Synthetic aperture radar(SAR) automatic target recognition is an important application in SAR.How to extract features has restricted the application of SAR technology seriously.In this paper,a new feature extraction m...Synthetic aperture radar(SAR) automatic target recognition is an important application in SAR.How to extract features has restricted the application of SAR technology seriously.In this paper,a new feature extraction method for SAR automatic target recognition based on maximum interclass distance is proposed,which integrates class and neighborhood information.This method can reinforce discriminative power using maximum interclass distance,so it can improve recognition rate effectively.展开更多
To address the randomness of target aspect angle and the incompleteness of observed target in inverse synthetic aperture sonar(ISAS) imaging,a method for target recognition is proposed based on topology vector feat...To address the randomness of target aspect angle and the incompleteness of observed target in inverse synthetic aperture sonar(ISAS) imaging,a method for target recognition is proposed based on topology vector feature(TVF) of multiple highlights. Analysis of the projection relationship from 3 D space to 2 D imaging plane in ISAS indicates that the distance between two highlights in the cross-range scale calibrated image is determined by the distance between the corresponding physical scattering centers. Then, TVFs of different targets, which remain stable in various possibilities of target aspect angle, can be built. K-means clustering technique is used to effectively alleviate effect of the point missing due to incompleteness of the observed target. A nearest neighbor classifier is used to realize the target recognition. The ISAS experimental results using underwater scaled models are provided to demonstrate the effectiveness of the proposed method. A classification rate of 84.0% is reached.展开更多
Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting...Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting to changes in the environment. To realize the whole process of SAR automatic target recognition (ATR), es- pecially for the detection and recognition of vehicles, an algorithm based on kernel fisher discdminant analysis (KFDA) is proposed. First, in order to make a better description of the difference be- tween the background and the target, KFDA is extended to the detection part. Image samples are obtained with a dual-window approach and features of the inner and outer window samples are extracted by using KFDA. The difference between the features of inner and outer window samples is compared with a threshold to determine whether a vehicle exists. Second, for the target area, we propose an improved KFDA-IMED (image Euclidean distance) combined with a support vector machine (SVM) to recognize the vehicles. Experimental results validate the performance of our method. On the detection task, our proposed method obtains not only a high detection rate but also a low false alarm rate without using any prior information. For the recognition task, our method overcomes the SAR image aspect angle sensitivity, reduces the requirements for image preprocessing and improves the recogni- tion rate.展开更多
Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is ba...Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.展开更多
In recent years,deep learning algorithms have been popular in recognizing targets in synthetic aperture radar(SAR)images.However,due to the problem of overfitting,the performance of these models tends to worsen when j...In recent years,deep learning algorithms have been popular in recognizing targets in synthetic aperture radar(SAR)images.However,due to the problem of overfitting,the performance of these models tends to worsen when just a small number of training data are available.In order to solve the problems of overfitting and an unsatisfied performance of the network model in the small sample remote sensing image target recognition,in this paper,we uses a deep residual network to autonomously acquire image features and proposes the Deep Feature Bayesian Classifier model(RBnet)for SAR image target recognition.In the RBnet,a Bayesian classifier is used to improve the effect of SAR image target recognition and improve the accuracy when the training data is limited.The experimental results on MSTAR dataset show that the RBnet can fully exploit effective information in limited samples and recognize the target of the SAR images more accurately.Compared with other state-of-the-art methods,our method offers significant recognition accuracy improvements under limited training data.Noted that theRBnet is moderately difficult to implement and has the value of popularization and application in engineering application scenarios in the field of small-sample remote sensing target recognition and recognition.展开更多
基金supported in part by the National High-tech Research and Development Program("863"Program)of China(Grant No.2009AA12Z106)
文摘Synthetic aperture radar(SAR) automatic target recognition is an important application in SAR.How to extract features has restricted the application of SAR technology seriously.In this paper,a new feature extraction method for SAR automatic target recognition based on maximum interclass distance is proposed,which integrates class and neighborhood information.This method can reinforce discriminative power using maximum interclass distance,so it can improve recognition rate effectively.
基金supported by the National Natural Science Foundation of China(41676024,41376040,41276039,61271391,61671061)the Post-doctor Foundation of Shaanxi Province(2017BSHQYXMZZ04)the Post-doctor Foundation of the 705th Research Institute,CSIC
文摘To address the randomness of target aspect angle and the incompleteness of observed target in inverse synthetic aperture sonar(ISAS) imaging,a method for target recognition is proposed based on topology vector feature(TVF) of multiple highlights. Analysis of the projection relationship from 3 D space to 2 D imaging plane in ISAS indicates that the distance between two highlights in the cross-range scale calibrated image is determined by the distance between the corresponding physical scattering centers. Then, TVFs of different targets, which remain stable in various possibilities of target aspect angle, can be built. K-means clustering technique is used to effectively alleviate effect of the point missing due to incompleteness of the observed target. A nearest neighbor classifier is used to realize the target recognition. The ISAS experimental results using underwater scaled models are provided to demonstrate the effectiveness of the proposed method. A classification rate of 84.0% is reached.
基金supported by the National Natural Science Foundation of China(6107113961471019+5 种基金61171122)the Aeronautical Science Foundation of China(20142051022)the Foundation of ATR Key Lab(C80264)the National Natural Science Foundation of China(NNSFC)under the RSE-NNSFC Joint Project(2012-2014)(61211130210)with Beihang Universitythe RSE-NNSFC Joint Project(2012-2014)(61211130309)with Anhui Universitythe"Sino-UK Higher Education Research Partnership for Ph D Studies"Joint Project(2013-2015)
文摘Current research on target detection and recognition from synthetic aperture radar (SAR) images is usually carried out separately. It is difficult to verify the ability of a target recognition algorithm for adapting to changes in the environment. To realize the whole process of SAR automatic target recognition (ATR), es- pecially for the detection and recognition of vehicles, an algorithm based on kernel fisher discdminant analysis (KFDA) is proposed. First, in order to make a better description of the difference be- tween the background and the target, KFDA is extended to the detection part. Image samples are obtained with a dual-window approach and features of the inner and outer window samples are extracted by using KFDA. The difference between the features of inner and outer window samples is compared with a threshold to determine whether a vehicle exists. Second, for the target area, we propose an improved KFDA-IMED (image Euclidean distance) combined with a support vector machine (SVM) to recognize the vehicles. Experimental results validate the performance of our method. On the detection task, our proposed method obtains not only a high detection rate but also a low false alarm rate without using any prior information. For the recognition task, our method overcomes the SAR image aspect angle sensitivity, reduces the requirements for image preprocessing and improves the recogni- tion rate.
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘Aiming at technical difficulties in feature extraction for the inverse synthetic aperture radar (ISAR) target recognition, this paper imports the concept of visual perception and presents a novel method, which is based on the combination of non-negative sparse coding (NNSC) and linear discrimination optimization, to recognize targets in ISAR images. This method implements NNSC on the matrix constituted by the intensities of pixels in ISAR images for training, to obtain non-negative sparse bases which characterize sparse distribution of strong scattering centers. Then this paper chooses sparse bases via optimization criteria and calculates the corresponding non-negative sparse codes of both training and test images as the feature vectors, which are input into k neighbors classifier to realize recognition finally. The feasibility and robustness of the proposed method are proved by comparing with the template matching, principle component analysis (PCA) and non-negative matrix factorization (NMF) via simulations.
基金funded by the National Key R&D Program of China(2021YFC3320302).
文摘In recent years,deep learning algorithms have been popular in recognizing targets in synthetic aperture radar(SAR)images.However,due to the problem of overfitting,the performance of these models tends to worsen when just a small number of training data are available.In order to solve the problems of overfitting and an unsatisfied performance of the network model in the small sample remote sensing image target recognition,in this paper,we uses a deep residual network to autonomously acquire image features and proposes the Deep Feature Bayesian Classifier model(RBnet)for SAR image target recognition.In the RBnet,a Bayesian classifier is used to improve the effect of SAR image target recognition and improve the accuracy when the training data is limited.The experimental results on MSTAR dataset show that the RBnet can fully exploit effective information in limited samples and recognize the target of the SAR images more accurately.Compared with other state-of-the-art methods,our method offers significant recognition accuracy improvements under limited training data.Noted that theRBnet is moderately difficult to implement and has the value of popularization and application in engineering application scenarios in the field of small-sample remote sensing target recognition and recognition.