期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于SDP法诊断发动机的异响 被引量:7
1
作者 杨诚 冯焘 +1 位作者 王中方 杨振冬 《声学技术》 CSCD 2010年第5期523-527,共5页
针对发动机异响特征与声信号的复杂性,提出了基于SDP(Symmetrized Dot Pattern)的发动机异响诊断方法。通过将测得的发动机各个局部位置的声信号将其时域波形转换为极坐标图形,利用正常发动机与产生异响发动机SDP图形之间的相关系数来... 针对发动机异响特征与声信号的复杂性,提出了基于SDP(Symmetrized Dot Pattern)的发动机异响诊断方法。通过将测得的发动机各个局部位置的声信号将其时域波形转换为极坐标图形,利用正常发动机与产生异响发动机SDP图形之间的相关系数来判断所测发动机是否存在异响,与传统诊断方法即对时域与频域信号幅值不同进行对比分析相比具有分析时间短、辨别直观等优点。试验结果证明,SDP法能快速准确地分辨出正常发动机与异响发动机的差别,达到了对发动机异响诊断的目的。 展开更多
关键词 发动机 异响诊断 sdp 图形相关系数
在线阅读 下载PDF
基于MEEMD-SDP图像特征和DRN的行星齿轮箱故障诊断 被引量:6
2
作者 陈友广 陈云 谢鲲鹏 《机电工程》 CAS 北大核心 2022年第5期662-667,共6页
在行星齿轮箱齿轮的实际工程应用中,针对故障发生的早期阶段,其非平稳性、非线性振动特征信号导致故障诊断准确率低的问题,提出了一种基于MEEMD-SDP图像特征和深度残差网络的齿轮故障诊断方法。首先,采用了改进的集总平均经验模态分解(M... 在行星齿轮箱齿轮的实际工程应用中,针对故障发生的早期阶段,其非平稳性、非线性振动特征信号导致故障诊断准确率低的问题,提出了一种基于MEEMD-SDP图像特征和深度残差网络的齿轮故障诊断方法。首先,采用了改进的集总平均经验模态分解(MEEMD)方法对齿轮振动信号进行了分解,获得了能够反映齿轮振动信号信息的固有模态函数(IMF);然后,通过对称点图案(SDP)分解方法提取了IMF分量,将其变换到极坐标下的雪花图像特征,并组成了特征向量;最后,引入深度残差网络(DRN)模型,实现了对行星齿轮箱齿轮不同故障的识别与分类,同时将其与卷积神经网络(CNN)模型进行了对比,并在东南大学公开的齿轮箱数据集上进行了不同模型对齿轮状态故障识别准确率的对比实验。研究结果表明:SDP图像特征能够全面表征齿轮的状态信息,相较于CNN模型,采用DRN模型对齿轮进行诊断得到的平均准确率有明显提高,可达到98.1%,能验证基于MEEMD-SDP图像特征和深度残差网络方法的有效性;研究结果对提升现有行星齿轮箱齿轮故障识别的准确率具有一定的价值。 展开更多
关键词 齿轮传动 固有模态函数 改进的集总平均经验模态分解 对称点图案 图像特征 深度残差网络
在线阅读 下载PDF
基于EMD-SDP特征融合的CNN轴承保持架故障诊断研究 被引量:12
3
作者 郑一珍 牛蔺楷 +2 位作者 熊晓燕 祁宏伟 谢宏浩 《机电工程》 CAS 北大核心 2021年第1期81-87,共7页
针对滚动轴承保持架故障振动信号存在的不稳定性、无冲击特性和故障特征难以获取等问题,提出了一种基于EMD-SDP特征融合的CNN轴承保持架故障诊断方法。采用了SDP信息融合方法对保持架故障振动信号的EMD固有模态分量进行了特征信息融合,... 针对滚动轴承保持架故障振动信号存在的不稳定性、无冲击特性和故障特征难以获取等问题,提出了一种基于EMD-SDP特征融合的CNN轴承保持架故障诊断方法。采用了SDP信息融合方法对保持架故障振动信号的EMD固有模态分量进行了特征信息融合,展示了不同保持架故障振动信号的时频特性;分析了滚动轴承保持架不同故障状态下的SDP特征图像差异;之后,结合CNN模型进行了SDP图像识别,设计出了一种基于EMD与SDP特征融合的CNN轴承保持架故障诊断方法模型;最后,通过旋转机械故障试验台,对轴承保持架故障进行了模拟实验。研究结果表明:该方法能够实现99%以上的故障识别率,进一步验证了通过深度学习算法自适应提取SDP信息融合图像特征的方法,可有效应用于轴承保持架故障诊断中。 展开更多
关键词 保持架故障诊断 经验模态分解 对称点模式 卷积神经网络 特征融合
在线阅读 下载PDF
基于SDP图像与VGG网络的旋转机械转子故障诊断研究 被引量:10
4
作者 武海彬 卜明龙 +1 位作者 刘圆圆 郝惠敏 《机电工程》 CAS 北大核心 2020年第9期1069-1074,共6页
针对传统故障诊断方法对旋转机械转子故障状态识别精度较低的问题,提出了一种基于对称点模式图像特征信息融合与深度学习相结合的旋转机械转子故障诊断方法。采用SDP信息融合技术,对转子故障状态下的多通道振动信号进行了信息融合,通过... 针对传统故障诊断方法对旋转机械转子故障状态识别精度较低的问题,提出了一种基于对称点模式图像特征信息融合与深度学习相结合的旋转机械转子故障诊断方法。采用SDP信息融合技术,对转子故障状态下的多通道振动信号进行了信息融合,通过SDP图形特征可简单直观地区分不同转子故障振动状态;结合深度学习VGG网络自适应提取了SDP图像的特征信息,对不同故障转化的SDP图像实现了准确的诊断识别,进而判别了其故障类型;通过变速器机械故障模拟实验验证了所提出方法的有效性,并与传统机器学习方法极限学习机(ELM)进行了比较。研究结果表明:基于SDP图像与VGG网络的旋转机械转子故障诊断方法解决了转子故障振动信号中存在的高复杂、非线性和不稳定问题,与传统机器学习方法ELM相比具有更高的识别精度。 展开更多
关键词 深度学习 VGG网络 sdp图像 多通道信息融合 转子故障诊断 极限学习机
在线阅读 下载PDF
基于全息SDP的船舶推进轴系轴承故障诊断研究 被引量:4
5
作者 廖志强 贾宝柱 《中国舰船研究》 CSCD 北大核心 2022年第6期88-95,共8页
[目的]针对船舶推进轴系轴承的故障诊断问题,提出一种基于全息对称点图形(SDP)和相似性识别的可视化诊断方法。[方法]首先,多方位采集轴承振动信号,全面监测轴承发生故障时的规律性冲击在时域和频域中引起的非平稳性变化特征;然后,基于... [目的]针对船舶推进轴系轴承的故障诊断问题,提出一种基于全息对称点图形(SDP)和相似性识别的可视化诊断方法。[方法]首先,多方位采集轴承振动信号,全面监测轴承发生故障时的规律性冲击在时域和频域中引起的非平稳性变化特征;然后,基于SDP对称点分布原理,将多个维度信号的时域和频谱融合至同一个二维图形,以放大信号之间的差异性;最后,基于相似性识别方法对轴承进行简易诊断。[结果]轴承故障实验平台的验证结果表明,该方法可以实现多个信号的有效图形融合,全面展示设备信号的状态特征,从而准确地诊断故障。[结论]研究成果可为船舶推进轴系轴承的可视化故障简易诊断提供参考。 展开更多
关键词 船舶推进轴系轴承 故障诊断 全息对称点图形 相似性识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部