随着智能电网的发展,电力系统对保护设备提出更高要求。文章设计一种基于Modbus传输控制协议(Modbus Transmission Control Protocol,Modbus-TCP)的智能断路器温度与电流双重保护系统,集成多参量融合传感技术与人工智能算法,有效提升断...随着智能电网的发展,电力系统对保护设备提出更高要求。文章设计一种基于Modbus传输控制协议(Modbus Transmission Control Protocol,Modbus-TCP)的智能断路器温度与电流双重保护系统,集成多参量融合传感技术与人工智能算法,有效提升断路器的保护性能和响应速度。该系统采用高精度温度与电流传感器,利用Modbus-TCP协议实现高效、可靠的通信。实验结果表明,该系统在过流保护、温度测量精度、通信时延等方面表现出色,满足现代配电自动化的技术需求。展开更多
In data centers, the transmission control protocol(TCP) incast causes catastrophic goodput degradation to applications with a many-to-one traffic pattern. In this paper, we intend to tame incast at the receiver-side a...In data centers, the transmission control protocol(TCP) incast causes catastrophic goodput degradation to applications with a many-to-one traffic pattern. In this paper, we intend to tame incast at the receiver-side application. Towards this goal, we first develop an analytical model that formulates the incast probability as a function of connection variables and network environment settings. We combine the model with the optimization theory and derive some insights into minimizing the incast probability through tuning connection variables related to applications. Then,enlightened by the analytical results, we propose an adaptive application-layer solution to the TCP incast.The solution equally allocates advertised windows to concurrent connections, and dynamically adapts the number of concurrent connections to the varying conditions. Simulation results show that our solution consistently eludes incast and achieves high goodput in various scenarios including the ones with multiple bottleneck links and background TCP traffic.展开更多
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for...The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.展开更多
Transmission Control Protocol (TCP) optimization in Mobile Ad hoc NETworks (MANETs) is a challenging issue because of some unique characteristics of MANETs. In this paper,a new end-to-end mechanism based on multiple m...Transmission Control Protocol (TCP) optimization in Mobile Ad hoc NETworks (MANETs) is a challenging issue because of some unique characteristics of MANETs. In this paper,a new end-to-end mechanism based on multiple metrics measurement is proposed to improve TCP performance in MANETs. Multi-metric Measurement based Enhancement of TCP (MME-TCP) designs the metrics and the identification algorithm according to the characteristics of MANETs and the experiment results. Furthermore,these metrics are measured at the sender node to reduce the overhead of control information over networks. Simulation results show that MME-TCP mechanism achieves a significant performance improvement over standard TCP in MANETs.展开更多
传统TCP(transmission control protocol)本是为有线网络设计,它假设包丢失全是由网络拥塞引起,这个假设不能适应于MANET (mobile ad hoc network),因为MANET 中除了拥塞丢包以外,还存在由于较高比特误码率、路由故障等因素引起的丢包现...传统TCP(transmission control protocol)本是为有线网络设计,它假设包丢失全是由网络拥塞引起,这个假设不能适应于MANET (mobile ad hoc network),因为MANET 中除了拥塞丢包以外,还存在由于较高比特误码率、路由故障等因素引起的丢包现象.当出现非拥塞因素丢包时,传统 TCP 将错误地触发拥塞控制,从而引起TCP 性能低下.任何改进机制都可以分为发现问题和解决问题两个阶段.首先概括了 MANET 中影响 TCP 性能的若干问题;然后针对发现问题和解决问题两个阶段,详细地对每一阶段中存在的各种可行方法进行了分类、分析和比较;最后指出了 MANET 中 TCP 性能优化的研究方向.展开更多
文摘随着智能电网的发展,电力系统对保护设备提出更高要求。文章设计一种基于Modbus传输控制协议(Modbus Transmission Control Protocol,Modbus-TCP)的智能断路器温度与电流双重保护系统,集成多参量融合传感技术与人工智能算法,有效提升断路器的保护性能和响应速度。该系统采用高精度温度与电流传感器,利用Modbus-TCP协议实现高效、可靠的通信。实验结果表明,该系统在过流保护、温度测量精度、通信时延等方面表现出色,满足现代配电自动化的技术需求。
基金supported by the Fundamental Research Fundsfor the Central Universities under Grant No.ZYGX2015J009the Sichuan Province Scientific and Technological Support Project under Grants No.2014GZ0017 and No.2016GZ0093
文摘In data centers, the transmission control protocol(TCP) incast causes catastrophic goodput degradation to applications with a many-to-one traffic pattern. In this paper, we intend to tame incast at the receiver-side application. Towards this goal, we first develop an analytical model that formulates the incast probability as a function of connection variables and network environment settings. We combine the model with the optimization theory and derive some insights into minimizing the incast probability through tuning connection variables related to applications. Then,enlightened by the analytical results, we propose an adaptive application-layer solution to the TCP incast.The solution equally allocates advertised windows to concurrent connections, and dynamically adapts the number of concurrent connections to the varying conditions. Simulation results show that our solution consistently eludes incast and achieves high goodput in various scenarios including the ones with multiple bottleneck links and background TCP traffic.
文摘The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.
基金Supported by the National Natural Science Foundation of China (No.60496314)the Chinese 863 National High Technology Program (No.2002AA783043).
文摘Transmission Control Protocol (TCP) optimization in Mobile Ad hoc NETworks (MANETs) is a challenging issue because of some unique characteristics of MANETs. In this paper,a new end-to-end mechanism based on multiple metrics measurement is proposed to improve TCP performance in MANETs. Multi-metric Measurement based Enhancement of TCP (MME-TCP) designs the metrics and the identification algorithm according to the characteristics of MANETs and the experiment results. Furthermore,these metrics are measured at the sender node to reduce the overhead of control information over networks. Simulation results show that MME-TCP mechanism achieves a significant performance improvement over standard TCP in MANETs.