期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Convex Decomposition Based Cluster Labeling Method for Support Vector Clustering 被引量:5
1
作者 平源 田英杰 +1 位作者 周亚建 杨义先 《Journal of Computer Science & Technology》 SCIE EI CSCD 2012年第2期428-442,共15页
Support vector clustering (SVC) is an important boundary-based clustering algorithm in multiple applications for its capability of handling arbitrary cluster shapes.However,SVC's popularity is degraded by its highl... Support vector clustering (SVC) is an important boundary-based clustering algorithm in multiple applications for its capability of handling arbitrary cluster shapes.However,SVC's popularity is degraded by its highly intensive time complexity and poor label performance.To overcome such problems,we present a novel efficient and robust convex decomposition based cluster labeling (CDCL) method based on the topological property of dataset.The CDCL decomposes the implicit cluster into convex hulls and each one is comprised by a subset of support vectors (SVs).According to a robust algorithm applied in the nearest neighboring convex hulls,the adjacency matrix of convex hulls is built up for finding the connected components;and the remaining data points would be assigned the label of the nearest convex hull appropriately.The approach's validation is guaranteed by geometric proofs.Time complexity analysis and comparative experiments suggest that CDCL improves both the efficiency and clustering quality significantly. 展开更多
关键词 support vector clustering convex decomposition convex hull geometric
原文传递
CCH-based geometric algorithms for SVM and applications
2
作者 彭新俊 王翼飞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2009年第1期89-100,共12页
The support vector machine (SVM) is a novel machine learning tool in data mining. In this paper, the geometric approach based on the compressed convex hull (CCH) with a mathematical framework is introduced to solv... The support vector machine (SVM) is a novel machine learning tool in data mining. In this paper, the geometric approach based on the compressed convex hull (CCH) with a mathematical framework is introduced to solve SVM classification problems. Compared with the reduced convex hull (RCH), CCH preserves the shape of geometric solids for data sets; meanwhile, it is easy to give the necessary and sufficient condition for determining its extreme points. As practical applications of CCH, spare and probabilistic speed-up geometric algorithms are developed. Results of numerical experiments show that the proposed algorithms can reduce kernel calculations and display nice performances. 展开更多
关键词 support vector machine (SVM) compressed convex hull kernel parameter geometric approach probabilistic speed-up
在线阅读 下载PDF
kProtoClust:Towards Adaptive k-Prototype Clustering without Known k
3
作者 Yuan Ping Huina Li +1 位作者 Chun Guo Bin Hao 《Computers, Materials & Continua》 2025年第3期4949-4976,共28页
Towards optimal k-prototype discovery,k-means-like algorithms give us inspirations of central samples collection,yet the unstable seed samples selection,the hypothesis of a circle-like pattern,and the unknown K are st... Towards optimal k-prototype discovery,k-means-like algorithms give us inspirations of central samples collection,yet the unstable seed samples selection,the hypothesis of a circle-like pattern,and the unknown K are still challenges,particularly for non-predetermined data patterns.We propose an adaptive k-prototype clustering method(kProtoClust)which launches cluster exploration with a sketchy division of K clusters and finds evidence for splitting and merging.On behalf of a group of data samples,support vectors and outliers from the perspective of support vector data description are not the appropriate candidates for prototypes,while inner samples become the first candidates for instability reduction of seeds.Different from the representation of samples in traditional,we extend sample selection by encouraging fictitious samples to emphasize the representativeness of patterns.To get out of the circle-like pattern limitation,we introduce a convex decomposition-based strategy of one-cluster-multiple-prototypes in which convex hulls of varying sizes are prototypes,and accurate connection analysis makes the support of arbitrary cluster shapes possible.Inspired by geometry,the three presented strategies make kProtoClust bypassing the K dependence well with the global and local position relationship analysis for data samples.Experimental results on twelve datasets of irregular cluster shape or high dimension suggest that kProtoClust handles arbitrary cluster shapes with prominent accuracy even without the prior knowledge K. 展开更多
关键词 Prototype finding convex hull support vector data description geometrical information
在线阅读 下载PDF
基于CCH的SVM几何算法及其应用 被引量:2
4
作者 彭新俊 王翼飞 《应用数学和力学》 CSCD 北大核心 2009年第1期90-100,共11页
支持向量机(support vector machine(SVM))是一种数据挖掘中新型机器学习方法.提出了基于压缩凸包(compressed convex hull(CCH))的SVM分类问题的几何算法.对比简约凸包(reduced convex hull(RCH)),CCH保持了数据的几何体形状,并且易于... 支持向量机(support vector machine(SVM))是一种数据挖掘中新型机器学习方法.提出了基于压缩凸包(compressed convex hull(CCH))的SVM分类问题的几何算法.对比简约凸包(reduced convex hull(RCH)),CCH保持了数据的几何体形状,并且易于得到确定其极点的充要条件.作为CCH的实际应用,讨论了该几何算法的稀疏化方法及概率加速算法.数值试验结果表明所讨论的算法可降低核计算并取得较好的性能. 展开更多
关键词 支持向量机 压缩凸包 核参数 几何方法 概率加速
在线阅读 下载PDF
SVM的几何方法—SK类思路的研究 被引量:1
5
作者 常振华 陈伯成 +2 位作者 李英杰 刘文煌 闫学为 《计算机工程与应用》 CSCD 北大核心 2011年第8期149-153,160,共6页
支持向量机(Support Vector Machine,SVM)的几何方法是一种基于SVM计算过程中几何意义出发的求解方法。利用其几何特点,比较直观地对其基本算法的构建过程进行了分析。两凸包相对位置可以简要地归纳成5类,且在该类算法迭代过程最优点多... 支持向量机(Support Vector Machine,SVM)的几何方法是一种基于SVM计算过程中几何意义出发的求解方法。利用其几何特点,比较直观地对其基本算法的构建过程进行了分析。两凸包相对位置可以简要地归纳成5类,且在该类算法迭代过程最优点多在顶点和边界上,该类算法在第一次迭代就可能达到边界(最优点);该类算法的手动单步模拟计结果揭示:很多情况下,该类算法迭代过程的投影并不成功,虽不影响解法的最终结果,但会影响迭代效率;基于几何的分析,给出软SK软算法的两种改进思路(Backward-SK和Forward-SK思路),并进行了仿真比较计算。实验表明,该方法计算效果与原思路相似,但是计算过程理解更加直观。 展开更多
关键词 SK算法 凸包 支持向量机 几何方法 数据挖掘
在线阅读 下载PDF
总间隔v-支持向量机及其几何问题 被引量:10
6
作者 彭新俊 王翼飞 《模式识别与人工智能》 EI CSCD 北大核心 2009年第1期8-16,共9页
提出总间隔v-支持向量机(TM-v-SVM),该算法可取得比v-SVM更好的理论分类性能.研究表明TM-v-SVM等价于求解特征空间中的两个压缩凸包的最近点对.讨论压缩凸包的相关性质,并给出对应的几何算法.数值模拟实验表明TM-v-SVM和对应的几何算法... 提出总间隔v-支持向量机(TM-v-SVM),该算法可取得比v-SVM更好的理论分类性能.研究表明TM-v-SVM等价于求解特征空间中的两个压缩凸包的最近点对.讨论压缩凸包的相关性质,并给出对应的几何算法.数值模拟实验表明TM-v-SVM和对应的几何算法可取得比其它算法更好的性能. 展开更多
关键词 支持向量机(SVM) 总间隔支持向量机(TM—SVM) 总间隔v-支持向量机(TM-v-SVM) 压缩凸包(CCH) 几何算法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部