Faso (BF). An analysis of the optimal parameter sets shows that regardless of the climatic zone, a base temperature of 10˚C and an upper temperature of 32˚C is observed in at least 50% of grid cells. The growing season length and the harvest index vary significantly across BF, with the highest values found in the Soudanian zone and the lowest values in the Sahelian zone. Regarding management strategies, the fertility mean rate is approximately 35%, 39%, and 49% for the Sahelian, Soudano-sahelian, and Soudanian zones, respectively. The mean weed cover is around 36%, with the Sahelian and Soudano-sahelian zones showing the highest variability. The proposed approach can be an alternative to the conventional one-size-fits-all approach commonly used for regional crop modeling. Moreover, it has the potential to explore the performance of cropping strategies to adapt to changing climate conditions.展开更多
The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,wh...The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs.展开更多
Explicit structure-preserving geometric particle-in-cell(PIC)algorithm in curvilinear orthogonal coordinate systems is developed.The work reported represents a further development of the structure-preserving geometric...Explicit structure-preserving geometric particle-in-cell(PIC)algorithm in curvilinear orthogonal coordinate systems is developed.The work reported represents a further development of the structure-preserving geometric PIC algorithm achieving the goal of practical applications in magnetic fusion research.The algorithm is constructed by discretizing the field theory for the system of charged particles and electromagnetic field using Whitney forms,discrete exterior calculus,and explicit non-canonical symplectic integration.In addition to the truncated infinitely dimensional symplectic structure,the algorithm preserves exactly many important physical symmetries and conservation laws,such as local energy conservation,gauge symmetry and the corresponding local charge conservation.As a result,the algorithm possesses the long-term accuracy and fidelity required for first-principles-based simulations of the multiscale tokamak physics.The algorithm has been implemented in the Sym PIC code,which is designed for highefficiency massively-parallel PIC simulations in modern clusters.The code has been applied to carry out whole-device 6 D kinetic simulation studies of tokamak physics.A self-consistent kinetic steady state for fusion plasma in the tokamak geometry is numerically found with a predominately diagonal and anisotropic pressure tensor.The state also admits a steady-state subsonic ion flow in the range of 10 km s-1,agreeing with experimental observations and analytical calculations Kinetic ballooning instability in the self-consistent kinetic steady state is simulated.It is shown that high-n ballooning modes have larger growth rates than low-n global modes,and in the nonlinear phase the modes saturate approximately in 5 ion transit times at the 2%level by the E×B flow generated by the instability.These results are consistent with early and recent electromagnetic gyrokinetic simulations.展开更多
Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct ap...Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct approach to algorithm design, which involves taming quantum mechanical phenomena. This paper extends the numbering of computable programs to be applied in the quantum computing context. Numbering computable programs is a theoretical computer science concept that assigns unique numbers to individual programs or algorithms. Common methods include Gödel numbering which encodes programs as strings of symbols or characters, often used in formal systems and mathematical logic. Based on the proposed numbering approach, this paper presents a mechanism to explore the set of possible quantum algorithms. The proposed approach is able to construct useful circuits such as Quantum Key Distribution BB84 protocol, which enables sender and receiver to establish a secure cryptographic key via a quantum channel. The proposed approach facilitates the process of exploring and constructing quantum algorithms.展开更多
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th...Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.展开更多
基金supported by National Natural Science Foundation of China (Nos. 11975068 and 11925501)the National Key R&D Program of China (No. 2022YFE03090000)the Fundamental Research Funds for the Central Universities (No. DUT22ZD215)。
文摘The classical Pauli particle(CPP) serves as a slow manifold, substituting the conventional guiding center dynamics. Based on the CPP, we utilize the averaged vector field(AVF) method in the computations of drift orbits. Demonstrating significantly higher efficiency, this advanced method is capable of accomplishing the simulation in less than one-third of the time of directly computing the guiding center motion. In contrast to the CPP-based Boris algorithm, this approach inherits the advantages of the AVF method, yielding stable trajectories even achieved with a tenfold time step and reducing the energy error by two orders of magnitude. By comparing these two CPP algorithms with the traditional RK4 method, the numerical results indicate a remarkable performance in terms of both the computational efficiency and error elimination. Moreover, we verify the properties of slow manifold integrators and successfully observe the bounce on both sides of the limiting slow manifold with deliberately chosen perturbed initial conditions. To evaluate the practical value of the methods, we conduct simulations in non-axisymmetric perturbation magnetic fields as part of the experiments,demonstrating that our CPP-based AVF method can handle simulations under complex magnetic field configurations with high accuracy, which the CPP-based Boris algorithm lacks. Through numerical experiments, we demonstrate that the CPP can replace guiding center dynamics in using energy-preserving algorithms for computations, providing a new, efficient, as well as stable approach for applying structure-preserving algorithms in plasma simulations.
基金Project supported by the National Natural Science Foundation of China (Grant No 10572021)the Doctoral Programme Foundation of Institute of Higher Education of China (Grant No 20040007022)
文摘In this paper, the dissipative and the forced terms of the Duffing equation are considered as the perturbations of nonlinear Hamiltonian equations and the perturbational effect is indicated by parameter ε. Firstly, based on the gradient- Hamiltonian decomposition theory of vector fields, by using splitting methods, this paper constructs structure-preserving algorithms (SPAs) for the Duffing equation. Then, according to the Liouville formula, it proves that the Jacobian matrix determinants of the SPAs are equal to that of the exact flow of the Duffing equation. However, considering the explicit Runge Kutta methods, this paper finds that there is an error term of order p+l for the Jacobian matrix determinants. The volume evolution law of a given region in phase space is discussed for different algorithms, respectively. As a result, the sum of Lyapunov exponents is exactly invariable for the SPAs proposed in this paper. Finally, through numerical experiments, relative norm errors and absolute energy errors of phase trajectories of the SPAs and the Heun method (a second-order Runge-Kutta method) are compared. Computational results illustrate that the SPAs are evidently better than the Heun method when e is small or equal to zero.
基金This work was supported by the National Natural Science Foundation of China(Nos.11972241,11572212)the Natural Science Foundation of Jiangsu Province(No.BK20191454)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX20_0251).
文摘The variational calculus of time-scale non-shifted systems includes both the traditional continuous and traditional significant discrete variational calculus.Not only can the combination ofand∇derivatives be beneficial to obtaining higher convergence order in numerical analysis,but also it prompts the timescale numerical computational scheme to have good properties,for instance,structure-preserving.In this letter,a structure-preserving algorithm for time-scale non-shifted Hamiltonian systems is proposed.By using the time-scale discrete variational method and calculus theory,and taking a discrete time scale in the variational principle of non-shifted Hamiltonian systems,the corresponding discrete Hamiltonian principle can be obtained.Furthermore,the time-scale discrete Hamilton difference equations,Noether theorem,and the symplectic scheme of discrete Hamiltonian systems are obtained.Finally,taking the Kepler problem and damped oscillator for time-scale non-shifted Hamiltonian systems as examples,they show that the time-scale discrete variational method is a structure-preserving algorithm.The new algorithm not only provides a numerical method for solving time-scale non-shifted dynamic equations but can be calculated with variable step sizes to improve the computational speed.
基金Supported by the National Natural Science Foundation of China (10932002,10972031)
文摘The Pfaff-Birkhoff variational principle is discretized, and based on the discrete variational principle the discrete Birkhoffian equations are obtained. Taking the discrete equations as an algorithm, the corresponding discrete flow is proved to be symplectic. That means the algorithm preserves the symplectic structure of Birkhofflan systems. Finally, simulation results of the given example indicate that structure-preserving algorithms have great advantage in stability and energy conserving.
基金supported by the National Natural Science Foundation of China(11801277,11771213,12171245)。
文摘In this paper, using the concatenating method, a series of local structure-preserving algorithms are obtained for the Klein-Gordon-Zakharov equation, including four multisymplectic algorithms, four local energy-preserving algorithms, four local momentumpreserving algorithms;of these, local energy-preserving and momentum-preserving algorithms have not been studied before. The local structure-preserving algorithms mentioned above are more widely used than the global structure-preserving algorithms, since local preservation algorithms can be preserved in any time and space domains, which overcomes the defect that global preservation algorithms are limited to boundary conditions. In particular, under appropriate boundary conditions, local preservation laws are global preservation laws.Numerical experiments conducted can support the theoretical analysis well.
文摘In this paper, based on the concatenating method, we present a unified framework to construct a series of local structure-preserving algorithms for the Korteweg-de Vries (KdV) equation, including eight multi-symplectic algorithms, eight local energy-conserving algo- rithms and eight local momentum-conserving algorithms. Among these algorithms, some have been discussed and widely used while the most are new. The outstanding advantage of these proposed algorithms is that they conserve the local structures in any time-space re- gion exactly. Therefore, the local structure-preserving algorithms overcome the restriction of global structure-preserving algorithms on the boundary conditions. Numerical experiments are conducted to show the performance of the proposed methods. Moreover, the unified framework can be easily applied to many other equations.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.11501570,91530106 and 11571366)Research Fund ofNUDT(Grant No.JC15-02-02)the fund from HPCL.
文摘This paper introduces two novel conformal structure-preserving algorithms for solving the coupled damped nonlinear Schr¨odinger(CDNLS)system,which are based on the conformal multi-symplectic Hamiltonian formulation and its conformal conservation laws.The proposed algorithms can preserve corresponding conformal multi-symplectic conservation lawand conformalmomentum conservation lawin any local time-space region,respectively.Moreover,it is further shown that the algorithms admit the conformal charge conservation law,and exactly preserve the dissipation rate of charge under appropriate boundary conditions.Numerical experiments are presented to demonstrate the conformal properties and effectiveness of the proposed algorithms during long-time numerical simulations and validate the analysis.
文摘Presents a study which examined the structure-preserving algorithms to phase space volume for linear dynamical systems. Preservation of phase space volume for source-free dynamical systems; Description of a volume-preserving scheme for linear system with canonical form; Information on structure-preserving schemes for linear dynamical systems.
基金This research is supported by the National Natural Science Foundation of China(No.11871444).
文摘In this paper,we study the nonlinear matrix equation X-A^(H)X^(-1)A=Q,where A,Q∈C^(n×n),Q is a Hermitian positive definite matrix and X∈C^(n×n)is an unknown matrix.We prove that the equation always has a unique Hermitian positive definite solution.We present two structure-preserving-doubling like algorithms to find the Hermitian positive definite solution of the equation,and the convergence theories are established.Finally,we show the effectiveness of the algorithms by numerical experiments.
基金Supported by the Natural Science Foundation of Chongqing(General Program,NO.CSTB2022NSCQ-MSX0884)Discipline Teaching Special Project of Yangtze Normal University(csxkjx14)。
文摘In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching.
基金supported by Science and Technology Innovation Programfor Postgraduate Students in IDP Subsidized by Fundamental Research Funds for the Central Universities(Project No.ZY20240335)support of the Research Project of the Key Technology of Malicious Code Detection Based on Data Mining in APT Attack(Project No.2022IT173)the Research Project of the Big Data Sensitive Information Supervision Technology Based on Convolutional Neural Network(Project No.2022011033).
文摘Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score.
基金Shanxi Province Higher Education Science and Technology Innovation Fund Project(2022-676)Shanxi Soft Science Program Research Fund Project(2016041008-6)。
文摘In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm.
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFF0901300in part by the National Natural Science Foundation of China under Grant Nos.62173076 and 72271048.
文摘The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant(No.51677058).
文摘Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%.
基金received funding from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633)2023 University Student Innovation and Entrepreneurship Training Program(202311463009Z)+1 种基金Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.
文摘Smallholder farming in West Africa faces various challenges, such as limited access to seeds, fertilizers, modern mechanization, and agricultural climate services. Crop productivity obtained under these conditions varies significantly from one farmer to another, making it challenging to accurately estimate crop production through crop models. This limitation has implications for the reliability of using crop models as agricultural decision-making support tools. To support decision making in agriculture, an approach combining a genetic algorithm (GA) with the crop model AquaCrop is proposed for a location-specific calibration of maize cropping. In this approach, AquaCrop is used to simulate maize crop yield while the GA is used to derive optimal parameters set at grid cell resolution from various combinations of cultivar parameters and crop management in the process of crop and management options calibration. Statistics on pairwise simulated and observed yields indicate that the coefficient of determination varies from 0.20 to 0.65, with a yield deviation ranging from 8% to 36% across Burkina Faso (BF). An analysis of the optimal parameter sets shows that regardless of the climatic zone, a base temperature of 10˚C and an upper temperature of 32˚C is observed in at least 50% of grid cells. The growing season length and the harvest index vary significantly across BF, with the highest values found in the Soudanian zone and the lowest values in the Sahelian zone. Regarding management strategies, the fertility mean rate is approximately 35%, 39%, and 49% for the Sahelian, Soudano-sahelian, and Soudanian zones, respectively. The mean weed cover is around 36%, with the Sahelian and Soudano-sahelian zones showing the highest variability. The proposed approach can be an alternative to the conventional one-size-fits-all approach commonly used for regional crop modeling. Moreover, it has the potential to explore the performance of cropping strategies to adapt to changing climate conditions.
基金Supported by the EDD of China(No.80912020104)the Science and Technology Commission of Shanghai Municipality(No.22ZR1427700 and No.23692106900).
文摘The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs.
基金supported by the the National MCF Energy R&D Program(No.2018YFE0304100)National Key Research and Development Program(Nos.2016YFA0400600,2016YFA0400601 and 2016YFA0400602)+1 种基金National Natural Science Foundation of China(Nos.11905220 and 11805273)supported by the U.S.Department of Energy(DE-AC02-09CH11466)。
文摘Explicit structure-preserving geometric particle-in-cell(PIC)algorithm in curvilinear orthogonal coordinate systems is developed.The work reported represents a further development of the structure-preserving geometric PIC algorithm achieving the goal of practical applications in magnetic fusion research.The algorithm is constructed by discretizing the field theory for the system of charged particles and electromagnetic field using Whitney forms,discrete exterior calculus,and explicit non-canonical symplectic integration.In addition to the truncated infinitely dimensional symplectic structure,the algorithm preserves exactly many important physical symmetries and conservation laws,such as local energy conservation,gauge symmetry and the corresponding local charge conservation.As a result,the algorithm possesses the long-term accuracy and fidelity required for first-principles-based simulations of the multiscale tokamak physics.The algorithm has been implemented in the Sym PIC code,which is designed for highefficiency massively-parallel PIC simulations in modern clusters.The code has been applied to carry out whole-device 6 D kinetic simulation studies of tokamak physics.A self-consistent kinetic steady state for fusion plasma in the tokamak geometry is numerically found with a predominately diagonal and anisotropic pressure tensor.The state also admits a steady-state subsonic ion flow in the range of 10 km s-1,agreeing with experimental observations and analytical calculations Kinetic ballooning instability in the self-consistent kinetic steady state is simulated.It is shown that high-n ballooning modes have larger growth rates than low-n global modes,and in the nonlinear phase the modes saturate approximately in 5 ion transit times at the 2%level by the E×B flow generated by the instability.These results are consistent with early and recent electromagnetic gyrokinetic simulations.
文摘Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct approach to algorithm design, which involves taming quantum mechanical phenomena. This paper extends the numbering of computable programs to be applied in the quantum computing context. Numbering computable programs is a theoretical computer science concept that assigns unique numbers to individual programs or algorithms. Common methods include Gödel numbering which encodes programs as strings of symbols or characters, often used in formal systems and mathematical logic. Based on the proposed numbering approach, this paper presents a mechanism to explore the set of possible quantum algorithms. The proposed approach is able to construct useful circuits such as Quantum Key Distribution BB84 protocol, which enables sender and receiver to establish a secure cryptographic key via a quantum channel. The proposed approach facilitates the process of exploring and constructing quantum algorithms.
基金supported by Yunnan Provincial Basic Research Project(202401AT070344,202301AT070443)National Natural Science Foundation of China(62263014,52207105)+1 种基金Yunnan Lancang-Mekong International Electric Power Technology Joint Laboratory(202203AP140001)Major Science and Technology Projects in Yunnan Province(202402AG050006).
文摘Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy.