An approach of describing the thermodynamics of binary alloys is developed which is based on an exact expression of infinite MacLaurin series of molar excess Gibbs free energy. This new approach is successfully used t...An approach of describing the thermodynamics of binary alloys is developed which is based on an exact expression of infinite MacLaurin series of molar excess Gibbs free energy. This new approach is successfully used to represent the thermodynamics of binary alloys at higher concentrations. The present results reveal that it is an improper way to evaluate first and second-order interaction parameters simultaneously from the experimental data in the range of higher concentrations due to an inadequate accuracy Of high temperature experiments.展开更多
In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpr...In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows:Gm^E=xAxB[(λ11+λ12T)+(λ21+λ22T)xB]The calculation of the model parameters, λ11, λ12, λ21and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems. In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the .calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.展开更多
After the investigation on the thermodynamic properties and mixingthermodynamic parameters of binary homogeneous metallic melts involving compound, peritectic as wellas solid solution, it was found that the equations ...After the investigation on the thermodynamic properties and mixingthermodynamic parameters of binary homogeneous metallic melts involving compound, peritectic as wellas solid solution, it was found that the equations of mixing free energy DELTA G^m and excess freeenergy DELTA G^(XS) of them can he expressed by the following equations: DELTA G^m = SIGMA x [SIGMAN_i DELTA G_I^(THETA) + RT(SIGMA N_j ln N_j + SIGMA N_i ln N_i )] and DELTA G^(XS) = DELTA G^m -RT(a ln a + b ln b), respectively.展开更多
The coordination numbers in the molecular interaction volume model (MIVM) can be calculated from the commonphysical quantities of pure liquid metals. A notable feature of the model lie in its capability to predict the...The coordination numbers in the molecular interaction volume model (MIVM) can be calculated from the commonphysical quantities of pure liquid metals. A notable feature of the model lie in its capability to predict the ther-modynamic properties of solutes in the Zn-Pb-In and Zn-Sn-Cd-Pb dilute solutions using only the binary infinitedilute activity coefficients, and the predicted values are in good agreement with the experimental data of the dilutesolutions.展开更多
The carbon solubility in Mn-Fe melts were measured at 1350℃,1375℃,1425℃and 1450 ℃,and accordingly the calculated equations were obtained.By thermodynamic derivation and calculation,some relationships between therm...The carbon solubility in Mn-Fe melts were measured at 1350℃,1375℃,1425℃and 1450 ℃,and accordingly the calculated equations were obtained.By thermodynamic derivation and calculation,some relationships between thermodynamic parameters for Mn-Fe melt and temperature were obtained.展开更多
Viscosities of uranium solutions in H2O and 3 mol/L HNO3 medium were measured by Ubbelhode flow vis-cometer in the concentration range of 0.5%3.0% from 10 篊 to 30 篊 at 5 篊 interval. Viscosity data were interpreted ...Viscosities of uranium solutions in H2O and 3 mol/L HNO3 medium were measured by Ubbelhode flow vis-cometer in the concentration range of 0.5%3.0% from 10 篊 to 30 篊 at 5 篊 interval. Viscosity data were interpreted in terms of an empirical equation; h =aoexp(boM+coM2). Values of coefficients ao, bo and co were calculated for all the three systems studied. Flow activation energies and thermodynamic parameters were also evaluated.展开更多
Influence of temperature on ruthenium adsorption on activated charcoal from 3 mol/L HNO3 solutions was inves- tigated in the temperature range of 288 K to 308 K. It was observed that the rise in temperature increases ...Influence of temperature on ruthenium adsorption on activated charcoal from 3 mol/L HNO3 solutions was inves- tigated in the temperature range of 288 K to 308 K. It was observed that the rise in temperature increases the adsorption of ru- thenium ions on activated charcoal and follows the kinetics of first order rate law with rate constant values 0.0564?0.0640 min?1 in the temperature range of 288 K to 308 K respectively. The activation energy for the adsorption process was found to be 1.3806 kJ/mol. Various thermodynamics quantities namely ?H, ?S and ?G were computed from the equilibrium constant KC values. The results indicated a positive heat of adsorption, a positive ?S and a negative ?G.展开更多
文摘An approach of describing the thermodynamics of binary alloys is developed which is based on an exact expression of infinite MacLaurin series of molar excess Gibbs free energy. This new approach is successfully used to represent the thermodynamics of binary alloys at higher concentrations. The present results reveal that it is an improper way to evaluate first and second-order interaction parameters simultaneously from the experimental data in the range of higher concentrations due to an inadequate accuracy Of high temperature experiments.
文摘In this paper, the interaction parameters in the subregular solution model, λ1 and λ2, are regarded as a linear function of temperature, T. Therefore, the molar excess Gibbs energy of A-B binary system may be reexpressed as follows:Gm^E=xAxB[(λ11+λ12T)+(λ21+λ22T)xB]The calculation of the model parameters, λ11, λ12, λ21and λ22, was carried out numerically from the phase diagrams for 11 alkali metal-alkali halide or alkali earth metal-halide systems. In addition, artificial neural network trained by known data has been used to predict the values of these model parameters. The predicted results are in good agreement with the .calculated ones. The applicability of the subregular solution model to the alkali metal-alkali halide or alkali earth metal-halide systems were tested by comparing the available experimental composition along the boundary of miscibility gap with the calculated ones which were obtained by using genetic algorithm. The good agreement between the calculated and experimental results across the entire liquidus is valid evidence in support of the model.
文摘After the investigation on the thermodynamic properties and mixingthermodynamic parameters of binary homogeneous metallic melts involving compound, peritectic as wellas solid solution, it was found that the equations of mixing free energy DELTA G^m and excess freeenergy DELTA G^(XS) of them can he expressed by the following equations: DELTA G^m = SIGMA x [SIGMAN_i DELTA G_I^(THETA) + RT(SIGMA N_j ln N_j + SIGMA N_i ln N_i )] and DELTA G^(XS) = DELTA G^m -RT(a ln a + b ln b), respectively.
基金This work was supported bv the Joint Fund of the National Natural Science Foundation of China and Baoshan Steel Complex of Shanghai under Crarit No.50274039.
文摘The coordination numbers in the molecular interaction volume model (MIVM) can be calculated from the commonphysical quantities of pure liquid metals. A notable feature of the model lie in its capability to predict the ther-modynamic properties of solutes in the Zn-Pb-In and Zn-Sn-Cd-Pb dilute solutions using only the binary infinitedilute activity coefficients, and the predicted values are in good agreement with the experimental data of the dilutesolutions.
基金Item Sponsored by National Natural Science Foundation of China(59774015)
文摘The carbon solubility in Mn-Fe melts were measured at 1350℃,1375℃,1425℃and 1450 ℃,and accordingly the calculated equations were obtained.By thermodynamic derivation and calculation,some relationships between thermodynamic parameters for Mn-Fe melt and temperature were obtained.
文摘Viscosities of uranium solutions in H2O and 3 mol/L HNO3 medium were measured by Ubbelhode flow vis-cometer in the concentration range of 0.5%3.0% from 10 篊 to 30 篊 at 5 篊 interval. Viscosity data were interpreted in terms of an empirical equation; h =aoexp(boM+coM2). Values of coefficients ao, bo and co were calculated for all the three systems studied. Flow activation energies and thermodynamic parameters were also evaluated.
文摘Influence of temperature on ruthenium adsorption on activated charcoal from 3 mol/L HNO3 solutions was inves- tigated in the temperature range of 288 K to 308 K. It was observed that the rise in temperature increases the adsorption of ru- thenium ions on activated charcoal and follows the kinetics of first order rate law with rate constant values 0.0564?0.0640 min?1 in the temperature range of 288 K to 308 K respectively. The activation energy for the adsorption process was found to be 1.3806 kJ/mol. Various thermodynamics quantities namely ?H, ?S and ?G were computed from the equilibrium constant KC values. The results indicated a positive heat of adsorption, a positive ?S and a negative ?G.