In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law t...In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.展开更多
This paper explores pole placement techniques for the 4th order C1 DC-to-DC Buck converter focusing on optimizing various performance metrics. Refinements were made to existing ITAE (Integral of Time-weighted Absolute...This paper explores pole placement techniques for the 4th order C1 DC-to-DC Buck converter focusing on optimizing various performance metrics. Refinements were made to existing ITAE (Integral of Time-weighted Absolute Error) polynomials. Additionally, metrics such as IAE (Integral Absolute Error), ISE (Integral of Square Error), ITSE (Integral of Time Squared Error), a MaxMin metric as well as LQR (Linear Quadratic Regulator) were evaluated. PSO (Particle Swarm Optimization) was employed for metric optimization. Time domain response to a step disturbance input was evaluated. The design which optimized the ISE metric proved to be the best performing, followed by IAE and MaxMin (with equivalent results) and then LQR.展开更多
This article presents an ongoing study of the design of a DC-AC inverter using a single renewable energy source. The proposed approach makes it possible to produce an output with an H-bridge or full bridge and a singl...This article presents an ongoing study of the design of a DC-AC inverter using a single renewable energy source. The proposed approach makes it possible to produce an output with an H-bridge or full bridge and a single energy source. To this end, the performance of the inverter was studied first by means of a simulation and then with the implementation of an experimental device.展开更多
The conventional inverters have the shortcomings of straightway conduction in transistors and the difficulty of realizing soft swit ̄ching. A novel inverter based on the DC/DC converter topology is presented. The inve...The conventional inverters have the shortcomings of straightway conduction in transistors and the difficulty of realizing soft swit ̄ching. A novel inverter based on the DC/DC converter topology is presented. The inverter is comprised of a combined Buck/Boost DC/DC converter and a bridge circuit. The front stage converter is controlled to output variable DC voltage and the bridge circuit is used to convert the DC voltage to AC output. The energy feedback technology and one circle control scheme are used t...展开更多
在海上风电直流汇集-直流送出系统中,基于单相模块化多电平换流器的面对面型(modular multilevel converter based front-to-front,MMC-FTF)高压大功率DC/DC变换器是连接中压汇聚线与高压直流输电(high voltage direct current,HVDC)线...在海上风电直流汇集-直流送出系统中,基于单相模块化多电平换流器的面对面型(modular multilevel converter based front-to-front,MMC-FTF)高压大功率DC/DC变换器是连接中压汇聚线与高压直流输电(high voltage direct current,HVDC)线路的关键接口设备。然而,针对MMC-FTF变换器的阻抗建模鲜有报道,且含MMC-FTF变换器的HVDC系统的小信号稳定性问题尚不明确。针对此问题,该文首先根据频率耦合效应提出共差模提取矩阵,实现了多谐波线性化方法下单相及三相MMC交直流侧阻抗模型的统一,并建立了MMC-FTF变换器的直流侧阻抗模型。其次,利用阻抗稳定性判据揭示了MMC-FTF变换器与岸上三相MMC换流站互联时存在的振荡风险。接着,根据相角灵敏度指标定量评估了不同控制器参数对系统稳定性的影响,并提出用于提升系统稳定性的调参准则。最后,基于MATLAB/Simulink仿真和硬件在环实验验证了结果的正确性。展开更多
A DC DC buck converter c on trolled by naturally sampled, constant frequency PWM is considered. The existe nce of chaotic solutions and the output performance of the system under differen t circuit parameters are s...A DC DC buck converter c on trolled by naturally sampled, constant frequency PWM is considered. The existe nce of chaotic solutions and the output performance of the system under differen t circuit parameters are studied. The transforming pattern of system behavior fr om steady state to chaotic is discovered by the cascades of period doubling bi furcation and the cascades of periodic orbit in V I phase space. Accordingl y, it is validated that change of values of the circuit parameters may lead DC DC converter to chaotic motion. Performances of the output ripples fro m steady state to chaotic are analyzed in time and frequency domains respective ly. Some important conclusions are helpful for opt imization design of DC DC converter.展开更多
To keep even current distribution among DC/DC converters in a paralleled power system,an automatic master-slave control (AMSC) current sharing scheme is presented,which was implemented by a current share control IC....To keep even current distribution among DC/DC converters in a paralleled power system,an automatic master-slave control (AMSC) current sharing scheme is presented,which was implemented by a current share control IC. A current feedback loop for output voltage adjustment is proposed for low signal distortion. Moreover,a special startup control logic is designed to improve startup timing and to speed up the initial current sharing. It was completed in 1.5μm bipolar-CMOS-DMOS (BCD) technology with an area of 3.6mm^2 . Using it,a paralleled power system of two DC/DC converters capable of outputting 12V/3A was built. Experimental results show that the current sharing error at full load is kept within 1%.展开更多
The precondition of realizing feedback controlling DC DC converter to avoid chaotic state is to judge the behavior of the converter and take corresponding measures. In this paper, the output signals under different ci...The precondition of realizing feedback controlling DC DC converter to avoid chaotic state is to judge the behavior of the converter and take corresponding measures. In this paper, the output signals under different circuit parameters of the PWM buck converter have been analyzed. The method of using Fourier descriptor to extract output signals characteristics is put forward and proved to be a gist of identifying and classifying the behavior of DC DC converter. This method can establish a good foundation fo...展开更多
针对直流到直流(direct-current to direct-current,DC-DC)变换器在负载切换时,传统的控制策略无法取得良好的动态性能问题,提出一种模型补偿自抗扰控制方法,将其应用于DC-DC变换器系统。通过建立BUCK型DC-DC变换器控制系统模型,提出电...针对直流到直流(direct-current to direct-current,DC-DC)变换器在负载切换时,传统的控制策略无法取得良好的动态性能问题,提出一种模型补偿自抗扰控制方法,将其应用于DC-DC变换器系统。通过建立BUCK型DC-DC变换器控制系统模型,提出电压外环及电流内环线性自抗扰,并在此基础上对电压外环设计基于扰动补偿的模型自抗扰控制策略。对DC-DC变换器模型自抗扰控制系统进行模拟仿真,仿真结果表明:所提出的数学模型补偿自抗扰方式在电压追踪性能和鲁棒性方面更具优势。展开更多
文摘In this paper, we proposed an output voltage stabilization of a DC-DC Zeta converter using hybrid control. We modeled the Zeta converter under continuous conduction mode operation. We derived a switching control law that brings the output voltage to the desired level. Due to infinite switching occurring at the desired level, we enhanced the switching control law by allowing a sizeable output voltage ripple. We derived mathematical models that allow one to choose the desired switching frequency. In practice, the existence of the non-ideal properties of the Zeta converter results in steady-state output voltage error. By analyzing the power loss in the zeta converter, we proposed an improved switching control law that eliminates the steady-state output voltage error. The effectiveness of the proposed method is illustrated with simulation results.
文摘This paper explores pole placement techniques for the 4th order C1 DC-to-DC Buck converter focusing on optimizing various performance metrics. Refinements were made to existing ITAE (Integral of Time-weighted Absolute Error) polynomials. Additionally, metrics such as IAE (Integral Absolute Error), ISE (Integral of Square Error), ITSE (Integral of Time Squared Error), a MaxMin metric as well as LQR (Linear Quadratic Regulator) were evaluated. PSO (Particle Swarm Optimization) was employed for metric optimization. Time domain response to a step disturbance input was evaluated. The design which optimized the ISE metric proved to be the best performing, followed by IAE and MaxMin (with equivalent results) and then LQR.
文摘This article presents an ongoing study of the design of a DC-AC inverter using a single renewable energy source. The proposed approach makes it possible to produce an output with an H-bridge or full bridge and a single energy source. To this end, the performance of the inverter was studied first by means of a simulation and then with the implementation of an experimental device.
文摘The conventional inverters have the shortcomings of straightway conduction in transistors and the difficulty of realizing soft swit ̄ching. A novel inverter based on the DC/DC converter topology is presented. The inverter is comprised of a combined Buck/Boost DC/DC converter and a bridge circuit. The front stage converter is controlled to output variable DC voltage and the bridge circuit is used to convert the DC voltage to AC output. The energy feedback technology and one circle control scheme are used t...
文摘在海上风电直流汇集-直流送出系统中,基于单相模块化多电平换流器的面对面型(modular multilevel converter based front-to-front,MMC-FTF)高压大功率DC/DC变换器是连接中压汇聚线与高压直流输电(high voltage direct current,HVDC)线路的关键接口设备。然而,针对MMC-FTF变换器的阻抗建模鲜有报道,且含MMC-FTF变换器的HVDC系统的小信号稳定性问题尚不明确。针对此问题,该文首先根据频率耦合效应提出共差模提取矩阵,实现了多谐波线性化方法下单相及三相MMC交直流侧阻抗模型的统一,并建立了MMC-FTF变换器的直流侧阻抗模型。其次,利用阻抗稳定性判据揭示了MMC-FTF变换器与岸上三相MMC换流站互联时存在的振荡风险。接着,根据相角灵敏度指标定量评估了不同控制器参数对系统稳定性的影响,并提出用于提升系统稳定性的调参准则。最后,基于MATLAB/Simulink仿真和硬件在环实验验证了结果的正确性。
文摘A DC DC buck converter c on trolled by naturally sampled, constant frequency PWM is considered. The existe nce of chaotic solutions and the output performance of the system under differen t circuit parameters are studied. The transforming pattern of system behavior fr om steady state to chaotic is discovered by the cascades of period doubling bi furcation and the cascades of periodic orbit in V I phase space. Accordingl y, it is validated that change of values of the circuit parameters may lead DC DC converter to chaotic motion. Performances of the output ripples fro m steady state to chaotic are analyzed in time and frequency domains respective ly. Some important conclusions are helpful for opt imization design of DC DC converter.
文摘To keep even current distribution among DC/DC converters in a paralleled power system,an automatic master-slave control (AMSC) current sharing scheme is presented,which was implemented by a current share control IC. A current feedback loop for output voltage adjustment is proposed for low signal distortion. Moreover,a special startup control logic is designed to improve startup timing and to speed up the initial current sharing. It was completed in 1.5μm bipolar-CMOS-DMOS (BCD) technology with an area of 3.6mm^2 . Using it,a paralleled power system of two DC/DC converters capable of outputting 12V/3A was built. Experimental results show that the current sharing error at full load is kept within 1%.
文摘The precondition of realizing feedback controlling DC DC converter to avoid chaotic state is to judge the behavior of the converter and take corresponding measures. In this paper, the output signals under different circuit parameters of the PWM buck converter have been analyzed. The method of using Fourier descriptor to extract output signals characteristics is put forward and proved to be a gist of identifying and classifying the behavior of DC DC converter. This method can establish a good foundation fo...
文摘针对直流到直流(direct-current to direct-current,DC-DC)变换器在负载切换时,传统的控制策略无法取得良好的动态性能问题,提出一种模型补偿自抗扰控制方法,将其应用于DC-DC变换器系统。通过建立BUCK型DC-DC变换器控制系统模型,提出电压外环及电流内环线性自抗扰,并在此基础上对电压外环设计基于扰动补偿的模型自抗扰控制策略。对DC-DC变换器模型自抗扰控制系统进行模拟仿真,仿真结果表明:所提出的数学模型补偿自抗扰方式在电压追踪性能和鲁棒性方面更具优势。