The constrained total least squares algorithm for the passive location is presented based on the bearing-only measurements in this paper. By this algorithm the non-linear measurement equations are firstly transformed ...The constrained total least squares algorithm for the passive location is presented based on the bearing-only measurements in this paper. By this algorithm the non-linear measurement equations are firstly transformed into linear equations and the effect of the measurement noise on the linear equation coefficients is analyzed, therefore the problem of the passive location can be considered as the problem of constrained total least squares, then the problem is changed into the optimized question without restraint which can be solved by the Newton algorithm, and finally the analysis of the location accuracy is given. The simulation results prove that the new algorithm is effective and practicable.展开更多
This paper presents a new method of improving Global Positioning System(GPS)positioning precision. Based on the altitude hold mode, the method does not need any other equipment. Under this constraint condition, the To...This paper presents a new method of improving Global Positioning System(GPS)positioning precision. Based on the altitude hold mode, the method does not need any other equipment. Under this constraint condition, the Total Least Squares(TLS) algorithm is used to prove that the method is effective. Theoretical analysis shows that the algorithm can significantly improve the GPS positioning precision.展开更多
文摘The constrained total least squares algorithm for the passive location is presented based on the bearing-only measurements in this paper. By this algorithm the non-linear measurement equations are firstly transformed into linear equations and the effect of the measurement noise on the linear equation coefficients is analyzed, therefore the problem of the passive location can be considered as the problem of constrained total least squares, then the problem is changed into the optimized question without restraint which can be solved by the Newton algorithm, and finally the analysis of the location accuracy is given. The simulation results prove that the new algorithm is effective and practicable.
文摘This paper presents a new method of improving Global Positioning System(GPS)positioning precision. Based on the altitude hold mode, the method does not need any other equipment. Under this constraint condition, the Total Least Squares(TLS) algorithm is used to prove that the method is effective. Theoretical analysis shows that the algorithm can significantly improve the GPS positioning precision.