期刊文献+
共找到836篇文章
< 1 2 42 >
每页显示 20 50 100
Numerical Investigation of the Influence of a Magnetic Field on the Laminar Flow of a Yield-Stress Nanofluid over a Backward Facing Step
1
作者 Karim Amrani Eugenia Rossi di Schio +4 位作者 Mohamed Bouzit Abderrahim Mokhefi Abdelkader Aris Cherif Belhout Paolo Valdiserri 《Frontiers in Heat and Mass Transfer》 2025年第1期185-206,共22页
The present study focuses on the flow of a yield-stress(Bingham)nanofluid,consisting of suspended Fe3O4 nanoparticles,subjected to a magnetic field in a backward-facing step duct(BFS)configuration.The duct is equipped... The present study focuses on the flow of a yield-stress(Bingham)nanofluid,consisting of suspended Fe3O4 nanoparticles,subjected to a magnetic field in a backward-facing step duct(BFS)configuration.The duct is equipped with a cylindrical obstacle,where the lower wall is kept at a constant temperature.The yield-stress nanofluid enters this duct at a cold temperature with fully developed velocity.The aim of the present investigation is to explore the influence of flow velocity(Re=10 to 200),nanoparticle concentration(ϕ=0 to 0.1),magnetic field intensity(Ha=0 to 100),and its inclination angle(γ=0 to 90)and nanofluid yield stress(Bn=0 to 20)on the thermal and hydrodynamic efficiency inside the backward-facing step.The numerical results have been obtained by resolving the momentum and energy balance equations using the Galerkin finite element method.The obtained results have indicated that an increase in Reynolds number and nanoparticle volume fraction enhances heat transfer.In contrast,a significant reduction is observed with an increase in Hartmann and Bingham numbers,resulting in quasi-immobilization of the fluid under the magnetic influence and radical solidification of this type of fluid,accompanied by the suppression of the vortex zone downstream of the cylindrical obstacle.This study sheds light on the complexity of this magnetically influenced fluid,with potential implications in various engineering and materials science fields. 展开更多
关键词 Yield-stress nanofluid Bingham nanofluid backward-facing step BFS magnetic field heat transfer HYDRODYNAMICS
在线阅读 下载PDF
Numerical application of k-ε turbulence model to the flow over a backward-facing step 被引量:8
2
作者 DING DaoYang1 & WU ShiQiang1,2 1 Nanjing Hydraulic Research Institute, Nanjing 210029, China 2 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第10期2817-2825,共9页
A model that uses the operator splitting technique based on Eulerian-Lagrangian method and embeds the k-ε turbulence mode is developed. The model is used to simulate a two dimensional flow over a backward-facing step... A model that uses the operator splitting technique based on Eulerian-Lagrangian method and embeds the k-ε turbulence mode is developed. The model is used to simulate a two dimensional flow over a backward-facing step with triangular mesh discrete flow field. The convection operator is solved with the characteristic method and the diffusion operator and pressure-Poisson equation are solved by finite element method. The results from the example showed that numerical results are well agreed with the experimental data,and that the method can be adapted to simulate complex turbulent flow with strong non-linear convection. The treatment of boundary conditions is also studied in the paper. 展开更多
关键词 TURBULENCE model the flow OVER a backward-facing step NUMERICAL method
原文传递
Electrical conductivity effect on MHD mixed convection of nanofluid flow over a backward-facing step 被引量:4
3
作者 SELIMEFENDIGIL Fatih OCAN CBAN Seda OTOP Hakan F. 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1133-1145,共13页
In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uni... In this study,magneto-hydrodynamics (MHD) mixed convection effects of Al2O3-water nanofluid flow over a backward-facing step were investigated numerically for various electrical conductivity models of nanofluids.A uniform external magnetic field was applied to the flow and strength of magnetic field was varied with different values of dimensionless parameter Hartmann number (Ha=0,10,20,30,40).Three different electrical conductivity models were used to see the effects of MHD nanofluid flow.Besides,five different inclination angles between 0°-90° is used for the external magnetic field.The problem geometry is a backward-facing step which is used in many engineering applications where flow separation and reattachment phenomenon occurs.Mixed type convective heat transfer of backward-facing step was examined with various values of Richardson number (Ri=0.01,0.1,1,10) and four different nanoparticle volume fractions (Ф=0.01,0.015,0.020,0.025) considering different electrical conductivity models.Finite element method via commercial code COMSOL was used for computations.Results indicate that the addition of nanoparticles enhanced heat transfer significantly.Also increasing magnetic field strength and inclination angle increased heat transfer rate.Effects of different electrical conductivity models were also investigated and it was observed that they have significant effects on the fluid flow and heat transfer characteristics in the presence of magnetic field. 展开更多
关键词 electrical conductivity nanofluids backward-facing step MHD flow mixed convection
在线阅读 下载PDF
Numerical simulation of flow separation over a backward-facing step with high Reynolds number 被引量:6
4
作者 Fang-fang Wang Shi-qiang Wu Sen-lin Zhu 《Water Science and Engineering》 EI CAS CSCD 2019年第2期145-154,共10页
Large eddy simulation (LES) explicitly calculates the large-scale vortex field and parameterizes the small-scale vortices.In this study,LES and κ-ε models were developed for a specific geometrical configuration of b... Large eddy simulation (LES) explicitly calculates the large-scale vortex field and parameterizes the small-scale vortices.In this study,LES and κ-ε models were developed for a specific geometrical configuration of backward-facing step (BFS).The simulation results were validated with particle image velocimetry (PIV) measurements and direct numerical simulation (DNS).This LES simulation was carried out with a Reynolds number of 9000 in a pressurized water tunnel with an expansion ratio of 2.00.The results indicate that the LES model can reveal largescale vortex motion although with a larger grid-cell size.However,the LES model tends to overestimate the top wall separation and the Reynolds stress components for the BFS flow simulation without a sufficiently fine grid.Overall,LES is a potential tool for simulating separated flow controlled by large-scale vortices. 展开更多
关键词 Large EDDY SIMULATION κ-ε model backward-facing step Direct numerical SIMULATION Large-scale VORTICES Particle image VELOCIMETRY
在线阅读 下载PDF
Numerical investigation of flow and heat transfer behind a two-dimensional backward-facing step equipped with a semi-porous baffle 被引量:4
5
作者 Hamid-Reza BAHRAMI 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3354-3367,共14页
The backward-facing step is a critical problem existing in many engineering and industrial applications.In this study,a semi-porous baffle(the root of the baffle is a porous medium and the tip is solid) is placed behi... The backward-facing step is a critical problem existing in many engineering and industrial applications.In this study,a semi-porous baffle(the root of the baffle is a porous medium and the tip is solid) is placed behind the step.The effects of the length of the porous part,and the baffle location on the energy transfer and pressure drop are studied in different Reynolds numbers(Re=100,200,300,400,500).The effect of the Darcy number of the porous medium on the aforementioned parameters is also investigated.Both the local maximum and average relative Nusselt numbers(divided by the Nusselt of the base case with no baffle at the same Reynolds) and relative pressure drop(calculated as the relative Nusselt number) are reported.The results show that by adoption of the proper length of the porous medium,the average relative and maximum local Nusselt numbers could be enhanced by 20% and 90%,respectively.Low permeable porous media give better energy transfer.For example,porous media with Da=10^(-5) give 30% better maximum local Nusselt number and about 7% higher average Nusselt number with respect to the same case with Da=10^(-2). 展开更多
关键词 porous media enhanced heat transfer BAFFLE backward-facing step two-dimensional channel
在线阅读 下载PDF
Electromagnetic control of the instability in the liquid metal flow over a backward-facing step
6
作者 Ya-Dong Huang Jia-Wei Fu Long-Miao Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第12期306-314,共9页
The tile-type electromagnetic actuator(TEA)and stripe-type electromagnetic actuator(SEA)are applied to the active control of the perturbation energy in the liquid metal flow over a backward-facing step(BFS).Three cont... The tile-type electromagnetic actuator(TEA)and stripe-type electromagnetic actuator(SEA)are applied to the active control of the perturbation energy in the liquid metal flow over a backward-facing step(BFS).Three control strategies consisting of base flow control(BFC),linear model control(LMC)and combined model control(CMC)are considered to change the amplification rate of the perturbation energy.CMC is the combination of BFC and LMC.SEA is utilized in BFC to produce the streamwise Lorentz force thus adjusting the amplification rate via modifying the flow structures,and the magnitude of the maximum amplification rate could reach to 6 orders.TEA is used in LMC to reduce the magnitude of the amplification rate via the wall-normalwise Lorentz force,and the magnitude could be decreased by 2 orders.Both TEA and SEA are employed in CMC where the magnitude of the amplification rate could be diminished by 3 orders.In other words,the control strategy of CMC could capably alter the flow instability of the liquid metal flow. 展开更多
关键词 electromagnetic actuator backward-facing step flow flow instability flow control
在线阅读 下载PDF
Amplification mechanism of perturbation energy in controlled backward-facing step flow
7
作者 Yadong HUANG Desheng ZHANG Fadong GU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第10期1479-1494,共16页
A body force resembling the streamwise Lorentz force which decays exponentially in the wall-normalwise direction is applied in the primary and secondary separation bubbles to modify the base flow and thereby adjust th... A body force resembling the streamwise Lorentz force which decays exponentially in the wall-normalwise direction is applied in the primary and secondary separation bubbles to modify the base flow and thereby adjust the amplification rate of the perturbation energy.The amplification mechanisms are investigated numerically via analyzing the characteristics of the terms in the Reynolds-Orr equation which describes the growth rate of the perturbation energy.The results demonstrate that the main convective term always promotes the increase in the growth rate while the viscous terms usually play the reverse role.The contours of the product of the wall-normalwise and streamwise perturbation velocities distribute on both sides of the isoline,which represents the zero wall-normalwise gradient of the streamwise velocity in the base flow,due to the Kelvin-Helmholtz(KH)instability.For the case without control,the isoline downstream the reattachment point of the primary separation bubble is closer to the lower wall,and thus the viscous term near the lower wall might suppress the amplification rate.For the case in which the body force only acts on the secondary separation bubble,the secondary separation bubble is removed,and the magnitude of the negative wall-normalwise gradient of the base flow streamwise velocity decreases along the streamwise direction,and thus the growth rate of the perturbation energy is smaller than that for the case without control.For the case where the body force acts on both the separation bubbles,the secondary separation bubble is removed,the isoline stays in the central part of the channel,and thereby the viscous term has less effects on the amplification rate of which the peak value could be the maximum one for some control number. 展开更多
关键词 backward-facing step(BFS)flow flow control amplification mechanism perturbation energy
在线阅读 下载PDF
Effects of Baffle on Entropy Generation in Separated Convection Flow Adjacent to Inclined Backward-Facing Step
8
作者 Asad Bahrami Seyyed Abdolreza Gandjalikhan Nassab Maliheh Hashemipour 《Journal of Electronics Cooling and Thermal Control》 2012年第4期53-61,共9页
Numerical simulations of a two-dimensional laminar forced convection flow adjacent to inclined backward-facing step in a rectangular duct are presented to examine effects of baffle on flow, heat transfer and entropy g... Numerical simulations of a two-dimensional laminar forced convection flow adjacent to inclined backward-facing step in a rectangular duct are presented to examine effects of baffle on flow, heat transfer and entropy generation distributions. The main aim of using baffles is to enhance the value of convection coefficient on the bottom wall. But the useful energy can be destroyed due to intrinsic irreversibilities in the flow by the baffle. In the present work, the amount of energy loss is estimated by the computation of entropy generation. The values of velocity and temperature which are the inputs of the entropy generation equation are obtained by the numerical solution of momentum and energy equations with blocked-off method using computational fluid dynamic technique. Discretized forms of the governing equations in the (x, y) plane are obtained by the control volume method and solved using the SIMPLE algorithm. Numerical expressions, in terms of Nusselt number, entropy generation number, Bejan number and coefficient of friction are derived in dimensionless form. Results show that although a baffle mounted onto the upper wall increases the magnitude of Nusselts number on the bottom wall, but a considerable increase in the amount of entropy generation number takes place because of this technique. For validation, the numerical results for the Nusselt number and entropy generation number are compared with theoretical findings by other investigators and reasonable agreement is found. 展开更多
关键词 ENTROPY Generation Inclined BACKWARD step BAFFLE CONVECTION flow
在线阅读 下载PDF
Physical modelling and scale effects of air-water flows on stepped spillways 被引量:5
9
作者 CHANSON Hubert GONZALEZ Carlos A. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第3期243-250,共8页
During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete), strengthened gabions) has increased the interest for stepped channels and spillways. However stepped... During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete), strengthened gabions) has increased the interest for stepped channels and spillways. However stepped chute hydraulics is not simple, because of different flow regimes and importantly because of very-strong interactions between entrained air and turbu- lence. In this study, new air-water flow measurements were conducted in two large-size stepped chute facilities with two step heights in each facility to study experimental distortion caused by scale effects and the soundness of result extrapolation to pro- totypes. Experimental data included distributions of air concentration, air-water flow velocity, bubble frequency, bubble chord length and air-water flow turbulence intensity. For a Froude similitude, the results implied that scale effects were observed in both facilities, although the geometric scaling ratio was only Lr=2 in each case. The selection of the criterion for scale effects is a critical issue. For example, major differences (i.e. scale effects) were observed in terms of bubble chord sizes and turbulence levels al- though little scale effects were seen in terms of void fraction and velocity distributions. Overall the findings emphasize that physical modelling of stepped chutes based upon a Froude similitude is more sensitive to scale effects than classical smooth-invert chute studies, and this is consistent with basic dimensional analysis developed herein. 展开更多
关键词 Physical modelling Scale effects stepped spillways Air entrainment Air-water flow measurements
在线阅读 下载PDF
Response of turbulent fluctuations to the periodic perturbations in a flow over a backward facing step 被引量:3
10
作者 Zhuoyue Li Honglei Bai Nan Gao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第5期191-195,共5页
The flow structures in a separated shear layer actuated by a synthetic jet actuator were studied using experimental methods. When forced at a frequency much lower than the natural shedding frequency (fH/U = 0.042 orf... The flow structures in a separated shear layer actuated by a synthetic jet actuator were studied using experimental methods. When forced at a frequency much lower than the natural shedding frequency (fH/U = 0.042 orfXr/U = 0.24), the vertical flapping motion of the shear layer downstream of the separation point became prominent. The size of the peak in the pressure spectra at the forcing frequency (Sta = fAH//U) measured near the separation point (x/H = 1) increased linearly with the forcing ampli- tude (u'/U) suggesting a linear response of the pressure fluctuations to the forcing by the synthetic jet. The linear response did not hold for the pressure fluctuations away from the jet exit as the magnitude of the peak for StA measured at x/H = 3 soon saturated when the forcing amplitude became larger than 0.3. 展开更多
关键词 Active flow controlSynthetic jetBackward facing step
在线阅读 下载PDF
Air Entrainment and Pressure Fields over Stepped Spillway in Skimming Flow Regime 被引量:1
11
作者 Anant I. Dhatrak Sandip P. Tatewar 《Journal of Power and Energy Engineering》 2014年第4期53-57,共5页
This paper deals with some aspects of the air entrainment process along the chute of spillway and study of pressure fluctuations. The experimental study has been carried out using stepped spillway model located in the... This paper deals with some aspects of the air entrainment process along the chute of spillway and study of pressure fluctuations. The experimental study has been carried out using stepped spillway model located in the campus of Government College of Engineering, Amravati (India). It is observed that air concentration is increasing with discharge as well as with number of step. Air concentration is increasing along the length of spillway. It is also observed that the bottom mean air concentration increases with step height in the upstream reach of stepped spillway, which is prone to cavitation. The pressure profiles exhibit a wavy pattern down the stepped chute and pressure on each step increases with ratio of critical depth to step height (yc/h). 展开更多
关键词 stepped SPILLWAY Air ENTRAINMENT SKIMMING flow REGIME PRESSURE FLUCTUATIONS
在线阅读 下载PDF
Numerical investigation of air-entrainment in skimming flow over stepped spillways 被引量:1
12
作者 Jiemin Zhan Jianbo Zhang Yejun Gong 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第3期139-142,共4页
As a widely used flood energy dissipator, the stepped spillway can significantly dissipate the kinetic or hydraulic energy due to the air-entrainment in skimming flow over the steps. The free-surface aeration involves... As a widely used flood energy dissipator, the stepped spillway can significantly dissipate the kinetic or hydraulic energy due to the air-entrainment in skimming flow over the steps. The free-surface aeration involves the sharp deformation of the free surface and the complex turbulent shear flows. In this study, the volume of fluid (VOF), mixture, and Eulerian methods are utilized to simulate the air-entrainment by coupling with the Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence models. The free surface deformation, air volume fraction, pressure, and velocity are compared for the three different numerical methods. Only the Eulerian+RANS method fails to capture the free-surface aeration. The air volume fraction predicted by the VOF+LES method best matches the experimental measurement, while the mixture+LES method predicts the inception point of the air entrainment more accurately. 展开更多
关键词 Skimming flow stepped spillways Air-entrainment Large eddy simulation
在线阅读 下载PDF
Direct observation of bunching of elementary steps on protein crystals under forced flow conditions
13
作者 Gen Sazaki Guoliang Dai 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2015年第4期173-176,共4页
Bunching of elementary steps by solution flow is still not yet clarified for protein crystals. Hence, in this study, we observed elementary steps on crystal surfaces of model protein hen egg-white lysozyme (HEWL) un... Bunching of elementary steps by solution flow is still not yet clarified for protein crystals. Hence, in this study, we observed elementary steps on crystal surfaces of model protein hen egg-white lysozyme (HEWL) under forced flow conditions, by our advanced optical microscopy. We found that in the case of a HEWL solution of 99.99% purity, forced flow changed bunched steps into elementary ones (debunching) on tetragonal HEWL crystals. In contrast, in the case of a HEWL solution of 98.5% purity, forced flow significantly induced bunching of elementary steps. These results indicate that in the case of HEWL crystals, the mass transfer of impurities is more significantly enhanced by forced solution flow than that of solute HEWL molecules. We also showed that forced flow induced the incorporation of microcrystals into a mother crystal and the subsequent formation of screw dislocations and spiral growth hillocks. 展开更多
关键词 In situ observation step bunching step debunching Elementary steps Forced flow Protein crystal
在线阅读 下载PDF
EXPERIMENTAL INVESTIGATION ON THE TURBULENT COHERENT STRUCTURES OF LAMINAR SEPARATION FLOW OVER A BACKWARD FACING STEP
14
作者 Wang Jinjun Lian Qixiang Lan Shilong(Fluid Mechanics Institute, Beijing University of Aeronautics and Astronautics, Beijing, China, 100083) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1996年第3期175-181,共7页
The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coher... The experimental investigation is conducted with LDV and hydrogen bubble technique in water flow. The shear layer thickness. the vorticity thickness. the maximulll value of turbulence intensities. the turbulent coherent structure. the variations of wall shear stress and the boundary layer shape factor are obtained. In the redevelopment region. the detailed analysis is first made for the streak structures in the near wall region and the turbulent boundary layer is formed at (x-xr) / h = 20. 展开更多
关键词 backward facing steps laminar boundary layer separated flow turbulent boundary layer reattached flow
在线阅读 下载PDF
3D anatomy and flow dynamics of net-depositional cyclic steps on the world’s largest submarine fan:a joint 3D seismic and numerical approach
15
作者 Da-Li Shao Guo-Zhang Fan +5 位作者 Hai-Qiang Wang Hong-Xia Ma Guo-Ping Zuo Liang-Bo Ding Zheng Cai Wei-Qiang Li 《Petroleum Science》 SCIE CAS CSCD 2021年第1期10-28,共19页
Supercritical flows are ubiquitous in natural environments;however,there is rare 3D anatomy of their deposits.This study uses high-quality 3D seismic datasets from the world’s largest submarine fan,Bengal Fan,to inte... Supercritical flows are ubiquitous in natural environments;however,there is rare 3D anatomy of their deposits.This study uses high-quality 3D seismic datasets from the world’s largest submarine fan,Bengal Fan,to interpret 3D architectures and flow processes of Pliocene undulating bedforms that were related to supercritical flows.Bengal undulating bedforms as documented in this study were developed in unconfined settings,and are seismically imaged as strike-elongated,crescentic bedforms in plan view and as rhythmically undulating,upstream migrating,erosive,discontinuous reflections in section view.Their lee sides are overall 3 to 4 times steeper(0.280 to 1.19°in slope)and 3 to 4 times shorter(117 to 419 m in length)than their stoss flanks and were ascribed to faster(high flow velocities of 2.70 to 3.98 m/s)supercritical flows(Froude numbers of 1.53 to 2.27).Their stoss sides,in contrast,are overall 3 to 4 times gentler(0.120 to 0.270 in slope)and 3 to 4 times longer(410 to 1139 m in length)than their lee flanks and were related to slower(low velocities of 2.35 to 3.05 m/s)subcritical flows(Froude numbers of 0.58 to 0.97).Bengal wave-like features were,thus,created by supercriticalto-subcritical flow transformations through internal hydraulic jumps(i.e.,cyclic steps).They have crests that are positive relative to the surrounding region of the seafloor,suggesting the predominant deposition of draping sediments associated with net-depositional cyclic steps.Turbidity currents forming Bengal wave-like features were,thus,dominated by deposition,resulting in net-depositional cyclic steps.Sandy deposits associated with Bengal net-depositional cyclic steps are imaged themselves as closely spaced,strike-elongated high RMS-attribute patches,thereby showing closely spaced,long and linear,strike-elongated distribution patterns. 展开更多
关键词 Sediment waves Net-depositional cyclic steps Supercritical flows Sandy supercritical-flow deposits Bengal Fan
在线阅读 下载PDF
THE VERIFICATION OF THE CURRENT TRANSIENT EQUATION AT TUBULAR ELECTRODES IN A FLOWING FLUID UNDER POTENTIAL STEP
16
作者 Song Ying MO and Ying Sing FUNG Department of Chemistry, University of Hong Kong, Hong Kong 《Chinese Chemical Letters》 SCIE CAS CSCD 1992年第3期191-192,共2页
The equation derived for the response of the current transients in the flowing fluid is verified experimentally.
关键词 THE VERIFICATION OF THE CURRENT TRANSIENT EQUATION AT TUBULAR ELECTRODES IN A flowING FLUID UNDER POTENTIAL step AT
在线阅读 下载PDF
Analysis of Combined Radiation and Forced Convection Heat Transfer in 3D Laminar Flow over an Inclined Forward Facing Step
17
作者 A. Dehghani Rayeni S. A. Gandjalikhan Nassab 《Journal of Electronics Cooling and Thermal Control》 2016年第1期1-18,共18页
In the current study, a numerical investigation of three-dimensional combined convection-radiation heat transfer over an inclined forward facing step (FFS) in a horizontal rectangular duct is presented. The fluid is t... In the current study, a numerical investigation of three-dimensional combined convection-radiation heat transfer over an inclined forward facing step (FFS) in a horizontal rectangular duct is presented. The fluid is treated as a gray, absorbing, emitting and scattering medium. To simulate the incline surface of FFS, the blocked-off method is employed in this study. The set of governing equations for gas flow are solved numerically using the CFD technique to obtain the temperature and velocity fields. Since the gas is considered as a radiating medium, all of the convection, conduction and radiation heat transfer mechanisms are presented in the energy equation. For computation of radiative term in energy equation, the radiative transfer equation (RTE) is solved numerically by the discrete ordinates method (DOM) to find the divergence of radiative heat flux distribution inside the radiating medium. The effects of optical thickness, radiation-conduction parameter and albedo coefficient on heat transfer behavior of the system are carried out. 展开更多
关键词 3-D Laminar Convection flow Forward Facing step RADIATION DOM
在线阅读 下载PDF
建成环境对非常态下城市轨道交通站点客流模式的影响——以上海为例
18
作者 丁鹏飞 李卫江 《铁道运输与经济》 北大核心 2025年第4期141-151,174,共12页
为揭示非常态下城市轨道交通站点的功能和客流特征差异,以上海市404个地铁站点为样本,构建各站点的网络中心性和客流变化特征指标,选取特定时段的上海地铁站客流数据,并采用两步聚类再合成的方法划分出9种站点类型;同时,利用无序多分类... 为揭示非常态下城市轨道交通站点的功能和客流特征差异,以上海市404个地铁站点为样本,构建各站点的网络中心性和客流变化特征指标,选取特定时段的上海地铁站客流数据,并采用两步聚类再合成的方法划分出9种站点类型;同时,利用无序多分类逻辑回归模型,探讨非常态下站点类型与建成环境变量之间的相关性。结果显示,在24个建成环境变量中,道路密度、文化场馆、公共设施、教育学校、公司企业、餐饮服务和酒店宾馆数量等7个指标与非常态下的站点类型显著相关。具体而言,道路密度与多数站点类型显著负相关;文化场馆、公共设施与核心枢纽型、对外交通型站点显著正相关;教育学校对所有站点类型均呈负相关;公司企业对产业型和核心枢纽型站点正相关;宾馆酒店对居住型、对外交通型站点显著正相关;餐饮服务对强传导型、局部联系混合型和居住型站点显著正相关。研究结果对揭示非常态下城市轨道交通站点功能的复杂性和出行特征的适应性具有一定指导意义。 展开更多
关键词 城市轨道交通 非常态客流 分两步站点聚类 建成环境 无序多分类逻辑回归
在线阅读 下载PDF
建成环境影响下的城市轨道交通客流多步短时预测
19
作者 李之红 郄堃 +2 位作者 王健宇 许晗 陈金政 《交通运输系统工程与信息》 北大核心 2025年第1期160-172,共13页
为挖掘客流的复杂时空耦合关系,解析建成环境影响下的轨道交通客流出行规律,本文提出一种考虑城市建成环境的时空双层超图神经网络模型(Spatial Temporal-Double Hypergraph Neural Network,STDHGNN)。模型分为双层超图神经网络和时间... 为挖掘客流的复杂时空耦合关系,解析建成环境影响下的轨道交通客流出行规律,本文提出一种考虑城市建成环境的时空双层超图神经网络模型(Spatial Temporal-Double Hypergraph Neural Network,STDHGNN)。模型分为双层超图神经网络和时间序列模块,双层超图神经网络模块用于挖掘轨道交通线路站点间的高阶连通关系和相邻同类建成区域站点的集群关系,时间序列模块用于表征历史客流数据的时间依赖关系。同时,以建成环境和线路作为变量构造新的损失函数,旨在剖析建成环境的影响,提高模型的预测性能。最后,以武汉轨道交通数据为例开展实证研究。研究结果显示:考虑建成环境和轨道站点高阶连通关系对客流预测精度的提升效果显著,本模型均方根误差(RMSE)和平均绝对误差(MAE)值分别为52.04和29.32,比基线模型降低了22%以上,性能显著优于基线模型;通过消融实验验证了融合轨道高阶联通关系和建成环境对模型性能的贡献,其中,单步预测任务中,考虑这两种因素使模型性能分别提升了6%和9%,多步预测任务中,分别提升了4%和12%;构造的融合建成环境因素的可解释损失函数,提高了模型的预测性能,同时,使模型具备更好的科学性和可解释性。研究成果为城市轨道交通的客流管理和列车调度提供了技术支持。 展开更多
关键词 智能交通 客流多步预测 超图时空网络 城市轨道交通 建成环境影响 可解释损失函数
在线阅读 下载PDF
新型局部阶梯式溢流堰水力特性试验
20
作者 孙少华 何妍 杨校礼 《有色金属(矿山部分)》 2025年第2期148-154,共7页
针对湖南省某尾矿库工程排洪与消能的特殊需求,设计了一种新型的侧向布置的局部阶梯式溢流堰。基于理论分析,对该新式堰的堰型特征展开研究,并通过物理模型试验研究其过流能力、水流流态、流速及时均压力分布等水力特性。研究结果表明,... 针对湖南省某尾矿库工程排洪与消能的特殊需求,设计了一种新型的侧向布置的局部阶梯式溢流堰。基于理论分析,对该新式堰的堰型特征展开研究,并通过物理模型试验研究其过流能力、水流流态、流速及时均压力分布等水力特性。研究结果表明,此新型局部阶梯式溢流堰能同时满足过流能力和消能要求,在进口侧设置导流墩、堰上采用收缩式布置可调整水流结构,并有效减免折冲水流及水翅等恶劣流态危害。该局部阶梯式溢流堰可为类似工程布置提供参考。 展开更多
关键词 局部阶梯式溢流堰 过流能力 水力特性 高堰 低堰 宽顶堰 实用堰
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部