期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Accelerated Recursive Feature Elimination Based on Support Vector Machine for Key Variable Identification 被引量:4
1
作者 毛勇 皮道映 +1 位作者 刘育明 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第1期65-72,共8页
Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently i... Key variable identification for classifications is related to many trouble-shooting problems in process indus-tries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in applica-tion for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diag-nosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee East-man process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application. 展开更多
关键词 variable selection support vector machine recursive feature elimination fault diagnosis
在线阅读 下载PDF
Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm 被引量:11
2
作者 毛勇 周晓波 +2 位作者 皮道映 孙优贤 WONG Stephen T.C. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第10期961-973,共13页
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result... In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes. 展开更多
关键词 Gene selection support vector machine (SVM) recursive feature elimination (RFE) GENETIC algorithm (GA) Parameter SELECTION
在线阅读 下载PDF
Coupling Analysis of Multiple Machine Learning Models for Human Activity Recognition 被引量:1
3
作者 Yi-Chun Lai Shu-Yin Chiang +1 位作者 Yao-Chiang Kan Hsueh-Chun Lin 《Computers, Materials & Continua》 SCIE EI 2024年第6期3783-3803,共21页
Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study intr... Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications. 展开更多
关键词 Human activity recognition artificial intelligence support vector machine random forest adaptive neuro-fuzzy inference system convolution neural network recursive feature elimination
在线阅读 下载PDF
纤维肌痛综合征生物标记物的筛选及免疫细胞浸润分析
4
作者 刘雅妮 杨静欢 +5 位作者 陆慧慧 易玉芳 李智翔 欧阳福 吴璟莉 魏兵 《中国组织工程研究》 CAS 北大核心 2025年第5期1091-1100,共10页
背景:纤维肌痛综合征作为常见风湿病,其发病与中枢敏化及免疫异常有关,但具体过程尚未阐明,缺乏特异性诊断标志物,不断探索该病的发病机制具有重要的临床意义。目的:基于加权基因共表达网络分析(WGCNA)等生物信息学方法和机器学习算法... 背景:纤维肌痛综合征作为常见风湿病,其发病与中枢敏化及免疫异常有关,但具体过程尚未阐明,缺乏特异性诊断标志物,不断探索该病的发病机制具有重要的临床意义。目的:基于加权基因共表达网络分析(WGCNA)等生物信息学方法和机器学习算法筛选纤维肌痛综合征潜在的诊断相关标志基因,并分析其免疫细胞浸润特征。方法:对来自基因表达综合数据库(GEO)的纤维肌痛综合征数据集转录谱进行差异分析和WGCNA分析,整合筛选出差异共表达基因,进一步采用机器学习套索回归(LASSO)算法、支持向量机递归特征消除(SVM-RFE)机器学习算法来识别核心生物标志物,并绘制受试者工作特征(ROC)曲线以评估诊断价值。最后,采用单样本基因集富集分析(ssGSEA)和基因集富集分析(GSEA)评估纤维肌痛综合征的免疫细胞浸润情况及通路富集。结果与结论:①对GSE67311数据集按照log2|(FC)|>0,P<0.05的条件进行差异分析后获得8个下调的差异表达基因;进行WGCNA分析后获得正相关性最高(r=0.22,P=0.04)的模块(MEdarkviolet)内含基因497个,负相关性最高(r=-0.41,P=6×10-5)的模块(MEsalmon2)内含基因19个;将差异表达基因与WGCNA的2个高相关性模块基因取交集,获得7个基因。②对上述7个基因进行LASSO回归算法筛选出4个基因,进行SVM-RFE机器学习算法筛选出5个基因,两者取交集后确定了3个核心基因,分别为重组1号染色体开放阅读框150蛋白(germinal center associated signaling and motility like,GCSAML)、整合素β8(Integrin beta-8,ITGB8)和羧肽酶A3(carboxypeptidase A3,CPA3);绘制3个核心基因的ROC曲线下面积分别为0.744,0.739,0.734,提示均具有很好的诊断价值,可作为纤维肌痛综合征的生物标志物。③免疫浸润分析结果显示,与对照组相比纤维肌痛综合征患者记忆B细胞、CD56 bright NK细胞和肥大细胞显著下调(P<0.05),且与上述3个生物标志物显著正相关(P<0.05)。④富集分析结果提示,纤维肌痛综合征的富集途径包括9条,主要与嗅觉传导、神经活性配体-受体相互作用及感染等通路密切相关。⑤上述结果显示,纤维肌痛综合征的发生发展与多基因参与、免疫调节异常及多个通路失调有关,但这些基因与免疫细胞之间的相互作用,以及它们与各通路之间的关系尚需进一步研究。 展开更多
关键词 纤维肌痛综合征 生物信息学 机器学习 免疫浸润 加权基因共表达网络分析 套索回归 支持向量机递归特征消除算法 单样本基因集富集分析 基因集富集分析
在线阅读 下载PDF
基于SVM-RFE-SFS的基因选择方法 被引量:11
5
作者 游伟 李树涛 谭明奎 《中国生物医学工程学报》 CAS CSCD 北大核心 2010年第1期93-99,共7页
基因微阵列数据通常包含大量与肿瘤分类无关的数据,会严重降低肿瘤诊断的准确率;基因微阵列数据还存在小样本、高维度的问题,也增加了肿瘤诊断的难度,所以必须对其进行基因选择。提出一种新的基于支持向量机(SVM)、联合递归特征去除(RFE... 基因微阵列数据通常包含大量与肿瘤分类无关的数据,会严重降低肿瘤诊断的准确率;基因微阵列数据还存在小样本、高维度的问题,也增加了肿瘤诊断的难度,所以必须对其进行基因选择。提出一种新的基于支持向量机(SVM)、联合递归特征去除(RFE)和序列前向选择(SFS)的基因选择方法。首先利用SVM计算每个基因的排序准则分数,再利用排序准则分数的一阶差分把基因划分为若干小组;对排序准则分数值最小的基因小组进行递归特征去除,消去噪声基因,同时对排序准则分数值最大的基因小组进行序列前向选择,选取有效信息基因。对白血病、结肠癌、乳腺癌基因微阵列数据的实验结果表明,所提出的方法运行效率高、分类性能好。 展开更多
关键词 基因选择 支持向量机 递归特征去除 序列前向选择
在线阅读 下载PDF
利用支持向量数据描述和递归特征消除的水下慢速小目标轨迹特征选择方法
6
作者 赖凯 刘雄厚 杨益新 《声学学报》 北大核心 2025年第2期475-485,共11页
针对水下慢速小目标已有跟踪轨迹特征性能不优、信息冗余而导致分类识别性能不佳的问题,提出了利用改进支持向量数据描述(ISVDD)和递归特征消除(RFE)的ISVDD-RFE轨迹特征选择方法。首先,所提方法选择单分类SVDD以适配小目标分类识别所... 针对水下慢速小目标已有跟踪轨迹特征性能不优、信息冗余而导致分类识别性能不佳的问题,提出了利用改进支持向量数据描述(ISVDD)和递归特征消除(RFE)的ISVDD-RFE轨迹特征选择方法。首先,所提方法选择单分类SVDD以适配小目标分类识别所面临的小样本、类不平衡问题,通过逐步递归消除实现小目标的轨迹特征优选;其次,为提升SVDD-RFE轨迹特征选择能力,从递归效率、相关性和稳健性三个方面改善递归过程;最后,为克服SVDD缺乏全局信息的固有缺陷,从特征区分性和特征态势两方面评估所选轨迹特征,提升整体分类识别性能。实测数据处理结果表明,采用所提方法进行轨迹特征选择后,蛙人目标的精确率从93.8%提升至94.9%,召回率从84.7%提升至91.1%;无人水下航行器目标的精确率从89.0%提升至94.7%,召回率从83.1%提升至85.2%;小目标平均分类准确率从87.7%提升至91.5%。在小样本、类不平衡条件下,所提方法具有优于传统方法的性能。 展开更多
关键词 水下慢速小目标 分类识别 轨迹特征 特征选择 支持向量数据描述 递归特征消除
在线阅读 下载PDF
基于SVM-RFE算法的凋亡蛋白亚细胞定位预测 被引量:4
7
作者 刘太岗 王春华 《计算机工程与应用》 CSCD 北大核心 2017年第10期155-159,共5页
获取凋亡蛋白亚细胞定位的信息对揭示细胞程序性死亡的机制和注解蛋白质功能都具有非常重要的意义。鉴于实验方法确定亚细胞定位不仅费时费力而且代价过高,开发快速有效的计算方法预测亚细胞定位已成为生物信息学领域的重要研究内容之... 获取凋亡蛋白亚细胞定位的信息对揭示细胞程序性死亡的机制和注解蛋白质功能都具有非常重要的意义。鉴于实验方法确定亚细胞定位不仅费时费力而且代价过高,开发快速有效的计算方法预测亚细胞定位已成为生物信息学领域的重要研究内容之一。首先基于位置特异性得分矩阵提取氨基酸组分、二肽组分和自协方差变量等特征构建蛋白质序列的特征表示模型,然后采用递归特征消除法进行特征选择,最后选用支持向量机分类器在两个常用数据集上进行夹克刀检验。实验结果表明,该方法优于大多数已报道的预测方法,从而证明了其有效性。 展开更多
关键词 位置特异性得分矩阵 自协方差变换 支持向量机 递归特征消除 夹克刀检验
在线阅读 下载PDF
基于SVM-RFE和粒子群优化算法的恶意域名检测模型 被引量:4
8
作者 赵正利 姜鹏 +1 位作者 仲国强 吴建新 《福州大学学报(自然科学版)》 CAS 北大核心 2023年第5期634-638,共5页
本研究利用机器学习和随机搜索算法,提出一种基于SVM-RFE和粒子群优化算法的恶意域名检测模型.分析域名字符特征、解析特征和相关特征,使用SVM-RFE算法进行特征权重排序,通过优化的粒子群算法确定最佳SVM参数和特征选择.实验证明该检测... 本研究利用机器学习和随机搜索算法,提出一种基于SVM-RFE和粒子群优化算法的恶意域名检测模型.分析域名字符特征、解析特征和相关特征,使用SVM-RFE算法进行特征权重排序,通过优化的粒子群算法确定最佳SVM参数和特征选择.实验证明该检测模型具有较好的效率和准确度. 展开更多
关键词 网络安全 恶意域名 支持向量机 递归特征消除 粒子群算法
在线阅读 下载PDF
An Effective Intrusion Detection System Based on the FSA-BGRU Hybrid Model
9
作者 Deng Zaihui Li Zihang +2 位作者 Guo Jianzhong Gan Guangming Kong Dejin 《China Communications》 2025年第2期188-198,共11页
Intrusion detection systems play a vital role in cyberspace security.In this study,a network intrusion detection method based on the feature selection algorithm(FSA)and a deep learning model is developed using a fusio... Intrusion detection systems play a vital role in cyberspace security.In this study,a network intrusion detection method based on the feature selection algorithm(FSA)and a deep learning model is developed using a fusion of a recursive feature elimination(RFE)algorithm and a bidirectional gated recurrent unit(BGRU).Particularly,the RFE algorithm is employed to select features from high-dimensional data to reduce weak correlations between features and remove redundant features in the numerical feature space.Then,a neural network that combines the BGRU and multilayer perceptron(MLP)is adopted to extract deep intrusion behavior features.Finally,a support vector machine(SVM)classifier is used to classify intrusion behaviors.The proposed model is verified by experiments on the NSL-KDD dataset.The results indicate that the proposed model achieves a 90.25%accuracy and a 97.51%detection rate in binary classification and outperforms other machine learning and deep learning models in intrusion classification.The proposed method can provide new insight into network intrusion detection. 展开更多
关键词 bidirectional GRU feature selection intrusion detection system multilayer perceptron recursive feature elimination support vector machine
在线阅读 下载PDF
基于SVM-RFE的水稻抗病基因筛选 被引量:1
10
作者 付媛 王岩 +3 位作者 周柚 张帆 王珏鑫 梁艳春 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2011年第6期1101-1104,共4页
提出一种改进的回归特征消去支持向量机特征选择方法(SVM-RFE)对水稻的抗病基因进行筛选.实验结果表明:在预测得到的20个与水稻抗病/敏感相关基因中,有3个基因与已知的水稻抗病基因紧密相关;2个基因与已知的水稻抗病基因有一定的相关性... 提出一种改进的回归特征消去支持向量机特征选择方法(SVM-RFE)对水稻的抗病基因进行筛选.实验结果表明:在预测得到的20个与水稻抗病/敏感相关基因中,有3个基因与已知的水稻抗病基因紧密相关;2个基因与已知的水稻抗病基因有一定的相关性.通过该方法能找到影响水稻生长状态(正常/染病)的基因. 展开更多
关键词 回归特征消去支持向量机 基因筛选 水稻抗病
在线阅读 下载PDF
基于GFCC-SVM-RFE的电力设备声音特征提取方法 被引量:2
11
作者 王赵国 韦存海 +3 位作者 彭雅妮 武明路 李军彬 翟永杰 《电力信息与通信技术》 2022年第9期34-42,共9页
火电厂电力设备声音包含了丰富的有效信息,但受限于复杂环境噪声,使得有效特征提取极其困难。为解决这一问题,文章提出一种基于GFCC-SVM-REF的特征提取方法,并在现场采集的6种设备运行声音、加入ESC-50公共数据集中的环境干扰音以及对... 火电厂电力设备声音包含了丰富的有效信息,但受限于复杂环境噪声,使得有效特征提取极其困难。为解决这一问题,文章提出一种基于GFCC-SVM-REF的特征提取方法,并在现场采集的6种设备运行声音、加入ESC-50公共数据集中的环境干扰音以及对原始设备声音加入不同分贝的高斯白噪声这3类数据上对2种经典语音识别领域的特征提取方法进行抗噪性和准确性的对比。仿真结果表明,针对所研究的数据集,GFCC-SVM-RFE方法在10 dB和20 dB的高斯白噪声下分别达到了81.04%和96.88%的准确率。 展开更多
关键词 电力设备 声音特征提取 环境噪音 梅尔频率倒谱系数 伽马通频率倒谱系数 支持向量机递归特征消除
在线阅读 下载PDF
基于多阶段递推数据分析的低压台区窃电检测方法 被引量:1
12
作者 孔祥玉 马玉莹 +1 位作者 赵鑫 梁博浩 《中国电机工程学报》 EI CSCD 北大核心 2024年第15期5921-5933,I0007,共14页
窃电行为不仅会扰乱正常用电秩序,更会影响电网的供电质量和安全运行。针对窃电检测工作中所面临的用户正常用电行为与窃电行为多样化问题,该文提出一种基于多阶段递推数据分析的低压台区窃电检测方法。该方法第1阶段对嫌疑窃电台区进... 窃电行为不仅会扰乱正常用电秩序,更会影响电网的供电质量和安全运行。针对窃电检测工作中所面临的用户正常用电行为与窃电行为多样化问题,该文提出一种基于多阶段递推数据分析的低压台区窃电检测方法。该方法第1阶段对嫌疑窃电台区进行判定,针对当日线损不是明显激增的情况,提出基于台区线损综合波动率、总分表电流差异率、线损和电流曲线的突变点时间重合度的三步分析法,为窃电嫌疑用户的检测提供了良好的条件;第2阶段提出基于最优特征集的时间序列相似性度量方法,基于欧氏距离度量曲线间数值特征,同时基于动态时间规整(dynamic time warping,DTW)算法度量曲线间的形态特征,实现窃电嫌疑用户的初步筛选;第3阶段提出基于核函数和惩罚参数优化的支持向量机二次深度检测模型(optimize kernel-function and penalty-parameters support vector machine,OKPSVM),其中惩罚参数采用综合改进的粒子群(improved particle swarm optimization,IPSO)算法。通过算例仿真和实际工程应用,整体优化后的支持向量机模型(IPSO-OKPSVM)能够提高深度窃电检测的精准性和适用性。 展开更多
关键词 低压台区 窃电检测 多阶段递推 特征相似性度量 支持向量机
在线阅读 下载PDF
融合支持向量机和特征降维方法的人-椅系统振动模型研究 被引量:2
13
作者 王新伟 张筱璐 +1 位作者 林森 高宇欣 《声学学报》 EI CAS CSCD 北大核心 2024年第2期217-225,共9页
人-椅系统的振动传递特性受人体体征参数、座椅结构、乘坐环境等多种复杂因素影响。在人体振动实验研究的基础上,寻求构建一种基于支持向量机回归的座椅频响函数预测模型,分别采用递归特征消除法和主成分分析法对人体体征参数进行降维,... 人-椅系统的振动传递特性受人体体征参数、座椅结构、乘坐环境等多种复杂因素影响。在人体振动实验研究的基础上,寻求构建一种基于支持向量机回归的座椅频响函数预测模型,分别采用递归特征消除法和主成分分析法对人体体征参数进行降维,并将低维特征输入预测模型,以实现对人-椅系统频响函数及其正交轴效应的预测。结果显示,相比传统支持向量机回归模型,应用主成分分析法降低体征参数关联,可以显著降低模型预测误差,预测值与实测值拟合度可达92%。通过递归特征消除法剔除次要体征参数,可进一步提升预测精度,预测值与实测值拟合度达94%。研究表明,基于特征降维优化的支持向量机回归预测模型能够有效筛选人体振动模型中输入参数的冗余信息,并提升座椅频响函数的计算效率和预测精度。 展开更多
关键词 人-椅系统 支持向量回归 递归特征消除 主成分分析
在线阅读 下载PDF
基于工况识别的PHEV能量管理策略
14
作者 张代庆 牛礼民 +1 位作者 汪恒 张义奇 《西华大学学报(自然科学版)》 CAS 2024年第3期54-63,共10页
为提升并联式混合动力汽车(parallel hybrid electric vehicle,PHEV)的燃油经济性,针对等效燃油消耗最小控制策略(equivalent fuel consumption minimum strategy,ECMS)在不同工况下适应性差的问题,以优化整车等效燃油消耗量为目标,设... 为提升并联式混合动力汽车(parallel hybrid electric vehicle,PHEV)的燃油经济性,针对等效燃油消耗最小控制策略(equivalent fuel consumption minimum strategy,ECMS)在不同工况下适应性差的问题,以优化整车等效燃油消耗量为目标,设计基于工况识别算法的变等效因子ECMS能量管理策略。选取3类典型工况建立支持向量机分类模型,通过递归特征消除法对样本特征进行选择,采用鲸鱼算法对支持向量机进行参数优化,使用模拟退火算法分别对3类工况的ECMS等效因子进行离线全局最优求解,并分别存储于等效因子库中,通过训练好的支持向量机分类器对目标优化工况进行工况识别,不同类型的工况片段采用不同的等效因子进行转矩分配。仿真结果显示:相比于逻辑门限能量管理策略,基于工况识别算法的变等效因子ECMS能量管理策略的电池荷电状态(state of charge,SOC)变化量减少8.67%,节油率为13.11%;相比于优化前的ECMS策略电池SOC变化量减少3.47%,节油率约为6.63%。本文提出的基于工况识别算法的变等效因子ECMS能量管理策略可以有效地减少燃油消耗量,提升PHEV的整车经济性。 展开更多
关键词 并联混合动力汽车 能量管理策略 工况识别 鲸鱼优化算法 支持向量机 递归特征消除 等效燃油消耗最小
在线阅读 下载PDF
轨道几何状态检测异常数据实时智能识别
15
作者 程朝阳 王昊 +4 位作者 侯智雄 李颖 杨劲松 韩志 郝晋斐 《铁道建筑》 北大核心 2024年第2期25-29,共5页
受外界干扰、数据传输、传感器信号偏移等因素影响,轨道几何状态检测数据会产生异常峰值超限,影响现场检测人员工作效率。考虑到异常数据样本较少的不利因素,本文基于轨道几何检测系统传感器正常数据,通过消除数据趋势项,提取时序数据... 受外界干扰、数据传输、传感器信号偏移等因素影响,轨道几何状态检测数据会产生异常峰值超限,影响现场检测人员工作效率。考虑到异常数据样本较少的不利因素,本文基于轨道几何检测系统传感器正常数据,通过消除数据趋势项,提取时序数据多维特征组成训练集,训练并构建了基于单分类支持向量机的异常数据智能识别模型。运用该模型对某地铁轨道几何检测系统单边位移的时序数据进行预处理、特征提取和智能分类,试验验证了其识别效果。结果表明:该方法识别效果好,误报率低,异常数据识别准确率高,且具有轻量化、易部署的特点,可满足轨道几何检测系统实时检测要求。 展开更多
关键词 轨道几何状态检测 异常识别 特征提取 智能识别模型 单分类支持向量机 趋势项消除
在线阅读 下载PDF
基于SVM RFE的人脸特征选择方法 被引量:4
16
作者 李伟红 龚卫国 +2 位作者 陈伟民 梁毅雄 尹克重 《光电工程》 EI CAS CSCD 北大核心 2006年第5期113-117,共5页
提出一种新的基于SVMRFE(SupportVectorMachineRecursiveFeatureElimination)的人脸特征选择方法。该方法将权重矢量和半径/间隔作为SVMRFE的特征选择标准,采用缩放因子梯度算法优化特征搜索。基于该方法构建了一种实用、有效的人脸特... 提出一种新的基于SVMRFE(SupportVectorMachineRecursiveFeatureElimination)的人脸特征选择方法。该方法将权重矢量和半径/间隔作为SVMRFE的特征选择标准,采用缩放因子梯度算法优化特征搜索。基于该方法构建了一种实用、有效的人脸特征提取、选择及识别框架,并在UMIST人脸数据库上进行了验证实验。对特征选择前后的分类能力及速度进行了分析比较,结果表明,该方法是一种实用、有效的人脸特征选择方法,可以在特征维数为80左右时,达到94.62%的分类识别率。 展开更多
关键词 特征选择 人脸识别 支持向量机 SVM RFE
在线阅读 下载PDF
人脸特征选择中的SVM泛化误差估计 被引量:3
17
作者 李伟红 龚卫国 +1 位作者 杨利平 辜小花 《光学精密工程》 EI CAS CSCD 北大核心 2008年第8期1452-1458,共7页
为了研究在人脸特征选择中用支持向量机(SVM)泛化误差界作特征选择判据的有效性问题,结合过滤(Filter)和封装(Wrapper)模型构造了人脸特征选择及识别的新框架,将小波变换(WT)和核主元分析(KPCA)作为Filter模型,最小化SVM的VC维(VC)留一... 为了研究在人脸特征选择中用支持向量机(SVM)泛化误差界作特征选择判据的有效性问题,结合过滤(Filter)和封装(Wrapper)模型构造了人脸特征选择及识别的新框架,将小波变换(WT)和核主元分析(KPCA)作为Filter模型,最小化SVM的VC维(VC)留一法(LOO)误差界及支持向量span误差界作为Wrapper模型的特征选择判据;通过递归特征排除法(RFE)在UMIST人脸图像库上进行人脸特征选择及识别实验。实验结果表明:判据为VC维的LOO误差界和支持向量span误差界时,特征维数可以分别降低到80和70,而分类识别率仍然能达到94%以上,表明本文所提出的特征选择判据和特征搜索策略是解决人脸特征选择问题的一种有效方法。 展开更多
关键词 SVM泛化误差界 人脸特征选择 Filter模型 Wrapper模型 递归特征排除法
在线阅读 下载PDF
基于R-SVM的网络入侵检测系统 被引量:6
18
作者 龚尚福 赵春兰 厍向阳 《计算机工程与设计》 CSCD 北大核心 2012年第10期3777-3782,共6页
入侵检测系统(IDS)在处理高维数据时具有计算量大、占用计算机资源较多、训练和预测时间较长等缺点,这就需要对数据在确保有用信息不丢失的前提下进行约简。递归支持向量机(R-SVM)根据各个特征在svm分类器中的贡献大小从分类结果中提取... 入侵检测系统(IDS)在处理高维数据时具有计算量大、占用计算机资源较多、训练和预测时间较长等缺点,这就需要对数据在确保有用信息不丢失的前提下进行约简。递归支持向量机(R-SVM)根据各个特征在svm分类器中的贡献大小从分类结果中提取使分类器性能最好的特征,以实现维数约简的目的。将R-SVM理论引入入侵检测系统中,提出了一种基于R-SVM入侵检测方法。通过对KDDCUP99数据集中10Percent数据子集的测试实验结果表明,与用粗糙集做特征提取及传统的几种分类算法相比,用R-SVM做特征提取并结合SVM分类算法用于IDS中的性能较好;与使用全部特征构建的支持向量分类器相比,前者能在保障较好的分类精度的同时,降低训练和预测时间。 展开更多
关键词 入侵检测系统 高维数据 约简 特征提取 递归支持向量机 支持向量机
在线阅读 下载PDF
改进的多类支持向量机递归特征消除在癌症多分类中的应用 被引量:10
19
作者 黄晓娟 张莉 《计算机应用》 CSCD 北大核心 2015年第10期2798-2802,共5页
为处理癌症多分类问题,已经提出了多类支持向量机递归特征消除(MSVM-RFE)方法,但该方法考虑的是所有子分类器的权重融合,忽略了各子分类器自身挑选特征的能力。为提高多分类问题的识别率,提出了一种改进的多类支持向量机递归特征消除(MM... 为处理癌症多分类问题,已经提出了多类支持向量机递归特征消除(MSVM-RFE)方法,但该方法考虑的是所有子分类器的权重融合,忽略了各子分类器自身挑选特征的能力。为提高多分类问题的识别率,提出了一种改进的多类支持向量机递归特征消除(MMSVM-RFE)方法。所提方法利用一对多策略把多类问题化解为多个两类问题,每个两类问题均采用支持向量机递归特征消除来逐渐剔除掉冗余特征,得到一个特征子集;然后将得到的多个特征子集合并得到最终的特征子集;最后用SVM分类器对获得的特征子集进行建模。在3个基因数据集上的实验结果表明,改进的算法整体识别率提高了大约2%,单个类别的精度有大幅度提升甚至100%。与随机森林、k近邻分类器以及主成分分析(PCA)降维方法的比较均验证了所提算法的优势。 展开更多
关键词 支持向量机 特征选择 递归特征消除 癌症分类 基因数据
在线阅读 下载PDF
基于机器学习方法的丙型肝炎病毒非结构蛋白5B聚合酶抑制剂活性预测(英文) 被引量:5
20
作者 吕巍 薛英 《物理化学学报》 SCIE CAS CSCD 北大核心 2011年第6期1407-1416,共10页
在丙型肝炎病毒(HCV)的基因复制和蛋白质成熟的过程中,非结构蛋白5B(NS5B)作为RNA依赖的RNA聚合酶起到了重要的作用.抑制NS5B聚合酶可以阻止丙型肝炎病毒的RNA复制,因此成为一种治疗丙型肝炎的有效方法.通过计算机方法进行虚拟筛选和预... 在丙型肝炎病毒(HCV)的基因复制和蛋白质成熟的过程中,非结构蛋白5B(NS5B)作为RNA依赖的RNA聚合酶起到了重要的作用.抑制NS5B聚合酶可以阻止丙型肝炎病毒的RNA复制,因此成为一种治疗丙型肝炎的有效方法.通过计算机方法进行虚拟筛选和预测NS5B聚合酶抑制剂已经变得越来越重要.本文主要采用机器学习方法(支持向量机(SVM)、k-最近相邻法(k-NN)和C4.5决策树(C4.5DT))对已知的丙型肝炎病毒NS5B蛋白酶抑制剂与非抑制剂建立分类预测模型.1248个结构多样性化合物(552个NS5B抑制剂与696个非NS5B抑制剂)被用于测试分类预测系统,并用递归变量消除法选择与NS5B抑制剂相关的性质描述符以提高预测精度.独立验证集的总预测精度为84.1%-85.0%,NS5B抑制剂的预测精度为81.4%-91.7%,非NS5B抑制剂的预测精度为78.2%-87.2%.其中支持向量机给出最好的NS5B抑制剂预测精度(91.7%);C4.5决策树给出最好的非NS5B抑制剂预测精度(87.2%);k-最近相邻法给出最好的总预测精度(85.0%).研究表明机器学习方法可以有效预测未知数据集中潜在的NS5B抑制剂,并有助于发现与其相关的分子描述符. 展开更多
关键词 机器学习方法 分子描述符 递归变量消除法 支持向量机 丙型肝炎病毒
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部