In reward-based crowdfunding, projects are to disclose the operational risks and mitigation strategies for delivering the physical rewards during the funding phase. However, limited knowledge exists regarding projects...In reward-based crowdfunding, projects are to disclose the operational risks and mitigation strategies for delivering the physical rewards during the funding phase. However, limited knowledge exists regarding projects’ operational risks and mitigation strategies during the funding phase. In contributing to the literature, the study uses data on Kickstarter.com and conducts a content analysis to explore themes and their relationships. The results reveal various operational risks and associated mitigation strategies. Among the identified themes, product-related, contract manufacturers, and supply markets are the most expected risks, while outsourced production and proactive sourcing are the popular mitigation strategies. Also, the finding reveals that proactive sourcing and outsourced production, in-house production and post-campaign sourcing, contract manufacturer risk, and project internal risk are themes forming clusters. The results extend crowdfunding risk disclosure literature and set the tone for future research in crowdfunding operational risk management. Finally, other business implications are drawn for crowdfunding practitioners.展开更多
The concept of Supply Chain 4.0 represents a transformative phase in supply chain management through advanced digital technologies like IoT, AI, blockchain, and cyber-physical systems. While these innovations deliver ...The concept of Supply Chain 4.0 represents a transformative phase in supply chain management through advanced digital technologies like IoT, AI, blockchain, and cyber-physical systems. While these innovations deliver operational improvements, the heightened interconnectivity introduces significant cybersecurity challenges, particularly within military logistics, where mission-critical operations and life-safety concerns are paramount. This paper examines these unique cybersecurity requirements, focusing on advanced persistent threats, supply chain poisoning, and data breaches that could compromise sensitive operations. The study proposes a hybrid cybersecurity framework tailored to military logistics, integrating resilience, redundancy, and cross-jurisdictional security measures. Real-world applicability is validated through simulations, offering strategies for securing supply chains while balancing security, efficiency, and flexibility.展开更多
This paper begins with a discussion of the trust issues that agricultural supply chain finance faces.It then examines the constraints of using blockchain technology to enhance trust in agricultural supply chain financ...This paper begins with a discussion of the trust issues that agricultural supply chain finance faces.It then examines the constraints of using blockchain technology to enhance trust in agricultural supply chain finance in accordance with the technological and institutional logic of combining blockchain with supply chains.This study then proposes the creation of an agricultural“blockchain+supply chain”information service platform and a financing trust mechanism that can effectively ensure the authenticity of the initial information input on the blockchain,consistency between on-chain transaction data and off-chain physical transactions,the controllability of risks in the set up and execution of smart contracts,and the removal of information constraints,resource allocation constraints,and institutional constraints in the agricultural supply chain financing.This aims to improve the efficiency of financing in agricultural supply chains and contribute to the industrial development of rural areas and rural revitalization.展开更多
Blockchain technologies have been used to facilitate Web 3.0 and FinTech applications.However,conventional blockchain technologies suffer from long transaction delays and low transaction success rates in some Web 3.0 ...Blockchain technologies have been used to facilitate Web 3.0 and FinTech applications.However,conventional blockchain technologies suffer from long transaction delays and low transaction success rates in some Web 3.0 and FinTech applications such as Supply Chain Finance(SCF).Blockchain sharding has been proposed to improve blockchain performance.However,the existing sharding methods either use a static sharding strategy,which lacks the adaptability for the dynamic SCF environment,or are designed for public chains,which are not applicable to consortium blockchain-based SCF.To address these issues,we propose an adaptive consortium blockchain sharding framework named ACSarF,which is based on the deep reinforcement learning algorithm.The proposed framework can improve consortium blockchain sharding to effectively reduce transaction delay and adaptively adjust the sharding and blockout strategies to increase the transaction success rate in a dynamic SCF environment.Furthermore,we propose to use a consistent hash algorithm in the ACSarF framework to ensure transaction load balancing in the adaptive sharding system to further improve the performance of blockchain sharding in dynamic SCF scenarios.To evaluate the proposed framework,we conducted extensive experiments in a typical SCF scenario.The obtained experimental results show that the ACSarF framework achieves a more than 60%improvement in user experience compared to other state-of-the-art blockchain systems.展开更多
Radio frequency identification (RFID) has emerged as a pivotal technology in supply chain management (SCM), significantly enhancing its efficiency and effectiveness. When integrated with the internet of things (IoT) t...Radio frequency identification (RFID) has emerged as a pivotal technology in supply chain management (SCM), significantly enhancing its efficiency and effectiveness. When integrated with the internet of things (IoT) to form RFID-IoT, this technology brings transformative advancements to SCM, enabling automated sensing, pervasive computing, and ubiquitous data access across the entire supply chain, from manufacturers and distributors to retailers and consumers. This integration facilitates real-time identification and monitoring of products, enhances various processes, improves logistic tracking, and ensures better product quality management. Despite its promising benefits, the adoption of RFID-IoT in SCM faces several challenges, including technical complexities, data security concerns, and high implementation costs. However, the future potential of RFID-IoT technology remains substantial. It is anticipated that further integration with other emerging technologies, such as block chain and artificial intelligence, will lead to more comprehensive and robust SCM solutions, offering unprecedented levels of transparency, efficiency, and automation in supply chain operations.展开更多
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal...As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.展开更多
In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highw...In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.展开更多
Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system w...Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system without phase splits is proposed in this paper. Three key techniques used in this system have been discussed. First, a combined co-phase traction power supply system is applied at traction substations for compensating negative sequence current and eliminating phase splits at exits of substations; design method and procedure for this system are presented. Second, a new bilateral traction power supply technology is proposed to eliminate the phase split at section post and reduce the influence of equalizing current on the power grid. Meanwhile, power factor should be adjusted to ensure a proper voltage level of the traction network. Third, a seg- mental power supply technology of traction network is used to divide the power supply arms into several segments, and the synchronous measurement and control technology is applied to diagnose faults and their locations quickly and accurately. Thus, the fault impact can be limited to a min- imum degree. In addition, the economy and reliability of the new generation traction power supply system are analyzed.展开更多
This research project investigates the current status of water supply, sanitation, and hygiene practices in Munshiganj District, Bangladesh. Data collection involved a structured questionnaire and a reconnaissance sur...This research project investigates the current status of water supply, sanitation, and hygiene practices in Munshiganj District, Bangladesh. Data collection involved a structured questionnaire and a reconnaissance survey. Findings reveal that 30% of individuals rely on surface water (hand-tube wells, rivers, and ponds), prioritized as canal > river > pond, while 70% depend on groundwater (subterranean electric motor, deep tube-well). Drinking water is generally sufficient, with 95% reporting adequacy throughout the year. About 45% use hand tube-well water, 28% use deep tube-well water, and 11% use supply tap water for various purposes. Bathing trends include underground water through electric motor > pond > hand tube-well water > river, while for cooking, the order is underground water through electric motor > pond > hand tube-well water > river. Toilet water supply ranks as supply tap water > hand tube-well water > deep tube-well water. Although sanitation awareness is high, some lack knowledge of good hygiene practices. After defecating, handwashing methods include soap, ash, soil, or water. Children’s waste disposal varies, with some discarding it in open areas. Approximately 40% suffer from diseases like Diarrhoea due to unsafe water, primarily affecting children and elders. Training exists, but a significant portion lacks sanitation education. Dry skin or exposure to cold water may cause temporary irritation. Local government involvement in sanitation efforts is less active compared to non-governmental organizations. Results emphasize the need to enhance community awareness of safe water supplies and sanitation practices. .展开更多
Losses due to hazards are inevitable and numerical simulations for estimations are complex.This study proposes a model for estimating correlated seismic damages and losses of a water supply pipeline system as an alter...Losses due to hazards are inevitable and numerical simulations for estimations are complex.This study proposes a model for estimating correlated seismic damages and losses of a water supply pipeline system as an alternative for numerical simulations.The common approach in other research shows average damage spots per mesh estimated statistically independent to one another.Spatially distributed lifeline systems,such as water supply pipelines,are interconnected,and seismic spatial variability affects the damages across the region;thus,spatial correlation of damage spots is an important factor in target areas for portfolio loss estimation.Generally,simulations are used to estimate possible losses;however,these assume each damage behaves independently and uncorrelated.This paper assumed that damages per mesh behave in a Poisson distribution to avoid over-dispersion and eliminate negative losses in estimations.The purpose of this study is to obtain a probabilistic portfolio loss model of an extensive water supply area.The proposed model was compared to the numerical simulation data with the correlated Poisson distribution.The application of the Normal To Anything(NORTA)obtained correlations for Poisson Distributions.The proposed probabilistic portfolio loss model,based on the generalized linear model and central limit theory,estimated the possible losses,such as the Probable Maximum Loss(PML,90%non-exceedance)or Normal Expected Loss(NEL,50%non-exceedance).The proposed model can be used in other lifeline systems as well,though additional investigation is needed for confirmation.From the estimations,a seismic physical portfolio loss for the water supply system was presented.The portfolio was made to show possible outcomes for the system.The proposed method was tested and analyzed using an artificial field and a location-based scenario of a water supply pipeline system.This would aid in pre-disaster planning and would require only a few steps and time.展开更多
The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,a...The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,and stability of computing.One of the most successful optimization algorithms is Particle Swarm Optimization(PSO)which has proved its effectiveness in exploring the highest influencing features in the search space based on its fast convergence and the ability to utilize a small set of parameters in the search task.This research proposes an effective enhancement of PSO that tackles the challenge of randomness search which directly enhances PSO performance.On the other hand,this research proposes a generic intelligent framework for early prediction of orders delay and eliminate orders backlogs which could be considered as an efficient potential solution for raising the supply chain performance.The proposed adapted algorithm has been applied to a supply chain dataset which minimized the features set from twenty-one features to ten significant features.To confirm the proposed algorithm results,the updated data has been examined by eight of the well-known classification algorithms which reached a minimum accuracy percentage equal to 94.3%for random forest and a maximum of 99.0 for Naïve Bayes.Moreover,the proposed algorithm adaptation has been compared with other proposed adaptations of PSO from the literature over different datasets.The proposed PSO adaptation reached a higher accuracy compared with the literature ranging from 97.8 to 99.36 which also proved the advancement of the current research.展开更多
This study delves into the formation dynamics of alliances within a closed-loop supply chain(CLSC)that encom-passes a manufacturer,a retailer,and an e-commerce platform.It leverages Stackelberg game for this explorati...This study delves into the formation dynamics of alliances within a closed-loop supply chain(CLSC)that encom-passes a manufacturer,a retailer,and an e-commerce platform.It leverages Stackelberg game for this exploration,contrasting the equilibrium outcomes of a non-alliance model with those of three differentiated alliance models.The non-alliance model acts as a crucial benchmark,enabling the evaluation of the motivations for various supply chain entities to engage in alliance formations.Our analysis is centered on identifying the most effective alliance strategies and establishing a coordination within these partnerships.We thoroughly investigate the consequences of diverse alliance behaviors,bidirectional free-riding and cost-sharing,and the resultant effects on the optimal decision-making among supply chain actors.The findings underscore several pivotal insights:(1)The behavior of alliances within the supply chain exerts variable impacts on the optimal pricing and demand of its members.In comparison to the non-alliance(D)model,the manufacturer-retailer(MR)and manufacturer-e-commerce platform(ME)alliances significantly lower both offline and online resale prices for new and remanufactured goods.This adjustment leads to an enhanced demand for products via the MR alliance’s offline outlets and the ME alliance’s online platforms,thereby augmenting the profits for those within the alliance.Conversely,retailer-e-commerce platform(ER)alliance tends to increase the optimal retail price and demand across both online and offline channels.Under specific conditions,alliance behavior can also increase the profits of non-alliance members,and the profits derived through alliance channels also exceed those from non-alliance channels.(2)The prevalence of bidirectional free-riding behavior largely remains constant across different alliance configurations.Across these models,bidirectional free-riding typically elevates the equilibrium prices in offline channel while negatively affecting the equilibrium prices in other channel.(3)The effect of cost-sharing shows relative uniformity across the various alliance models.Across all configurations,cost-sharing tends to reduce the manufacturer’s profits.Nonetheless,alliances initiated by the manufacturer can counteract these negative impacts,providing a strategic pathway to bolster CLSC profitability.展开更多
Trade credit,as an effective tool for integrating and coordinating material,information,and financial flows in supply chain management,is becoming increasingly widespread.We explore how a manufacturer can design optim...Trade credit,as an effective tool for integrating and coordinating material,information,and financial flows in supply chain management,is becoming increasingly widespread.We explore how a manufacturer can design optimal trade credit contracts when a risk-averse retailer hides its sales cost information(adverse selection)and selling effort level(moral hazard).We develop incentive models for a risk-averse supply chain when adverse selection and moral hazard coexist,which are then compared with the results under single information asymmetry(moral hazard).Moreover,we analyze the effects of private information and risk-aversion coefficient on contract parameters,selling effort level and the profit or utility of the supply chain.The study shows that when the degree of retailer’s risk aversion is within a certain range,reasonable trade credit contracts designed by the manufacturer can effectively induce the retailer to report its real sales cost and encourage it to exert appropriate effort.Furthermore,we find that the optimal trade credit period,optimal transfer payment,and retailer’s optimal sales effort level under dual information asymmetry are less than those under single information asymmetry.Numerical analysis are conducted to demonstrate the effects of the parameters on decisions and profits.展开更多
Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization sup...Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.展开更多
Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve...Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve crop yields while substituting partial chemical N fertilizer.However,it remains unclear how to further intensify the substituting function of green manure and elucidate its underlying agronomic mechanism.In a split-plot field experiment in spring wheat,different green manures returned to the field under reduced chemical N supply was established in an oasis area since 2018,in order to investigate the effect of green manure and reduced N on grain yield,N uptake,N use efficiency(NUE),N nutrition index,soil organic matter,and soil N of wheat in 2020-2022.Our results showed that mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer without reducing grain yield or N accumulation.Noteworthily,mixed sown common vetch and hairy vetch under reduced N by 20%showed the highest N agronomy efficiency and recovery efficiency,which were 92.0%and 46.0%higher than fallow after wheat harvest and conventional N application rate,respectively.The increase in NUE of wheat was mainly attributed to mixed sown common vetch and hairy vetch,which increased N transportation quantity and transportation rate at pre-anthesis,enhanced N harvest index,optimized N nutrition index,and increased activities of nitrate reductase and glutamine synthetase of leaf,respectively.Meanwhile,mixed sown common vetch and hairy vetch under reduced N by 20%improved soil organic matter and N contents.Therefore,mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer while maintaining grain yield and N accumulation,and it combined with reduced chemical N by 20%or 40%improved NUE of wheat via enhancing N supply and uptake.展开更多
In this study,the present situation and characteristics of power supply in remote areas are summarized.By studying the cases of power supply projects in remote areas,the experience is analyzed and described,and the ap...In this study,the present situation and characteristics of power supply in remote areas are summarized.By studying the cases of power supply projects in remote areas,the experience is analyzed and described,and the applicability of related technologies,such as grid-forming storage and power load management,is studied,including grid-connection technologies,such as grid-forming converters and power load management.On this basis,three power-supply modes were proposed.The application scenarios and advantages of the three modes were compared and analyzed.Based on the local development situation,the temporal sequences of the three schemes are described,and a case study was conducted.The study of the heavy-load power supply mode in remote areas contributes to solving the problem of heavy-load green power consumption in remote areas and promoting the further development of renewable energy.展开更多
The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified ra...The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.展开更多
Unlike the traditional decentralized channel,the drop-shipping channel entails a retailer relaying consumers’orders to the manufacturer,which proceeds to stock the orders and directly ship them to the consumers.This ...Unlike the traditional decentralized channel,the drop-shipping channel entails a retailer relaying consumers’orders to the manufacturer,which proceeds to stock the orders and directly ship them to the consumers.This study explores supply chain coordination and product quality in drop-shipping and traditional channels.Specifically,we analyze the performance of both channels under wholesale price and revenue-sharing contracts.Our study yields several key findings.First,the revenue-sharing contract can coordinate both traditional and drop-shipping channels,effectively increasing supply chain performance.Second,given the channel structure,the retailer prefers the wholesale price contract,whereas the manufacturer prefers the revenue-sharing contract.Third,product quality is higher in the drop-shipping channel when demand uncertainty is high.Finally,the implementation of the revenue-sharing contract increases product quality in the traditional channel,whereas it keeps product quality unchanged in the drop-shipping channel.展开更多
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a par...The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation.展开更多
文摘In reward-based crowdfunding, projects are to disclose the operational risks and mitigation strategies for delivering the physical rewards during the funding phase. However, limited knowledge exists regarding projects’ operational risks and mitigation strategies during the funding phase. In contributing to the literature, the study uses data on Kickstarter.com and conducts a content analysis to explore themes and their relationships. The results reveal various operational risks and associated mitigation strategies. Among the identified themes, product-related, contract manufacturers, and supply markets are the most expected risks, while outsourced production and proactive sourcing are the popular mitigation strategies. Also, the finding reveals that proactive sourcing and outsourced production, in-house production and post-campaign sourcing, contract manufacturer risk, and project internal risk are themes forming clusters. The results extend crowdfunding risk disclosure literature and set the tone for future research in crowdfunding operational risk management. Finally, other business implications are drawn for crowdfunding practitioners.
文摘The concept of Supply Chain 4.0 represents a transformative phase in supply chain management through advanced digital technologies like IoT, AI, blockchain, and cyber-physical systems. While these innovations deliver operational improvements, the heightened interconnectivity introduces significant cybersecurity challenges, particularly within military logistics, where mission-critical operations and life-safety concerns are paramount. This paper examines these unique cybersecurity requirements, focusing on advanced persistent threats, supply chain poisoning, and data breaches that could compromise sensitive operations. The study proposes a hybrid cybersecurity framework tailored to military logistics, integrating resilience, redundancy, and cross-jurisdictional security measures. Real-world applicability is validated through simulations, offering strategies for securing supply chains while balancing security, efficiency, and flexibility.
基金an initial outcome of the Research on the Trust Mechanism of Agricultural Supply Chain Financing in the Context of “Blockchain+Supply Chain” Integrated Governance (Project No:20AGL021)a key project under the National Social Science Fund of China (NSSFC)+3 种基金the Research on the Trust Mechanism of Online Bank Lending System Based on Online Social Capital of Long-tail Rural Households (Project No:19BGL155)a project under the NSSFCthe Research on the Cost Formation Mechanism of Data Factor Transactions and the Design of Transaction Mechanism (Project No:23CJY068)a youth project under the NSSFC
文摘This paper begins with a discussion of the trust issues that agricultural supply chain finance faces.It then examines the constraints of using blockchain technology to enhance trust in agricultural supply chain finance in accordance with the technological and institutional logic of combining blockchain with supply chains.This study then proposes the creation of an agricultural“blockchain+supply chain”information service platform and a financing trust mechanism that can effectively ensure the authenticity of the initial information input on the blockchain,consistency between on-chain transaction data and off-chain physical transactions,the controllability of risks in the set up and execution of smart contracts,and the removal of information constraints,resource allocation constraints,and institutional constraints in the agricultural supply chain financing.This aims to improve the efficiency of financing in agricultural supply chains and contribute to the industrial development of rural areas and rural revitalization.
基金supported by the National Key Research and Development Program of China (2022YFC3302300)National Natural Science Foundation of China under Grant (No.61873309,No.92046024,No.92146002)Shanghai Science and Technology Project under Grant (No.22510761000)。
文摘Blockchain technologies have been used to facilitate Web 3.0 and FinTech applications.However,conventional blockchain technologies suffer from long transaction delays and low transaction success rates in some Web 3.0 and FinTech applications such as Supply Chain Finance(SCF).Blockchain sharding has been proposed to improve blockchain performance.However,the existing sharding methods either use a static sharding strategy,which lacks the adaptability for the dynamic SCF environment,or are designed for public chains,which are not applicable to consortium blockchain-based SCF.To address these issues,we propose an adaptive consortium blockchain sharding framework named ACSarF,which is based on the deep reinforcement learning algorithm.The proposed framework can improve consortium blockchain sharding to effectively reduce transaction delay and adaptively adjust the sharding and blockout strategies to increase the transaction success rate in a dynamic SCF environment.Furthermore,we propose to use a consistent hash algorithm in the ACSarF framework to ensure transaction load balancing in the adaptive sharding system to further improve the performance of blockchain sharding in dynamic SCF scenarios.To evaluate the proposed framework,we conducted extensive experiments in a typical SCF scenario.The obtained experimental results show that the ACSarF framework achieves a more than 60%improvement in user experience compared to other state-of-the-art blockchain systems.
文摘Radio frequency identification (RFID) has emerged as a pivotal technology in supply chain management (SCM), significantly enhancing its efficiency and effectiveness. When integrated with the internet of things (IoT) to form RFID-IoT, this technology brings transformative advancements to SCM, enabling automated sensing, pervasive computing, and ubiquitous data access across the entire supply chain, from manufacturers and distributors to retailers and consumers. This integration facilitates real-time identification and monitoring of products, enhances various processes, improves logistic tracking, and ensures better product quality management. Despite its promising benefits, the adoption of RFID-IoT in SCM faces several challenges, including technical complexities, data security concerns, and high implementation costs. However, the future potential of RFID-IoT technology remains substantial. It is anticipated that further integration with other emerging technologies, such as block chain and artificial intelligence, will lead to more comprehensive and robust SCM solutions, offering unprecedented levels of transparency, efficiency, and automation in supply chain operations.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2021EEEVL0204 and 2018A02。
文摘As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.
基金funded by the China National Key Research and Development Program(No.2022YFC3003505)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB23Y01)+1 种基金the National Natural Science Foundation of China(No.52278540)the Fundamental Research Fund for the Central Public-interest Scientific Institutes(No.DQJB22B28).
文摘In 2023,two consecutive earthquakes exceeding a magnitude of 7 occurred in Türkiye,causing severe casualties and economic losses.The damage to critical urban infrastructure and building structures,including highways,railroads,and water supply pipelines,was particularly severe in areas where these structures intersected the seismogenic fault.Critical infrastructure projects that traverse active faults are susceptible to the influence of fault movement,pulse velocity,and ground motions.In this study,we used a unique approach to analyze the acceleration records obtained from the seismic station array(9 strong ground motion stations)located along the East Anatolian Fault(the seismogenic fault of the MW7.8 mainshock of the 2023 Türkiye earthquake doublet).The acceleration records were filtered and integrated to obtain the velocity and displacement time histories.We used the results of an on-site investigation,jointly conducted by China Earthquake Administration and Türkiye’s AFAD,to analyze the distribution of PGA,PGV,and PGD recorded by the strong motion array of the East Anatolian Fault.We found that the maximum horizontal PGA in this earthquake was 3.0 g,and the maximum co-seismic surface displacement caused by the East Anatolian Fault rupture was 6.50 m.As the fault rupture propagated southwest,the velocity pulse caused by the directional effect of the rupture increased gradually,with the maximum PGA reaching 162.3 cm/s.We also discussed the seismic safety of critical infrastructure projects traversing active faults,using two case studies of water supply pipelines in Türkiye that were damaged by earthquakes.We used a three-dimensional finite element model of the PE(polyethylene)water pipeline at the Islahiye State Hospital and fault displacement observations obtained through on-site investigation to analyze pipeline failure mechanisms.We further investigated the effect of the fault-crossing angle on seismic safety of a pipeline,based on our analysis and the failure performance of the large-diameter Thames Water pipeline during the 1999 Kocaeli earthquake.The seismic method of buried pipelines crossing the fault was summarized.
基金supported by the National Natural Science Funds of China (Nos. 51307143 and 51307142)Technology Research and Development Program of China Railway Corporation (No. 2014J009-B)
文摘Unlike the traditional traction power supply system which enables the electrified railway traction sub- station to be connected to power grid in a way of phase rotation, a new generation traction power supply system without phase splits is proposed in this paper. Three key techniques used in this system have been discussed. First, a combined co-phase traction power supply system is applied at traction substations for compensating negative sequence current and eliminating phase splits at exits of substations; design method and procedure for this system are presented. Second, a new bilateral traction power supply technology is proposed to eliminate the phase split at section post and reduce the influence of equalizing current on the power grid. Meanwhile, power factor should be adjusted to ensure a proper voltage level of the traction network. Third, a seg- mental power supply technology of traction network is used to divide the power supply arms into several segments, and the synchronous measurement and control technology is applied to diagnose faults and their locations quickly and accurately. Thus, the fault impact can be limited to a min- imum degree. In addition, the economy and reliability of the new generation traction power supply system are analyzed.
文摘This research project investigates the current status of water supply, sanitation, and hygiene practices in Munshiganj District, Bangladesh. Data collection involved a structured questionnaire and a reconnaissance survey. Findings reveal that 30% of individuals rely on surface water (hand-tube wells, rivers, and ponds), prioritized as canal > river > pond, while 70% depend on groundwater (subterranean electric motor, deep tube-well). Drinking water is generally sufficient, with 95% reporting adequacy throughout the year. About 45% use hand tube-well water, 28% use deep tube-well water, and 11% use supply tap water for various purposes. Bathing trends include underground water through electric motor > pond > hand tube-well water > river, while for cooking, the order is underground water through electric motor > pond > hand tube-well water > river. Toilet water supply ranks as supply tap water > hand tube-well water > deep tube-well water. Although sanitation awareness is high, some lack knowledge of good hygiene practices. After defecating, handwashing methods include soap, ash, soil, or water. Children’s waste disposal varies, with some discarding it in open areas. Approximately 40% suffer from diseases like Diarrhoea due to unsafe water, primarily affecting children and elders. Training exists, but a significant portion lacks sanitation education. Dry skin or exposure to cold water may cause temporary irritation. Local government involvement in sanitation efforts is less active compared to non-governmental organizations. Results emphasize the need to enhance community awareness of safe water supplies and sanitation practices. .
文摘Losses due to hazards are inevitable and numerical simulations for estimations are complex.This study proposes a model for estimating correlated seismic damages and losses of a water supply pipeline system as an alternative for numerical simulations.The common approach in other research shows average damage spots per mesh estimated statistically independent to one another.Spatially distributed lifeline systems,such as water supply pipelines,are interconnected,and seismic spatial variability affects the damages across the region;thus,spatial correlation of damage spots is an important factor in target areas for portfolio loss estimation.Generally,simulations are used to estimate possible losses;however,these assume each damage behaves independently and uncorrelated.This paper assumed that damages per mesh behave in a Poisson distribution to avoid over-dispersion and eliminate negative losses in estimations.The purpose of this study is to obtain a probabilistic portfolio loss model of an extensive water supply area.The proposed model was compared to the numerical simulation data with the correlated Poisson distribution.The application of the Normal To Anything(NORTA)obtained correlations for Poisson Distributions.The proposed probabilistic portfolio loss model,based on the generalized linear model and central limit theory,estimated the possible losses,such as the Probable Maximum Loss(PML,90%non-exceedance)or Normal Expected Loss(NEL,50%non-exceedance).The proposed model can be used in other lifeline systems as well,though additional investigation is needed for confirmation.From the estimations,a seismic physical portfolio loss for the water supply system was presented.The portfolio was made to show possible outcomes for the system.The proposed method was tested and analyzed using an artificial field and a location-based scenario of a water supply pipeline system.This would aid in pre-disaster planning and would require only a few steps and time.
基金funded by the University of Jeddah,Jeddah,Saudi Arabia,under Grant No.(UJ-23-DR-26)。
文摘The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,and stability of computing.One of the most successful optimization algorithms is Particle Swarm Optimization(PSO)which has proved its effectiveness in exploring the highest influencing features in the search space based on its fast convergence and the ability to utilize a small set of parameters in the search task.This research proposes an effective enhancement of PSO that tackles the challenge of randomness search which directly enhances PSO performance.On the other hand,this research proposes a generic intelligent framework for early prediction of orders delay and eliminate orders backlogs which could be considered as an efficient potential solution for raising the supply chain performance.The proposed adapted algorithm has been applied to a supply chain dataset which minimized the features set from twenty-one features to ten significant features.To confirm the proposed algorithm results,the updated data has been examined by eight of the well-known classification algorithms which reached a minimum accuracy percentage equal to 94.3%for random forest and a maximum of 99.0 for Naïve Bayes.Moreover,the proposed algorithm adaptation has been compared with other proposed adaptations of PSO from the literature over different datasets.The proposed PSO adaptation reached a higher accuracy compared with the literature ranging from 97.8 to 99.36 which also proved the advancement of the current research.
基金This work was supported by the Humanities and Social Science Fund of Ministry of Education of China(No.20YJA630009)Shandong Natural Science Foundation of China(No.ZR2022MG002).
文摘This study delves into the formation dynamics of alliances within a closed-loop supply chain(CLSC)that encom-passes a manufacturer,a retailer,and an e-commerce platform.It leverages Stackelberg game for this exploration,contrasting the equilibrium outcomes of a non-alliance model with those of three differentiated alliance models.The non-alliance model acts as a crucial benchmark,enabling the evaluation of the motivations for various supply chain entities to engage in alliance formations.Our analysis is centered on identifying the most effective alliance strategies and establishing a coordination within these partnerships.We thoroughly investigate the consequences of diverse alliance behaviors,bidirectional free-riding and cost-sharing,and the resultant effects on the optimal decision-making among supply chain actors.The findings underscore several pivotal insights:(1)The behavior of alliances within the supply chain exerts variable impacts on the optimal pricing and demand of its members.In comparison to the non-alliance(D)model,the manufacturer-retailer(MR)and manufacturer-e-commerce platform(ME)alliances significantly lower both offline and online resale prices for new and remanufactured goods.This adjustment leads to an enhanced demand for products via the MR alliance’s offline outlets and the ME alliance’s online platforms,thereby augmenting the profits for those within the alliance.Conversely,retailer-e-commerce platform(ER)alliance tends to increase the optimal retail price and demand across both online and offline channels.Under specific conditions,alliance behavior can also increase the profits of non-alliance members,and the profits derived through alliance channels also exceed those from non-alliance channels.(2)The prevalence of bidirectional free-riding behavior largely remains constant across different alliance configurations.Across these models,bidirectional free-riding typically elevates the equilibrium prices in offline channel while negatively affecting the equilibrium prices in other channel.(3)The effect of cost-sharing shows relative uniformity across the various alliance models.Across all configurations,cost-sharing tends to reduce the manufacturer’s profits.Nonetheless,alliances initiated by the manufacturer can counteract these negative impacts,providing a strategic pathway to bolster CLSC profitability.
基金supported by the Plan Project of Shanghai Philosophy and Social Science(2017BGL014)the National Natural Science Foundation of China(71832001)the Fundamental Research Funds for the Central Universities(2232020B-04,2232018H-07).
文摘Trade credit,as an effective tool for integrating and coordinating material,information,and financial flows in supply chain management,is becoming increasingly widespread.We explore how a manufacturer can design optimal trade credit contracts when a risk-averse retailer hides its sales cost information(adverse selection)and selling effort level(moral hazard).We develop incentive models for a risk-averse supply chain when adverse selection and moral hazard coexist,which are then compared with the results under single information asymmetry(moral hazard).Moreover,we analyze the effects of private information and risk-aversion coefficient on contract parameters,selling effort level and the profit or utility of the supply chain.The study shows that when the degree of retailer’s risk aversion is within a certain range,reasonable trade credit contracts designed by the manufacturer can effectively induce the retailer to report its real sales cost and encourage it to exert appropriate effort.Furthermore,we find that the optimal trade credit period,optimal transfer payment,and retailer’s optimal sales effort level under dual information asymmetry are less than those under single information asymmetry.Numerical analysis are conducted to demonstrate the effects of the parameters on decisions and profits.
文摘Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.
基金support of the Natural Science Foundation of China(U21A20218)the National Key Research and Development Program(2021YFD1700202-02)+1 种基金the Agricultural Research System of China(CARS-22-G-12)the Fostering Foundation for the Excellent Ph.D.Dissertation of Gansu Agricultural University(YB2024002).
文摘Achieving the green development of agriculture requires the reduction of chemical nitrogen(N)fertilizer input.Previous studies have confirmed that returning green manure to the field is an effective measure to improve crop yields while substituting partial chemical N fertilizer.However,it remains unclear how to further intensify the substituting function of green manure and elucidate its underlying agronomic mechanism.In a split-plot field experiment in spring wheat,different green manures returned to the field under reduced chemical N supply was established in an oasis area since 2018,in order to investigate the effect of green manure and reduced N on grain yield,N uptake,N use efficiency(NUE),N nutrition index,soil organic matter,and soil N of wheat in 2020-2022.Our results showed that mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer without reducing grain yield or N accumulation.Noteworthily,mixed sown common vetch and hairy vetch under reduced N by 20%showed the highest N agronomy efficiency and recovery efficiency,which were 92.0%and 46.0%higher than fallow after wheat harvest and conventional N application rate,respectively.The increase in NUE of wheat was mainly attributed to mixed sown common vetch and hairy vetch,which increased N transportation quantity and transportation rate at pre-anthesis,enhanced N harvest index,optimized N nutrition index,and increased activities of nitrate reductase and glutamine synthetase of leaf,respectively.Meanwhile,mixed sown common vetch and hairy vetch under reduced N by 20%improved soil organic matter and N contents.Therefore,mixed sown common vetch and hairy vetch can substitute 40%of chemical N fertilizer while maintaining grain yield and N accumulation,and it combined with reduced chemical N by 20%or 40%improved NUE of wheat via enhancing N supply and uptake.
文摘In this study,the present situation and characteristics of power supply in remote areas are summarized.By studying the cases of power supply projects in remote areas,the experience is analyzed and described,and the applicability of related technologies,such as grid-forming storage and power load management,is studied,including grid-connection technologies,such as grid-forming converters and power load management.On this basis,three power-supply modes were proposed.The application scenarios and advantages of the three modes were compared and analyzed.Based on the local development situation,the temporal sequences of the three schemes are described,and a case study was conducted.The study of the heavy-load power supply mode in remote areas contributes to solving the problem of heavy-load green power consumption in remote areas and promoting the further development of renewable energy.
基金This work was supported by the Applied Basic Research Program of Science and Technology Plan Project of Sichuan Province of China(No.2020YJ0252).
文摘The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.
基金supported by the Key Fund Project for Youth Innovation of USTC(WK2040000042).
文摘Unlike the traditional decentralized channel,the drop-shipping channel entails a retailer relaying consumers’orders to the manufacturer,which proceeds to stock the orders and directly ship them to the consumers.This study explores supply chain coordination and product quality in drop-shipping and traditional channels.Specifically,we analyze the performance of both channels under wholesale price and revenue-sharing contracts.Our study yields several key findings.First,the revenue-sharing contract can coordinate both traditional and drop-shipping channels,effectively increasing supply chain performance.Second,given the channel structure,the retailer prefers the wholesale price contract,whereas the manufacturer prefers the revenue-sharing contract.Third,product quality is higher in the drop-shipping channel when demand uncertainty is high.Finally,the implementation of the revenue-sharing contract increases product quality in the traditional channel,whereas it keeps product quality unchanged in the drop-shipping channel.
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.
基金supported by National Natural Science Foundation of China (Nos. 61971345 and 52107174)。
文摘The three-electrode sliding dielectric barrier discharge(TES-DBD) plasma actuator significantly enhances the ionization rate and momentum exchange between charged particles and neutral particles by incorporating a parallel DC electrode into the standard DBD design. This design improves the body force and induced jet velocity while allowing flexible control of the induced jet angle, overcoming the limitations of discharge extension and uncontrollable direction in traditional DBD plasma actuators. An integrated plasma power supply has been designed specifically for TES-DBD plasma actuators, streamlining the power supply management. The methodology involves designing the circuit topology for the TES-DBD power supply, followed by simulating and validating its operating principles using Multisim software. The operational performance of the power supply is evaluated through a comprehensive analysis of its electrical,thermal, and aerodynamic properties specific to TES-DBD plasma actuation.