The pervasive use of photo editing applications such as Photoshop and FaceTune has significantly altered societal beauty standards, particularly for individuals with skin of color, often leading to unrealistic expecta...The pervasive use of photo editing applications such as Photoshop and FaceTune has significantly altered societal beauty standards, particularly for individuals with skin of color, often leading to unrealistic expectations regarding skin appearance and health. These tools allow users to smooth skin textures, lighten skin tones, and erase imperfections, perpetuating Eurocentric beauty ideals that frequently marginalize the natural diversity of skin tones and textures. Consequently, individuals with skin of color may seek dermatological interventions—such as skin lightening treatments, aggressive acne scar revisions, and other cosmetic procedures—aimed at achieving appearances that align more closely with digitally manipulated images. This pursuit of an unattainable aesthetic can result in increased dissatisfaction with common skin conditions like hyperpigmentation and keloids, which are often misrepresented in edited photos. Additionally, the psychological impact of these alterations can exacerbate feelings of inadequacy, contributing to conditions such as anxiety and body dysmorphic disorder. Dermatologists face the dual challenge of addressing patients’ clinical needs while also managing their expectations shaped by digital enhancements. To combat this, it is essential for dermatologists to integrate patient education that emphasizes the beauty of diverse skin tones and the discrepancies between digital images and authentic skin health. By fostering an understanding of realistic outcomes and promoting the acceptance of natural skin characteristics, dermatologists can empower individuals with skin of color to prioritize authentic skin health over digitally influenced ideals, ultimately leading to more satisfying dermatological care and improved self-image.展开更多
The ability to quickly and intuitively edit digital content has become increasingly important in our everyday life.However,existing edit propagation methods for editing digital images are typically based on optimizati...The ability to quickly and intuitively edit digital content has become increasingly important in our everyday life.However,existing edit propagation methods for editing digital images are typically based on optimization with high computational cost for large inputs.Moreover,existing edit propagation methods are generally inefficient and highly time-consuming.Accordingly,to improve edit efficiency,this paper proposes a novel edit propagation method using a bilateral grid,which can achieve instant propagation of sparse image edits.Firstly,given an input image with user interactions,we resample each of its pixels into a regularly sampled bilateral grid,which facilitates efficient mapping from an image to the bilateral space.As a result,all pixels with the same feature information(color,coordinates)are clustered to the same grid,which can achieve the goal of reducing both the amount of image data processing and the cost of calculation.We then reformulate the propagation as a function of the interpolation problem in bilateral space,which is solved very efficiently using radial basis functions.Experimental results show that our method improves the efficiency of color editing,making it faster than existing edit approaches,and results in excellent edited images with high quality.展开更多
Color transfer between images uses the statistics information of image effectively. We present a novel approach of local color transfer between images based on the simple statistics and locally linear embedding. A ske...Color transfer between images uses the statistics information of image effectively. We present a novel approach of local color transfer between images based on the simple statistics and locally linear embedding. A sketching interface is proposed for quickly and easily specifying the color correspondences between target and source image. The user can specify the corre- spondences of local region using scribes, which more accurately transfers the target color to the source image while smoothly preserving the boundaries, and exhibits more natural output results. Our algorithm is not restricted to one-to-one image color transfer and can make use of more than one target images to transfer the color in different regions in the source image. Moreover, our algorithm does not require to choose the same color style and image size between source and target images. We propose the sub-sampling to reduce the computational load. Comparing with other approaches, our algorithm is much better in color blending in the input data. Our approach preserves the other color details in the source image. Various experimental results show that our approach specifies the correspondences of local color region in source and target images. And it expresses the intention of users and generates more actual and natural results of visual effect.展开更多
In this paper we propose a unified variational image editing model. It interprets image editing as a variational problem concerning the adaptive adjustments to the zero- and first-derivatives of the images which corre...In this paper we propose a unified variational image editing model. It interprets image editing as a variational problem concerning the adaptive adjustments to the zero- and first-derivatives of the images which correspond to the color and gradient items. By varying the definition domain of each of the two items as well as applying diverse operators, the new model is capable of tackling a variety of image editing tasks. It achieves visually better seamless image cloning effects than existing approaches. It also induces a new and efficient solution to adjusting the color of an image interactively and locally. Other image editing tasks such as stylized processing, local illumination enhancement and image sharpening, can be accomplished within the unified variational framework. Experimental results verify the high flexibility and efficiency of the proposed model.展开更多
This paper presents a survey of image synthesis and editing with Generative Adversarial Networks(GANs). GANs consist of two deep networks, a generator and a discriminator, which are trained in a competitive way. Due...This paper presents a survey of image synthesis and editing with Generative Adversarial Networks(GANs). GANs consist of two deep networks, a generator and a discriminator, which are trained in a competitive way. Due to the power of deep networks and the competitive training manner, GANs are capable of producing reasonable and realistic images, and have shown great capability in many image synthesis and editing applications.This paper surveys recent GAN papers regarding topics including, but not limited to, texture synthesis, image inpainting, image-to-image translation, and image editing.展开更多
When combining very different images which often contain complex objects and backgrounds,producing consistent compositions is a challenging problem requiring seamless image editing. In this paper, we propose a general...When combining very different images which often contain complex objects and backgrounds,producing consistent compositions is a challenging problem requiring seamless image editing. In this paper, we propose a general approach, called objectaware image editing, to obtain consistency in structure,color, and texture in a unified way. Our approach improves upon previous gradient-domain composition in three ways. Firstly, we introduce an iterative optimization algorithm to minimize mismatches on the boundaries when the target region contains multiple objects of interest. Secondly, we propose a mixeddomain consistency metric for measuring gradients and colors, and formulate composition as a unified minimization problem that can be solved with a sparse linear system. In particular, we encode texture consistency using a patch-based approach without searching and matching. Thirdly, we adopt an objectaware approach to separately manipulate the guidance gradient fields for objects of interest and backgrounds of interest, which facilitates a variety of seamless image editing applications. Our unified method outperforms previous state-of-the-art methods in preserving global texture consistency in addition to local structure continuity.展开更多
In this paper, we present a new edit tool for the user to conveniently preserve or freely edit the object appearance during seamless image composition. We observe that though Poisson image editing is effective for sea...In this paper, we present a new edit tool for the user to conveniently preserve or freely edit the object appearance during seamless image composition. We observe that though Poisson image editing is effective for seamless image composition. Its color bleeding (the color of the target image is propagated into the source image) is not always desired in applications, and it provides no way to allow the user to edit the appearance of the source image. To make it more flexible and practical, we introduce new energy terms to control the appearance change, and integrate them into the Poisson image editing framework. The new energy function could still be realized using efficient sparse linear solvers, and the user can interactively refine the constraints. With the new tool, the user can enjoy not only seamless image composition, but also the flexibility to preserve or manipulate the appearance of the source image at the same time. This provides more potential for creating new images. Experimental results demonstrate the effectiveness of our new edit tool, with similar time cost to the original Poisson image editing.展开更多
Artificial intelligence generated content(AIGC)has emerged as an indispensable tool for producing large-scale content in various forms,such as images,thanks to the significant role that AI plays in imitation and produ...Artificial intelligence generated content(AIGC)has emerged as an indispensable tool for producing large-scale content in various forms,such as images,thanks to the significant role that AI plays in imitation and production.However,interpretability and controllability remain challenges.Existing AI methods often face challenges in producing images that are both flexible and controllable while considering causal relationships within the images.To address this issue,we have developed a novel method for causal controllable image generation(CCIG)that combines causal representation learning with bi-directional generative adversarial networks(GANs).This approach enables humans to control image attributes while considering the rationality and interpretability of the generated images and also allows for the generation of counterfactual images.The key of our approach,CCIG,lies in the use of a causal structure learning module to learn the causal relationships between image attributes and joint optimization with the encoder,generator,and joint discriminator in the image generation module.By doing so,we can learn causal representations in image’s latent space and use causal intervention operations to control image generation.We conduct extensive experiments on a real-world dataset,CelebA.The experimental results illustrate the effectiveness of CCIG.展开更多
为解决现有图像仿真中动漫风格迁移网络存在图像失真和风格单一等问题,提出了适用于动漫人脸风格迁移和编辑的TGFE-TrebleStyleGAN(text-guided facial editing with TrebleStyleGAN)网络框架。利用潜在空间的向量引导生成人脸图像,并在...为解决现有图像仿真中动漫风格迁移网络存在图像失真和风格单一等问题,提出了适用于动漫人脸风格迁移和编辑的TGFE-TrebleStyleGAN(text-guided facial editing with TrebleStyleGAN)网络框架。利用潜在空间的向量引导生成人脸图像,并在TrebleStyleGAN中设计了细节控制模块和特征控制模块来约束生成图像的外观。迁移网络生成的图像不仅用作风格控制信号,还用作约束细粒度分割后的编辑区域。引入文本生成图像技术,捕捉风格迁移图像和语义信息的关联性。通过在开源数据集和自建配对标签的动漫人脸数据集上的实验表明:相较于基线模型DualStyleGAN,该模型的FID降低了2.819,SSIM与NIMA分别提升了0.028和0.074。集成风格迁移与编辑的方法能够确保在生成过程中既保留原有动漫人脸细节风格,又具备灵活的编辑能力,减少了图像的失真问题,在生成图像特征的一致性和动漫人脸图像风格相似性中表现更优。展开更多
文摘The pervasive use of photo editing applications such as Photoshop and FaceTune has significantly altered societal beauty standards, particularly for individuals with skin of color, often leading to unrealistic expectations regarding skin appearance and health. These tools allow users to smooth skin textures, lighten skin tones, and erase imperfections, perpetuating Eurocentric beauty ideals that frequently marginalize the natural diversity of skin tones and textures. Consequently, individuals with skin of color may seek dermatological interventions—such as skin lightening treatments, aggressive acne scar revisions, and other cosmetic procedures—aimed at achieving appearances that align more closely with digitally manipulated images. This pursuit of an unattainable aesthetic can result in increased dissatisfaction with common skin conditions like hyperpigmentation and keloids, which are often misrepresented in edited photos. Additionally, the psychological impact of these alterations can exacerbate feelings of inadequacy, contributing to conditions such as anxiety and body dysmorphic disorder. Dermatologists face the dual challenge of addressing patients’ clinical needs while also managing their expectations shaped by digital enhancements. To combat this, it is essential for dermatologists to integrate patient education that emphasizes the beauty of diverse skin tones and the discrepancies between digital images and authentic skin health. By fostering an understanding of realistic outcomes and promoting the acceptance of natural skin characteristics, dermatologists can empower individuals with skin of color to prioritize authentic skin health over digitally influenced ideals, ultimately leading to more satisfying dermatological care and improved self-image.
基金supported by National Natural Science Foundation of China(No.U1836208,No.61402053 and No.61202439)Natural Science Foundation of Hunan Province of China(No.2019JJ50666 and No.2019JJ50655)partly supported by Open Fund of Hunan Key Laboratory of Smart Roadway and Cooperative Vehicle-Infrastructure Systems(Changsha University of Science&Technology)(No.KFJ180701).
文摘The ability to quickly and intuitively edit digital content has become increasingly important in our everyday life.However,existing edit propagation methods for editing digital images are typically based on optimization with high computational cost for large inputs.Moreover,existing edit propagation methods are generally inefficient and highly time-consuming.Accordingly,to improve edit efficiency,this paper proposes a novel edit propagation method using a bilateral grid,which can achieve instant propagation of sparse image edits.Firstly,given an input image with user interactions,we resample each of its pixels into a regularly sampled bilateral grid,which facilitates efficient mapping from an image to the bilateral space.As a result,all pixels with the same feature information(color,coordinates)are clustered to the same grid,which can achieve the goal of reducing both the amount of image data processing and the cost of calculation.We then reformulate the propagation as a function of the interpolation problem in bilateral space,which is solved very efficiently using radial basis functions.Experimental results show that our method improves the efficiency of color editing,making it faster than existing edit approaches,and results in excellent edited images with high quality.
基金supported by the National Natural Science Foundation of China(61672482,11626253)the One Hundred Talent Project of the Chinese Academy of Sciences
文摘Color transfer between images uses the statistics information of image effectively. We present a novel approach of local color transfer between images based on the simple statistics and locally linear embedding. A sketching interface is proposed for quickly and easily specifying the color correspondences between target and source image. The user can specify the corre- spondences of local region using scribes, which more accurately transfers the target color to the source image while smoothly preserving the boundaries, and exhibits more natural output results. Our algorithm is not restricted to one-to-one image color transfer and can make use of more than one target images to transfer the color in different regions in the source image. Moreover, our algorithm does not require to choose the same color style and image size between source and target images. We propose the sub-sampling to reduce the computational load. Comparing with other approaches, our algorithm is much better in color blending in the input data. Our approach preserves the other color details in the source image. Various experimental results show that our approach specifies the correspondences of local color region in source and target images. And it expresses the intention of users and generates more actual and natural results of visual effect.
基金A preliminary version of this paper appeared in Proc. Pacific Graphics 2005, Macao. This work is partially supported by the National Basic Research 973 Program of China (Grant No. 2002CB312100), the National Natural Science Foundation of China (Grant No. 60403038), the National Natural Science Foundation of China for Innovative Research Groups (Grant No. 60021201).
文摘In this paper we propose a unified variational image editing model. It interprets image editing as a variational problem concerning the adaptive adjustments to the zero- and first-derivatives of the images which correspond to the color and gradient items. By varying the definition domain of each of the two items as well as applying diverse operators, the new model is capable of tackling a variety of image editing tasks. It achieves visually better seamless image cloning effects than existing approaches. It also induces a new and efficient solution to adjusting the color of an image interactively and locally. Other image editing tasks such as stylized processing, local illumination enhancement and image sharpening, can be accomplished within the unified variational framework. Experimental results verify the high flexibility and efficiency of the proposed model.
基金supported by the National Key Technology R&D Program(No.2016YFB1001402)the National Natural Science Foundation of China(No.61521002)+2 种基金the Joint NSFC-ISF Research Program(No.61561146393)Research Grant of Beijing Higher Institution Engineering Research Center and Tsinghua-Tencent Joint Laboratory for Internet Innovation Technologysupported by the EPSRC CDE(No.EP/L016540/1)
文摘This paper presents a survey of image synthesis and editing with Generative Adversarial Networks(GANs). GANs consist of two deep networks, a generator and a discriminator, which are trained in a competitive way. Due to the power of deep networks and the competitive training manner, GANs are capable of producing reasonable and realistic images, and have shown great capability in many image synthesis and editing applications.This paper surveys recent GAN papers regarding topics including, but not limited to, texture synthesis, image inpainting, image-to-image translation, and image editing.
基金supported in part by the National Key Research and Development Plan(Grant No.2016YFC0801005)the National Natural Science Foundation of China(Grant Nos.61772513 and 61402463)the Open Foundation Project of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province in China(Grant No.16kftk01)
文摘When combining very different images which often contain complex objects and backgrounds,producing consistent compositions is a challenging problem requiring seamless image editing. In this paper, we propose a general approach, called objectaware image editing, to obtain consistency in structure,color, and texture in a unified way. Our approach improves upon previous gradient-domain composition in three ways. Firstly, we introduce an iterative optimization algorithm to minimize mismatches on the boundaries when the target region contains multiple objects of interest. Secondly, we propose a mixeddomain consistency metric for measuring gradients and colors, and formulate composition as a unified minimization problem that can be solved with a sparse linear system. In particular, we encode texture consistency using a patch-based approach without searching and matching. Thirdly, we adopt an objectaware approach to separately manipulate the guidance gradient fields for objects of interest and backgrounds of interest, which facilitates a variety of seamless image editing applications. Our unified method outperforms previous state-of-the-art methods in preserving global texture consistency in addition to local structure continuity.
基金supported by the National Natural Science Foundation of China under Grant Nos. 60773026, 60873182,60833007
文摘In this paper, we present a new edit tool for the user to conveniently preserve or freely edit the object appearance during seamless image composition. We observe that though Poisson image editing is effective for seamless image composition. Its color bleeding (the color of the target image is propagated into the source image) is not always desired in applications, and it provides no way to allow the user to edit the appearance of the source image. To make it more flexible and practical, we introduce new energy terms to control the appearance change, and integrate them into the Poisson image editing framework. The new energy function could still be realized using efficient sparse linear solvers, and the user can interactively refine the constraints. With the new tool, the user can enjoy not only seamless image composition, but also the flexibility to preserve or manipulate the appearance of the source image at the same time. This provides more potential for creating new images. Experimental results demonstrate the effectiveness of our new edit tool, with similar time cost to the original Poisson image editing.
基金Project supported by the National Major Science and Technology Projects of China(No.2022YFB3303302)the National Natural Science Foundation of China(Nos.61977012 and 62207007)the Central Universities Project in China at Chongqing University(Nos.2021CDJYGRH011 and 2020CDJSK06PT14)。
文摘Artificial intelligence generated content(AIGC)has emerged as an indispensable tool for producing large-scale content in various forms,such as images,thanks to the significant role that AI plays in imitation and production.However,interpretability and controllability remain challenges.Existing AI methods often face challenges in producing images that are both flexible and controllable while considering causal relationships within the images.To address this issue,we have developed a novel method for causal controllable image generation(CCIG)that combines causal representation learning with bi-directional generative adversarial networks(GANs).This approach enables humans to control image attributes while considering the rationality and interpretability of the generated images and also allows for the generation of counterfactual images.The key of our approach,CCIG,lies in the use of a causal structure learning module to learn the causal relationships between image attributes and joint optimization with the encoder,generator,and joint discriminator in the image generation module.By doing so,we can learn causal representations in image’s latent space and use causal intervention operations to control image generation.We conduct extensive experiments on a real-world dataset,CelebA.The experimental results illustrate the effectiveness of CCIG.
文摘为解决现有图像仿真中动漫风格迁移网络存在图像失真和风格单一等问题,提出了适用于动漫人脸风格迁移和编辑的TGFE-TrebleStyleGAN(text-guided facial editing with TrebleStyleGAN)网络框架。利用潜在空间的向量引导生成人脸图像,并在TrebleStyleGAN中设计了细节控制模块和特征控制模块来约束生成图像的外观。迁移网络生成的图像不仅用作风格控制信号,还用作约束细粒度分割后的编辑区域。引入文本生成图像技术,捕捉风格迁移图像和语义信息的关联性。通过在开源数据集和自建配对标签的动漫人脸数据集上的实验表明:相较于基线模型DualStyleGAN,该模型的FID降低了2.819,SSIM与NIMA分别提升了0.028和0.074。集成风格迁移与编辑的方法能够确保在生成过程中既保留原有动漫人脸细节风格,又具备灵活的编辑能力,减少了图像的失真问题,在生成图像特征的一致性和动漫人脸图像风格相似性中表现更优。