期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
Fracture behavior of sandstone with partial filling flaw under mixed-mode loading: Three-point bending tests and discrete element method
1
作者 Dongdong Ma Yu Wu +4 位作者 Xiao Ma Xunjian Hu Wenbao Dong Decheng Li Lingyu Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期291-308,共18页
The fracture behavior of natural fracture in the geological reservoir subjected to filling property,affects the crack initiation and propagation under stress perturbation.Partial filling flaws were intermediate betwee... The fracture behavior of natural fracture in the geological reservoir subjected to filling property,affects the crack initiation and propagation under stress perturbation.Partial filling flaws were intermediate between open fractures and filled fractures,the fracture response may be worth exploring.In this work,the effect of the filling property of sandstone with partial filling flaws on the fracture behavior was systematically investigated based on three-point bending tests and the numerical approach of discrete element method(DEM).In the laboratory,semi-circular three-point bending tests were carried out with partial filling flaws of various filling strengths.Based on this,numerical simulations were used to further investigate the effect of the filling ratio and the inclination of the partial filling flaw on the mechanical and fracture responses,and the effect of the partial filling flaw under mixed-mode loading on the fracture mechanism was elucidated coupled with acoustic emission(AE)characteristics.The obtained results showed that the increase in filling strength and filling ratio of partial filling flaw led to an increase in peak strength,with a decreasing trend in peak strength with the inclination of partial filling flaw.In terms of crack propagation pattern,the increasing filling strength of the partial filling flaw induced the transformation of the fracture mechanism toward deflection,with a tortuosity path,while the filling ratio and inclination of partial filling flaw led to fracture mechanism change from deflection to penetration and attraction,accompanied with a larger AE event source in filler.Accordingly,the b-value based on the Gutenberg-Richter equation fluctuated between 5 and 4 at low filling ratio and inclination and remained around 5 at high filling ratio and inclination of partial filling flaw.Related results may provide an application prospective for reservoir stimulation using the natural fracture system. 展开更多
关键词 Partial filling flaw Mixed-mode loading Semi-circular three-point bending Acoustic emission(AE) B-VALUE
在线阅读 下载PDF
Three-point bending behavior of aluminum foam sandwich with steel panel 被引量:8
2
作者 祖国胤 卢日环 +4 位作者 李小兵 仲照阳 马幸江 韩明博 姚广春 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2491-2495,共5页
Static three-point bending tests of aluminum foam sandwiches with glued steel panel were performed. The deformation and failure of sandwich structure with different thicknesses of panel and foam core were investigated... Static three-point bending tests of aluminum foam sandwiches with glued steel panel were performed. The deformation and failure of sandwich structure with different thicknesses of panel and foam core were investigated. The results indicate that the maximum bending load increases with the thickness of both steel panel and foam core. The failure of sandwich can be ascribed to the crush and shear damage of foam core and the delamination of glued interface at a large bending load, The crack on the foam wall developed in the melting foam procedure is the major factor for the failure of foam core. The sandwich structure with thick foam core and thin steel panel has the optimal specific bending strength. The maximum bending load of that with 8 mm panel and 50 mm foam core is 66.06 kN. 展开更多
关键词 aluminum foam sandwich three-point bending failure mode panel thickness
在线阅读 下载PDF
Three-point bending performance of a new aluminum foam composite structure 被引量:6
3
作者 王宁珍 陈祥 +3 位作者 李奡 李言祥 张华伟 刘源 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期359-368,共10页
A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composit... A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composite structure, using adhesive technology to bond the materials together by organic glue in the sequence of metal panel, glass fiber, aluminum foam core, glass fiber and metal panel. The experimental results show that the new composite structure has an improved comprehensive performance compared with the traditional aluminum foam sandwiches. The optimized parameters for the fabrication of the new aluminum foam composite structure with best bending strength were obtained. The epoxy resin and low porosity aluminum foams are preferred, the thickness of aluminum sheets should be at least 1.5 mm, and the type of glass fiber has little effect on the bending strength. The main failure modes of the new composite structures with two types of glues were discussed. 展开更多
关键词 composite structure three-point bending strength aluminum foam sandwich glass fiber
在线阅读 下载PDF
Three-point bending of honeycomb sandwich beams with facesheet perforations 被引量:3
4
作者 Pengbo Su Bin Han +2 位作者 Zhongnan Zhao Qiancheng Zhang Tian Jian Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第4期667-675,共9页
A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under threepoint bending,both analytically and numerically.Perforated square holes in the bottom facesheet are characterize... A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under threepoint bending,both analytically and numerically.Perforated square holes in the bottom facesheet are characterized by the area ratio of the hole to intact facesheet(perforation ratio).While for large-scale engineering applications like the decks of cargo vehicles and transportation ships,the perforations are needed to facilitate the fabrication process(e.g.,laser welding)as well as service maintenance,it is demonstrated that these perforations,when properly designed,can also enhance the resistance of the sandwich to bending.For illustration,fair comparisons among competing sandwich designs having different perforation ratios but equal mass is achieved by systematically thickening the core webs.Further,the perforated sandwich beam is designed with a relatively thick facesheet to avoid local indention failure so that it mainly fails in two competing modes:(1)bending failure,i.e.,yielding of beam cross-section and buckling of top facesheet caused by bending moment;(2)shear failure,i.e.,yielding and buckling of core webs due to shear forcing.The sensitivity of the failure loads to the ratio of core height to beam span is also discussed for varying perforation ratios.As the perfo-ration ratio is increased,the load of shear failure increases due to thickening core webs,while that of bending failure decreases due to the weakening bottom facesheet.Design of a sandwich beam with optimal perforation ratio is realized when the two failure loads are equal,leading to significantly enhanced failure load(up to 60%increase)relative to that of a non-perforated sandwich beam with equal mass. 展开更多
关键词 Honeycomb sandwich Facesheet perforation three-point bending Analytical model
在线阅读 下载PDF
A CATASTROPHE ANALYSIS ON THE STABILITY OF THE CRACK GROWTH IN THREE-POINT BENDING SPECIMENS 被引量:2
5
作者 Wei Demin Fan Xuejun, Taiyuan Unversity of Technology, Taiyuan 030024 《Acta Mechanica Solida Sinica》 SCIE EI 1996年第2期179-183,共5页
This paper presents an attempt at the application of catastrophe theory to the stability analysis of J-controlled crack growth in three-point bending specimens. By introducing the solutions of J-integral in the comple... This paper presents an attempt at the application of catastrophe theory to the stability analysis of J-controlled crack growth in three-point bending specimens. By introducing the solutions of J-integral in the completely yielding state for the ideal plastic material, the critical condition of losing stability for the crack propagation in the specimen is obtained, based on the cusp catastrophe theory. The process of the crack growth from geometrical sense is described. 展开更多
关键词 crack growth STABILITY cusp catastrophe J-INTEGRAL three-point bending specimen
在线阅读 下载PDF
Modelling and Simulation on the Effect of Hot Forming Damage on Three-Point Bending Performance of Beam Components
6
作者 Weimin Zhuang Pengyue Wang +2 位作者 Yang Liu Dongxuan Xie Hongda Shi 《Journal of Beijing Institute of Technology》 EI CAS 2020年第3期399-409,共11页
The effects of forming damage are analyzed,which occur during hot stamping process,on the load-carrying capacity and failure mode of hot stamped beams.A damage-coupled pre-forming constitutive model was proposed,in wh... The effects of forming damage are analyzed,which occur during hot stamping process,on the load-carrying capacity and failure mode of hot stamped beams.A damage-coupled pre-forming constitutive model was proposed,in which the damage during hot stamping process was introduced into the service response.The constitutive model was applied into the three-point bending simulation of a hot stamped beam,and then the influences of forming damage on the load-carrying capacity and cracks propagation were investigated.The results show that the forming damage reduces the maximum load capacity of the hot stamped beam by 7.5%.It also causes the crack to occur earlier and promotes crack to propagate along the radial direction of the punch. 展开更多
关键词 constitutive modelling hot-stamped beam forming damage three-point bending crack propagation
在线阅读 下载PDF
Experimental and theoretical analyses of package-on-package structure under three-point bending loading
7
作者 贾苏 王习术 任淮辉 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期346-354,共9页
High density packaging is developing toward miniaturization and integration, which causes many difficulties in designing, manufacturing, and reliability testing. Package-on-Package (POP) is a promising three-dimensi... High density packaging is developing toward miniaturization and integration, which causes many difficulties in designing, manufacturing, and reliability testing. Package-on-Package (POP) is a promising three-dimensional high- density packaging method that integrates a chip scale package (CSP) in the top package and a fine-pitch ball grid array (FBGA) in the bottom package. In this paper, in-situ scanning electron microscopy (SEM) observation is carried out to detect the deformation and damage of the PoP structure under three-point bending loading. The results indicate that the cracks occur in the die of the top package, then cause the crack deflection and bridging in the die attaching layer. Furthermore, the mechanical principles are used to analyse the cracking process of the PoP structure based on the multi-layer laminating hypothesis and the theoretical analysis results are found to be in good agreement with the experimental results. 展开更多
关键词 high density package in-situ SEM observation three-point bending multi-layer lami- nating hypothesis
在线阅读 下载PDF
Influence of heat treatment conditions on bending characteristics of 6063 aluminum alloy sheets 被引量:6
8
作者 Zhi-wen LIU Luo-xing LI +3 位作者 Jie YI Shi-kang LI Zhen-hu WANG Guan WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1498-1506,共9页
Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and she... Bending deformation behaviors of solution treated(ST),natural aged(NA)and T6tempered6063aluminum alloy sheetswere studied by three-point bending tests.The changes of bending force,interior angle,bending radius and sheet thickness in thefillet region were analyzed by experimental measurements and numerical simulations.The results showed that the bendingcharacteristics were strongly dependent on the heat treatment conditions.The T6alloy sheets were bent more sharply and localplastic deformation occurred severely in the fillet region.However,the ST and NA alloy sheets exhibited relatively uniform bendingdeformation and large bending radius.The bending force of T6alloy was the highest,followed by the NA alloy and that of the STalloy was minimum.After unloading,as compared with the ST and NA alloys,the springback of T6alloys was markedly larger.Theaging time showed a positive sensitivity on the springback and non-uniform bending deformability.The bending characteristics areattributed to the combined effects of yield strength,yield ratio and coefficient of neutral layer. 展开更多
关键词 6063 aluminum alloy three-point bending heat treatment conditions bending characteristic yield ratio simulation
在线阅读 下载PDF
Interfacial toughness evaluation of thermal barrier coatings by bending test 被引量:1
9
作者 Qi Zhu Wei He +2 位作者 Lei Chen Jianguo Zhu Wenfeng Hao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第1期3-6,共4页
Determining the interfacial properties of thermal barrier coatings(TBCs) is imperative for their durability evaluation and further improvements. A ceramic coating(topcoat) and a NiCoCrALY bondcoat were atmospheric-pla... Determining the interfacial properties of thermal barrier coatings(TBCs) is imperative for their durability evaluation and further improvements. A ceramic coating(topcoat) and a NiCoCrALY bondcoat were atmospheric-plasma-sprayed(APS) on a stainless steel substrate. A modified three-point bending test was adopted to initiate and propagate the topcoat/bondcoat(TC/BC)interfacial crack. After a complete delamination, the fracture surfaces were examined by an optical microscope, which shows that the cracking plane was merely on the TC/BC interface. Based on the experimental results of load–displacement and crack length–displacement,the strain energy release rate G for crack propagation was calculated, and the averaged magnitude was 77.1 J/m^2.Repeatable results have indicated that the method can be used for the evaluation of interfacial fracture toughness in thermal barrier coatings and other multi-layer structures. 展开更多
关键词 Thermal BARRIER coatings three-point bending INTERFACIAL FRACTURE TOUGHNESS
在线阅读 下载PDF
Numerical analysis of bending property of bi-modulus materials and a new method for measurement of tensile elastic modulus
10
作者 Tianmin Wang Jianhong Ye 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2539-2555,共17页
In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive mod... In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive model that could reasonably consider the bi-modulus property of materials,and the lack of simple and reliable measurement methods for the tensile elastic parameters of materials,scientists and engineers always neglect the effect of the bi-modulus property of materials in engineering design and numerical simulation.To solve this problem,this study utilizes the uncoupled strain-driven constitutive model proposed by Latorre and Montáns(2020)to systematically study the distributions and magnitudes of stresses and strains of bi-modulus materials in the three-point bending test through the numerical method.Furthermore,a new method to synchronously measure the tensile and compressive elastic moduli of materials through the four-point bending test is proposed.The numerical results show that the bi-modulus property of materials has a significant effect on the stress,strain and displacement in the specimen utilized in the three-point and four-point bending tests.Meanwhile,the results from the numerical tests,in which the elastic constitutive model proposed by Latorre and Montáns(2020)is utilized,also indicate that the newly proposed measurement method has a good reliability.Although the new measurement method proposed in this study can synchronously and effectively measure the tensile and compressive elastic moduli,it cannot measure the tensile and compressive Poisson’s ratios. 展开更多
关键词 Bi-modulus material Uncoupled strain-driven constitutive model three-point bending test Four-point bending test Tensile elastic modulus FssiCAS
在线阅读 下载PDF
Bending Analysis of a Filament-Wound Composite Tube
11
作者 Gyula Szabó Károly Váradi Dávid Felhos 《Modern Mechanical Engineering》 2018年第1期66-77,共12页
The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half c... The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half couplings) along with its experimental verification. In the finite element model, composite reinforcement plies have been characterized by linear orthotropic material model, while rubber liners have been described by a two-parameter MooneyRivlin model. Force-displacement curves of three-point bending show fairly good agreement between simulation results and experimental data. Reaction forces of FE simulation and experiment of standard bending test are in good agreement. 展开更多
关键词 Filament-Wound Composite Tube three-point bending Test bending Analysis Finite Element Model
在线阅读 下载PDF
An assumed enhanced strain finite element framework for tensile fracturing processes with dual-mechanism failure in transversely isotropic rocks
12
作者 Yang Zhao Rui Wang Jian-Min Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1474-1488,共15页
We present an assumed enhanced strain finite element framework for the simulation of tensile fracturing processes in transversely isotropic rocks.Fractures along the weak bedding planes and through the anisotropic roc... We present an assumed enhanced strain finite element framework for the simulation of tensile fracturing processes in transversely isotropic rocks.Fractures along the weak bedding planes and through the anisotropic rock matrix are treated with distinct enrichment,and a recently proposed dualmechanism tensile failure criterion for transversely isotropic rocks is adopted to determine crack initiation for the two failure modes.The cohesive crack model is adopted to characterize the response of embedded cracks.As for the numerical implementation of the proposed framework,both algorithms for the update of local history variables at Gauss points and of the global finite element system are derived.Four boundary-value problem simulations are carried out with the proposed framework,including uniaxial tension tests of Argillite,pre-notched square loaded in tension,three-point bending tests on Longmaxi shale,and simulations of tensile cracks induced by a strip load around a tunnel in transversely isotropic rocks.Simulation results reveal that the proposed framework can properly capture the tensile strength anisotropy and the anisotropic evolution of tensile cracks in transversely isotropic rocks. 展开更多
关键词 Tensile fracture Assumed enhanced strain finite element three-point bending test transversely isotropic rock Tensile failure criterion
在线阅读 下载PDF
Heterogeneous Fracture Simulation of Three-point Bending Plain-concrete Beam with Double Notches 被引量:7
13
作者 Chuanchuan Zhang Xinhua Yang +1 位作者 Hu Gao Hongping Zhu 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第3期232-244,共13页
Plain concrete is regarded as a two-phase material comprising randomly distributed aggregates and mortar matrix. A series of three-point bending concrete beams with symmetric or asymmetric double notches are modeled u... Plain concrete is regarded as a two-phase material comprising randomly distributed aggregates and mortar matrix. A series of three-point bending concrete beams with symmetric or asymmetric double notches are modeled using the modified random aggregate generation and packing algorithm. The cohesive zone model is used as the fracture criterion and the cohesive el- ements are inserted into both the mortar matrix and the aggregate-mortar interfaces as potential micro-cracking zones. The dead and alive crack phenomena are studied experimentally and nu- merically; and the influences of notch location, aggregate distribution and gradation on fracture are numerically evaluated. Some important conclusions are given. 展开更多
关键词 concrete beam double notches three-point bending fracture cohesive zone model
原文传递
Experimental and numerical investigation of mechanical behavior of plain woven CFRP composites subjected to three-point bending 被引量:1
14
作者 Qiaoli ZHAO Yuliang HOU +2 位作者 Weihan WANG Yutong LIU Cheng LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期505-517,共13页
The mechanical behavior of plain woven Carbon Fiber-Reinforced Polymer(CFRP)composites under Three-Point Bending(TPB)is investigated via experimental and numerical approaches.Multiscale models,including microscale,mes... The mechanical behavior of plain woven Carbon Fiber-Reinforced Polymer(CFRP)composites under Three-Point Bending(TPB)is investigated via experimental and numerical approaches.Multiscale models,including microscale,mesoscale and macroscale models,have been developed to characterize the TPB strength and damages.Thereinto,Representative Volume Elements(RVEs)of the microscale and mesoscale structures are established to determine the effective properties of carbon-fiber yarn and CFRP composites,respectively.Aimed at accurately and efficiently predicting the TPB behavior,an Equivalent Cross-Ply Laminate(ECPL)cell is proposed to simplify the inherent woven architecture,and the effective properties of the subcell are computed using a local homogenization approach.The macroscale model of the TPB specimen is constructed by a topology structure of ECPL cells to predict the mechanical behavior.The TPB experiments have been performed to validate the multiscale models.Both the experimental and numerical results reveal that delamination mainly appears in the top and bottom interfaces of the CFRP laminates.And matrix cracking and delamination are identified as the significant damage modes during the TPB process.Finally,the quasi-static and dynamic behaviors of plain woven composites are discussed by comparing the results of Low-Velocity Impact(LVI)and TPB simulations. 展开更多
关键词 Equivalent Cross-Ply Laminate(ECPL)cell Local homogenization Multiscale modeling Plain woven CFRP composites three-point bending(tpb)behavior
原文传递
Crystal plasticity finite element simulations on extruded Mg-10Gd rod with texture gradient
15
作者 Jaeseong Lee Dirk Steglich Youngung Jeong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3409-3430,共22页
The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop directio... The mechanical properties of an extruded Mg-10Gd sample, specifically designed for vascular stents, are crucial for predicting its behavior under service conditions. Achieving homogeneous stresses in the hoop direction, essential for characterizing vascular stents, poses challenges in experimental testing based on standard specimens featuring a reduced cross section. This study utilizes an elasto-visco-plastic self-consistent polycrystal model(ΔEVPSC) with the predominant twinning reorientation(PTR) scheme as a numerical tool, offering an alternative to mechanical testing. For verification, various mechanical experiments, such as uniaxial tension, compression, notched-bar tension, three-point bending, and C-ring compression tests, were conducted. The resulting force vs. displacement curves and textures were then compared with those based on the ΔEVPSC model. The computational model's significance is highlighted by simulation results demonstrating that the differential hardening along with a weak strength differential effect observed in the Mg-10Gd sample is a result of the interplay between micromechanical deformation mechanisms and deformation-induced texture evolution. Furthermore, the study highlights that incorporating the axisymmetric texture from the as-received material incorporating the measured texture gradient significantly improves predictive accuracy on the strength in the hoop direction. Ultimately, the findings suggest that the ΔEVPSC model can effectively predict the mechanical behavior resulting from loading scenarios that are impossible to realize experimentally, emphasizing its valuable contribution as a digital twin. 展开更多
关键词 Crystal plasticity TEXTURE Finite element C-ring three-point bending
在线阅读 下载PDF
Multi-Objective Optimization of Aluminum Alloy Electric Bus Frame Connectors for Enhanced Durability
16
作者 Wenjun Zhou Mingzhi Yang +3 位作者 Qian Peng Yong Peng Kui Wang Qiang Xiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期735-755,共21页
The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue ... The widespread adoption of aluminumalloy electric buses,known for their energy efficiency and eco-friendliness,faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel.This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries,necessitating robust frame protection.Our study aims to optimize the connectors of aluminum alloy bus frames,emphasizing durability,energy efficiency,and safety.This research delves into Multi-Objective Coordinated Optimization(MCO)techniques for lightweight design in aluminum alloy bus body connectors.Our goal is to enhance lightweighting,reinforce energy absorption,and improve deformation resistance in connector components.Three typical aluminum alloy connectors were selected and a design optimization platform was built for their MCO using a variety of software and methods.Firstly,through three-point bending experiments and finite element analysis on three types of connector components,we identified optimized design parameters based on deformation patterns.Then,employing Optimal Latin hypercube design(OLHD),parametric modeling,and neural network approximation,we developed high-precision approximate models for the design parameters of each connector component,targeting energy absorption,mass,and logarithmic strain.Lastly,utilizing the Archive-based Micro Genetic Algorithm(AMGA),Multi-Objective Particle Swarm Optimization(MOPSO),and Non-dominated SortingGenetic Algorithm(NSGA2),we explored optimized design solutions for these joint components.Subsequently,we simulated joint assembly buckling during bus rollover crash scenarios to verify and analyze the optimized solutions in three-point bending simulations.Each joint component showcased a remarkable 30%–40%mass reduction while boosting energy absorption.Our design optimization method exhibits high efficiency and costeffectiveness.Leveraging contemporary automation technology,the design optimization platform developed in this study is poised to facilitate intelligent optimization of lightweight metal components in future applications. 展开更多
关键词 Aluminum connectors three-point bending simulation parametric design model multi-objective collaborative optimization
在线阅读 下载PDF
Effects of Temperature and Liquid Nitrogen(LN2)on Coal’s Mechanical and Acoustic Emission(AE)Properties
17
作者 Teng Teng Yuhe Cai +1 位作者 Linchao Wang Yanzhao Zhu 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1181-1202,共22页
Liquid nitrogen has shown excellent performances as a good fracturing medium in the extraction of unconventional natural gas,and its application in coalbed methane extraction is currently a research hotspot.This study... Liquid nitrogen has shown excellent performances as a good fracturing medium in the extraction of unconventional natural gas,and its application in coalbed methane extraction is currently a research hotspot.This study focuses on the acoustic emission properties of coal specimens treated utilizing liquid nitrogen with varying initial temperatures in a three-point bending environment.Through examination of the load-displacement curves of the considered coal samples,their mechanical properties are also revealed for different initial temperatures and cycling frequencies.The findings demonstrate a gradual decline in the maximum load capacity of coal rock as the temperature rises.Similarly,when subjected to the same temperature,an escalation in the cycling frequency leads to a reduction in the peak load of coal rock.This suggests that both temperature and cycling frequency exert a notable impact on the fracturing efficacy of liquid nitrogen.Freeze-thaw cycling treatments and exposure to high-temperature conditions can activate preexisting damage in the coal rock,and,accordingly,influence its mechanical properties.In particular,throughout the progressive loading of coal rock samples,the failure mechanisms are predominantly characterized by the occurrence of tensile cracks,succeeded by the development,spread,and fracture of shear fissures. 展开更多
关键词 Liquid nitrogen fracturing three-point bending experiment mechanical characteristics
在线阅读 下载PDF
Mechanical characteristics of auxetic composite honeycomb sandwich structure under bending
18
作者 Hang Hang Xu Xue Gang Zhang +7 位作者 Dong Han Wei Jiang Yi Zhang Yu Ming Luo Xi Hai Ni Xing Chi Teng Yi Min Xie Xin Ren 《AI in Civil Engineering》 2024年第1期280-294,共15页
Auxetic honeycomb sandwich structures(AHS)composed of a single material generally exhibit comparatively lower energy absorption(EA)and platform stress,as compared to traditional non-auxetic sandwich structures(TNS).To... Auxetic honeycomb sandwich structures(AHS)composed of a single material generally exhibit comparatively lower energy absorption(EA)and platform stress,as compared to traditional non-auxetic sandwich structures(TNS).To address this limitation,the present study examines the use of aluminum foam(AF)as a filling material in the reentrant honeycomb sandwich structure(RS).Filling the AHS with AF greatly enhances both the EA and platform stress in comparison to filling the TNS with AF,while the auxetic composite honeycomb sandwich structure effectively addresses interface delamination observed in traditional non-auxetic composite sandwich structures.Subsequently,the positive-negative Poisson’s ratio coupling designs are proposed to strengthen the mechanical features of a single honeycomb sandwich structure.The analysis results show that the coupling structure optimizes the mechanical properties by leveraging the high bearing capacity of the hexagonal honeycomb and the great interaction between the re-entrant honeycomb and the filling material.In contrast with traditional non-auxetic sandwich structures,the proposed auxetic composite honeycomb sandwich structures demonstrate superior EA and platform stress performance,suggesting their immense potential for utilization in protective engineering. 展开更多
关键词 AUXETIC Energy absorption Mechanical metamaterial Aluminum foam RE-ENTRANT three-point bending
原文传递
考虑页岩层理剪切滑移的水力裂缝几何参数计算方法 被引量:2
19
作者 杨焕强 刘杨 +1 位作者 张晴晴 熊冬 《岩土力学》 EI CAS CSCD 北大核心 2023年第2期461-472,共12页
针对现有页岩气体积压裂层理裂缝扩展模型及其计算方法研究的不足,基于三点弯曲试验,结合数字图像法获取了页岩层理关键力学参数;利用弹性力学理论和线弹簧模型建立了页岩气体积压裂层理裂缝扩展拟三维数学模型,并得到了试验验证;开发... 针对现有页岩气体积压裂层理裂缝扩展模型及其计算方法研究的不足,基于三点弯曲试验,结合数字图像法获取了页岩层理关键力学参数;利用弹性力学理论和线弹簧模型建立了页岩气体积压裂层理裂缝扩展拟三维数学模型,并得到了试验验证;开发了裂缝几何参数计算程序,计算分析了层理参数与压裂施工参数对水力裂缝扩展的影响规律。结果表明:当层理刚度小于10 GPa/m及大于30 GPa/m时,剪切滑移量达到极大值及极小值,且基本保持不变,当层理刚度在10~30 GPa/m之间时,层理刚度与剪切滑移量呈线性负相关关系;当层理密度为5~7条时,主裂缝会沟通更多的层理;当层理强度为5~8 MPa时,水力裂缝易穿层扩展,且能使层理产生剪切滑移,从而生成复杂裂缝;当压裂液排量和压裂液黏度分别在9~12 m^(3)/min和2.5~5m Pa·s范围内时,水力裂缝易穿层扩展,最终形成十字型裂缝,有助于复杂裂缝的形成。该研究对认识页岩层理力学性能及其对层理裂缝扩展规律的影响有一定的指导意义。 展开更多
关键词 页岩层理 体积压裂 三点弯曲 拟三维模型 剪切滑移
在线阅读 下载PDF
砂岩的Ⅰ/Ⅲ复合型断裂试验研究
20
作者 李一凡 董世明 +2 位作者 潘鑫 李念斌 原野 《岩土力学》 EI CAS CSCD 北大核心 2018年第11期4063-4070,共8页
为了了解砂岩的Ⅰ/Ⅲ复合型断裂力学性能,采用含有裂纹面垂直于底面但倾斜于正背面的三点弯曲(TPB)试件实现面外断裂。使用Abaqus通过有限元法研究了不同裂纹面倾斜角下沿着试件厚度的Ⅰ型、Ⅱ型与Ⅲ型无量纲应力强度因子。通过讨论可知... 为了了解砂岩的Ⅰ/Ⅲ复合型断裂力学性能,采用含有裂纹面垂直于底面但倾斜于正背面的三点弯曲(TPB)试件实现面外断裂。使用Abaqus通过有限元法研究了不同裂纹面倾斜角下沿着试件厚度的Ⅰ型、Ⅱ型与Ⅲ型无量纲应力强度因子。通过讨论可知,在靠近试件厚度中点处Ⅰ型与Ⅲ型无量纲应力强度因子取得较大值,而Ⅱ型无量纲应力强度因子取得接近于0的可以忽略的极小值,且靠近自由面处的应力强度因子不作考虑。故该种试件可用于测量材料的Ⅰ/Ⅲ复合型断裂性能。数值计算结果与常规TPB试件的解析公式及倾斜裂纹面TPB试件的近似计算公式的结果进行对比,证明了数值模拟结果的准确性并讨论了近似公式存在的问题。使用7组共28个该种三点弯曲试件,研究砂岩的Ⅰ/Ⅲ复合型断裂特性,结果表明:砂岩的Ⅰ型与Ⅲ型临界应力强度因子随着裂纹面倾斜角的增大先增大后减小,但其变化趋势不同;砂岩的Ⅰ/Ⅲ复合型等效断裂韧度随着裂纹面倾斜角的增大先增大后减小,在倾斜角接近20°时取得最大值。裂纹扩展时裂纹面将发生扭转,倾斜角θ越大则扭转角度越大。 展开更多
关键词 三点弯曲 砂岩 数值分析 Ⅰ/Ⅲ复合型
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部